Research Article
BibTex RIS Cite

Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA

Year 2025, Volume: 9 Issue: 2, 279 - 294

Abstract

This study examines the impact of hybrid layer thickness configurations on the mechanical properties and energy consumption of 3D-printed polylactic acid (PLA) parts produced via Fused Deposition Modeling (FDM). PLA specimens with various combinations of outer and core layer thicknesses (0.08 mm, 0.16 mm, and 0.28 mm) were fabricated and tested for tensile strength, flexural strength, and flexural modulus, alongside measurements of energy consumption. The results revealed that hybrid structures incorporating 0.16 mm face layers and 0.08 mm core layers exhibited superior mechanical performance. In contrast, thicker core layers (0.28 mm) significantly reduced printing time and energy use. The highest tensile strength (53.57 MPa), flexural strength (90.68 MPa), and flexural modulus (2898.4 MPa) were obtained in the sample group of 0.16_0.08_0.16 mm layer thickness. Scanning Electron Microscopy (SEM) provided microstructural insights supporting these findings. The porosity and higher nozzle temperature may influence the material strength for thicker and thinner layer thicknesses, respectively. The sample group with the least energy consumption was 0.28 mm, followed by the sample group with the same layer thickness in both the face and core layers. The study highlights the potential of hybrid layering strategies to optimize performance-energy trade-offs in FDM printing, offering valuable guidance for material-efficient and functionally robust additive manufacturing.

References

  • [1] Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high-performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 9–10. https://doi.org/10.1002/app.50782
  • [2] Bianchi, I., Forcellese, A., Mancia, T., Simoncini, M., & Vita, A. (2022). Process parameters effect on environmental sustainability of composites FFF technologies. Materials and Manufacturing Processes, 37(5), 591–601. https://doi.org/10.1080/10426914.2022.2049300
  • [3] Korkut, V., & Yavuz, H. (2020). Enhancing the tensile properties with minimal mass variation by revealing the effects of parameters in fused filament fabrication process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 525. https://doi.org/10.1007/s40430-020-02610-0
  • [4] Morales, M. A., Atencio Martinez, C. L., Maranon, A., Hernandez, C., Michaud, V., & Porras, A. (2021). Development and characterization of rice husk and recycled polypropylene composite filaments for 3d printing. Polymers, 13(7). https://doi.org/10.3390/polym13071067
  • [5] Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of bond formation between polymer filaments in the fused deposition modeling process. Journal of Manufacturing Processes, 6(2), 170–178. https://doi.org/10.1016/S1526-6125(04)70071-7
  • [6] Çakmak, G., Cuellar, A. R., Donmez, M. B., Schimmel, M., Abou-Ayash, S., Lu, W. E., & Yilmaz, B. (2021). Effect of printing layer thickness on the trueness and margin quality of 3D-printed interim dental crowns. Applied Sciences, 11, 9246. https://doi.org/10.3390/app11199246
  • [7] Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials, 8, 5834–5846. https://doi.org/10.3390/ma8095271
  • [8] Atzler, F., Hümbert, S., & Voggenreiter, H. (2024). A Workflow for the Compensation of Substrate Defects When Overprinting in Extrusion-Based Processes. Journal of Manufacturing and Materials Processing, 8, 147. https://doi.org/10.3390/jmmp8040147
  • [9] Mourya, V., Bhore, S. P., & Wandale, P. G. (2024). Multiobjective optimization of tribological characteristics of 3D printed texture surfaces for ABS and PLA Polymers. Journal of Thermoplastic Composite Materials, 37(2), 772–799. https://doi.org/10.1177/08927057231185710
  • [10] Alshamrani, A. A., Raju, R., & Ellakwa, A. (2022). Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. BioMed Research International, 2022, 8353137. https://doi.org/10.1155/2022/8353137
  • [11] Zhou, H., Cheng, X., Jiang, X., Zheng, G., Zheng, J., Li, Y., & Tang, M. (2023). Study on the interlayer bonding strength for combined 3D printing and millin of polyetheretherketone. Journal of Applied Polymer Science, 140(17), e53773. https://doi.org/10.1002/app.53773
  • [12] Enemuoh, E. U., Duginski, S., Feyen, C. & Meta, V. G. (2021). Effect of process parameters on energy consumption, physical, and mechnaical properties of fused deposition modelling. Polymers, 13(15), 2406. https://doi.org/10.3390/polym13152406
  • [13] Bintara, R. D., Andoko, A., Suprayitno, S., Pradana, Y. R. A., Maulana, F. & Yahya, H. (2024). Analysis of energy consumption for hollow structure of 3D printed part reinforced by polymer resin. E3S Web of Conferences 473, 02002.https://doi.org/10.1051/e3sconf/202447302002
  • [14] ASTM D 638. (2022). Standard Test Methods for Tensile Properties of Plastics. West Conshohocken, PA. https://doi.org/10.1520/D0638-14 [15] ASTM D 790. (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. Journal of Chemical Information and Modeling. West Conshohocken, PA. https://doi.org/10.1520/D0790-17
  • [16] Yang, T.-C., & Yeh, C.-H. (2020). Morphology and Mechanical Properties of 3D Printed Wood Fiber / Polylactic Acid Composite Parts Using. Polymers, 12, 1334. https://doi.org/doi:10.3390/polym1206134
  • [17] Tuazon, B. J., Espino, M. T., & Dizon, john R. C. (2023). Lap Shear Strength Assessment of Acetone Welded 3D-Printed ABS Polymer.pdf. Material Science Forum, 1087, 149–157. https://doi.org/10.4028/p-2ie712
  • [18] Nomani, J., Wilson, D., Paulino, M., & Mohammed, M. I. (2020). Effect of layer thickness and cross-section geometry on the tensile and compression properties of 3D printed ABS. Materials Today Communications, 22(April 2019), 100626. https://doi.org/10.1016/j.mtcomm.2019.100626
  • [19] Alves Guimarães, A. L., Gerlin Neto, V., Foschini, C. R., dos Anjos Azambuja, M., & Hellmeister, L. A. V. (2020). Influence of ABS print parameters on a 3D open-source, self-replicable printer. Rapid Prototyping Journal, 26(10), 1733–1738. https://doi.org/10.1108/RPJ-10-2019-0267
  • [20] von Windheim, N., Collinson, D. W., Lau, T., Brinson, L. C., & Gall, K. (2021). The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA). Rapid Prototyping Journal, 27(7), 1327–1336. https://doi.org/10.1108/RPJ-08-2020-0205
  • [21] Wang, X., Zhao, L., Fuh, J. Y. H., & Lee, H. P. (2019). Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers, 11, 1154. https://doi.org/10.3390/polym11071154
  • [22] Moradi, M., Rezayat, M., Rozhbiany, F. A. R., Meiabadi, S., Casalino, G., Shamsborhan, M., … Karamimoghadam, M. (2023). Correlation between Infill Percentages, Layer Width, and Mechanical Properties in Fused Deposition Modelling of Poly-Lactic Acid 3D Printing. Machines, 11, 950. https://doi.org/10.3390/machines11100950
  • [23] Zisopol, D. G., Tanase, M. & Portoaca, A. I. (2023). Innovative strategies for technical-economical optimization of FDM production. Polymers, 15(18), 3787. https://doi.org/10.3390/polym15183787
  • [24] Huang, B., Meng, S., He, H., Jia, Y., Xu, Y. & Huang, H. (2019). Study of processing parameters in fused deposition modeling based on mechnical properties of acrylonitrile-butadiene-styrene filament. Polymer Engineering and Science 59(1), 120-128. https://doi.org/10.1002/pen.2487
  • [25] Mukoroh, P. F., Gouda, F., Skrifvars, M. & Ramamoorthy, S., K. (2024). 3D Printing and injection molding of biobased polymer and biocomposite; and the effect of manufacturing methods and the printing layer thickness on mechanical behavior and water absorption. Preprints, 2024010251. https://doi.org/10.20944/preprints202401.0251.v1
  • [26] Gonabadi, H., Yadav, A. & Bull, S. J. (2020). The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. The International Journal of Advanced Manufacturing Technology, 111, 695-709.
  • [27] Yoo, S. Y., Kim, S. K., Heo, S. K., Koak, J. Y. & Kim, J. G. (2021). Dimensional accuracy of dental models for three-unit prostheses fabricatied by various 3D printing technologies. Materials, 14(6), 1550. https://doi.org/10.3390/ma14061550
  • [28] Xie, J., Zhou, X., Liu, Y., Zhang, J. G. & Wang, W. (2024). Process parameters optimization for 3D printing of continuous carbon fiber reinforced composite. Revistamateria, 29(3). https://doi.org/10.1590/1517-7076-RMAT-2024-0201
There are 27 citations in total.

