[1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
[2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
[3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
[4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
[5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
[6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
[7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
[8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
[9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.
A Study on Trans-para-Sasakian Manifolds
Year 2024,
Volume: 8 Issue: 2, 226 - 232, 31.12.2024
In the current paper, we make the first contribution to investigate conditions under which three-dimensional trans-para-Sasakian manifold has η-parallel Ricci tensor and cyclic parallel Ricci tensor. Finally, a three dimensional trans-para-Sasakian manifold example which satisfies our results is constructed
[1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
[2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
[3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
[4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
[5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
[6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
[7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
[8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
[9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.
Küpeli Erken, İ., & Özkan, M. (2024). A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering, 8(2), 226-232. https://doi.org/10.38088/jise.1533942
AMA
Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. December 2024;8(2):226-232. doi:10.38088/jise.1533942
Chicago
Küpeli Erken, İrem, and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8, no. 2 (December 2024): 226-32. https://doi.org/10.38088/jise.1533942.
EndNote
Küpeli Erken İ, Özkan M (December 1, 2024) A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering 8 2 226–232.
IEEE
İ. Küpeli Erken and M. Özkan, “A Study on Trans-para-Sasakian Manifolds”, JISE, vol. 8, no. 2, pp. 226–232, 2024, doi: 10.38088/jise.1533942.
ISNAD
Küpeli Erken, İrem - Özkan, Mustafa. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8/2 (December 2024), 226-232. https://doi.org/10.38088/jise.1533942.
JAMA
Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8:226–232.
MLA
Küpeli Erken, İrem and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering, vol. 8, no. 2, 2024, pp. 226-32, doi:10.38088/jise.1533942.
Vancouver
Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8(2):226-32.