Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 2, 226 - 232
https://doi.org/10.38088/jise.1533942

Abstract

References

  • [1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
  • [2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
  • [3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
  • [4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
  • [5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
  • [6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
  • [7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
  • [8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
  • [9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.

A Study on Trans-para-Sasakian Manifolds

Year 2024, Volume: 8 Issue: 2, 226 - 232
https://doi.org/10.38088/jise.1533942

Abstract

In the current paper, we make the first contribution to investigate conditions under which three-dimensional trans-para-Sasakian manifold has η-parallel Ricci tensor and cyclic parallel Ricci tensor. Finally, a three dimensional trans-para-Sasakian manifold example which satisfies our results is constructed

References

  • [1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
  • [2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
  • [3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
  • [4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
  • [5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
  • [6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
  • [7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
  • [8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
  • [9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.
There are 9 citations in total.

Details

Primary Language English
Subjects Numerical Computation and Mathematical Software
Journal Section Research Articles
Authors

İrem Küpeli Erken 0000-0003-4471-3291

Mustafa Özkan 0000-0002-4483-2912

Early Pub Date December 11, 2024
Publication Date
Submission Date August 15, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024Volume: 8 Issue: 2

Cite

APA Küpeli Erken, İ., & Özkan, M. (2024). A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering, 8(2), 226-232. https://doi.org/10.38088/jise.1533942
AMA Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. December 2024;8(2):226-232. doi:10.38088/jise.1533942
Chicago Küpeli Erken, İrem, and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8, no. 2 (December 2024): 226-32. https://doi.org/10.38088/jise.1533942.
EndNote Küpeli Erken İ, Özkan M (December 1, 2024) A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering 8 2 226–232.
IEEE İ. Küpeli Erken and M. Özkan, “A Study on Trans-para-Sasakian Manifolds”, JISE, vol. 8, no. 2, pp. 226–232, 2024, doi: 10.38088/jise.1533942.
ISNAD Küpeli Erken, İrem - Özkan, Mustafa. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8/2 (December 2024), 226-232. https://doi.org/10.38088/jise.1533942.
JAMA Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8:226–232.
MLA Küpeli Erken, İrem and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering, vol. 8, no. 2, 2024, pp. 226-32, doi:10.38088/jise.1533942.
Vancouver Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8(2):226-32.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.