Details

Primary Language English
Subjects Polymers and Plastics, Forest Industry Engineering (Other)
Journal Section Research Articles
Authors

Mesut Uysal 0000-0003-0114-3030

Early Pub Date October 28, 2025
Publication Date October 28, 2025
Submission Date June 9, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Uysal, M. (2025). Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA. Journal of Innovative Science and Engineering, 9(2), 279-294. https://doi.org/10.38088/jise.1716224
AMA Uysal M. Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA. JISE. October 2025;9(2):279-294. doi:10.38088/jise.1716224
Chicago Uysal, Mesut. “Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA”. Journal of Innovative Science and Engineering 9, no. 2 (October 2025): 279-94. https://doi.org/10.38088/jise.1716224.
EndNote Uysal M (October 1, 2025) Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA. Journal of Innovative Science and Engineering 9 2 279–294.
IEEE M. Uysal, “Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA”, JISE, vol. 9, no. 2, pp. 279–294, 2025, doi: 10.38088/jise.1716224.
ISNAD Uysal, Mesut. “Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA”. Journal of Innovative Science and Engineering 9/2 (October2025), 279-294. https://doi.org/10.38088/jise.1716224.
JAMA Uysal M. Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA. JISE. 2025;9:279–294.
MLA Uysal, Mesut. “Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA”. Journal of Innovative Science and Engineering, vol. 9, no. 2, 2025, pp. 279-94, doi:10.38088/jise.1716224.
Vancouver Uysal M. Hybrid Layer Thickness Configurations for Enhanced Mechanical Performance and Energy Efficiency FDM-Printed PLA. JISE. 2025;9(2):279-94.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.