Year 2024,
Volume: 8 Issue: 2, 226 - 232, 31.12.2024
İrem Küpeli Erken
,
Mustafa Özkan
References
-
[1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
-
[2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
-
[3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
-
[4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
-
[5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
-
[6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
-
[7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
-
[8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
-
[9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.
A Study on Trans-para-Sasakian Manifolds
Year 2024,
Volume: 8 Issue: 2, 226 - 232, 31.12.2024
İrem Küpeli Erken
,
Mustafa Özkan
Abstract
In the current paper, we make the first contribution to investigate conditions under which three-dimensional trans-para-Sasakian manifold has η-parallel Ricci tensor and cyclic parallel Ricci tensor. Finally, a three dimensional trans-para-Sasakian manifold example which satisfies our results is constructed
References
-
[1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
-
[2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
-
[3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
-
[4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
-
[5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
-
[6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
-
[7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
-
[8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
-
[9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.