Research Article
BibTex RIS Cite

Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research

Year 2025, Volume: 9 Issue: 2, 232 - 246

Abstract

Ultraviolet (UV) radiation has emerged as a powerful, non-chemical disinfection method, gaining significant attention for its ability to inactivate pathogenic microorganisms, particularly viruses, amid global public health challenges such as the COVID-19 pandemic. This study provides a comprehensive analysis of UV-based viral inactivation technologies, with a focus on ultraviolet germicidal irradiation (UVGI) using the UV-C spectrum (200-280 nm). It explores the fundamental physical principles of UV radiation, the photochemical mechanisms disrupting microbial DNA and RNA, and the critical parameters influencing disinfection efficacy, including UV dose, irradiance, wavelength, exposure time, and environmental conditions. Theoretical frameworks are supported by calculations and experimental data to evaluate the impact of material properties, surface characteristics, and atmospheric factors on UV performance. The study critically assesses UVGI applications in diverse settings, such as healthcare facilities, public spaces, ventilation systems, and water treatment, while addressing safety considerations, technological limitations, and potential health risks associated with UV exposure. By synthesizing theoretical insights, experimental findings, and a detailed review of UV sensitivity across various pathogens, including SARS-CoV-2 and other coronaviruses, this work highlights the high susceptibility of viral pathogens to UV-C radiation. It also examines the implications of RNA mutations on UV efficacy and provides estimated inactivation doses for a range of microorganisms. These findings underscore the potential of UV-based technologies as a cornerstone of modern infection control strategies, offering insights into optimizing system design and implementation for effective microbial inactivation while ensuring safety and scalability in real-world applications.

References

  • [1]. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470-473. doi: 10.1016/S0140-6736(20)30185-9.
  • [2]. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020 Apr;76:71-76. doi: 10.1016/j.ijsu.2020.02.034.
  • [3]. Bonadonna, L., Briancesco, R., Coccia, A. M., Meloni, P., Rosa, G. L., & Moscato, U. (2021). Microbial air quality in healthcare facilities. International Journal of Environmental Research and Public Health, 18(12), 6226.
  • [4]. Blatchley III, E. R., Brenner, D. J., Claus, H., Cowan, T. E., Linden, K. G., Liu, Y., ... & Sliney, D. H. (2023). Far UV-C radiation: An emerging tool for pandemic control. Critical Reviews in Environmental Science and Technology, 53(6), 733-753.
  • [5]. Rastogi, R. P., Richa, N., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation‐induced DNA damage and repair. Journal of nucleic acids, 2010(1), 592980.
  • [6]. Nerandzic MM, Thota P, Sankar C T, Jencson A, Cadnum JL, Ray AJ, Salata RA, Watkins RR, Donskey CJ. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015 Feb;36(2):192-7. doi: 10.1017/ice.2014.36.
  • [7]. Downes, A., Blunt, T. The Influence of Light upon the Development of Bacteria. Nature 16, 218 (1877). https://doi.org/10.1038/016218a0
  • [8]. Bharti, B., Li, H., Ren, Z., Zhu, R., & Zhu, Z. (2022). Recent advances in sterilization and disinfection technology: A review. Chemosphere, 308, 136404.
  • [9]. Spire B, Dormont D, Barré-Sinoussi F, Montagnier L, Chermann JC. Inactivation of lymphadenopathy-associated virus by heat, gamma rays, and ultraviolet light. Lancet. 1985 Jan 26;1(8422):188-9. doi: 10.1016/s0140-6736(85)92026-4.
  • [10]. Stapleton AE, Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 1994 Jul;105(3):881-9. doi: 10.1104/pp.105.3.881.
  • [11]. Attwood, D. (2000). Soft x-rays and extreme ultraviolet radiation: principles and applications. Cambridge university press.
  • [12]. Strizzi, S. (2025). INVESTIGATION OF NEW THERAPEUTIC TARGETS OF RESPIRATORY VIRUSES: A NOVEL METHOD EXPLOITING UV RADIATION PROOF OF CONCEPT BASED ON SARS-COV-2.
  • [13]. Abu-Elsaoud, A. M., & Abdel-Azeem, A. M. (2020). Light, electromagnetic spectrum, and photostimulation of microorganisms with special reference to chaetomium. Recent Developments on Genus Chaetomium, 377-393.
  • [14]. Spire B, Dormont D, Barré-Sinoussi F, Montagnier L, Chermann JC. Inactivation of lymphadenopathy-associated virus by heat, gamma rays, and ultraviolet light. Lancet. 1985 Jan 26;1(8422):188-9. doi: 10.1016/s0140-6736(85)92026-4.
  • [15]. Taghipour, F. (2004). Ultraviolet and ionizing radiation for microorganism inactivation. Water Research, 38(18), 3940-3948.
  • [16]. Sheng, X., Wang, J., Zhao, L., Yan, W., Qian, J., Wang, Z., ... & Raghavan, V. (2024). Inactivation mechanism of cold plasma combined with 222 nm ultraviolet for spike protein and its application in disinfecting of SARS-CoV-2. Journal of Hazardous Materials, 465, 133458.
  • [17]. Lu, Y. H., Shi, X. R., Li, W. S., & Lai, A. C. K. (2025). Wavelength-specific inactivation mechanisms and efficacies of germicidal UVC for airborne human coronavirus. Journal of Hazardous Materials, 484, 136666.
  • [18]. Hockberger, P. E. (2002). A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms. Photochemistry and photobiology, 76(6), 561-579.
  • [19]. Cockell, C. S., & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Reviews, 74(3), 311-345.
  • [20]. Gray, N. F. (2014). Ultraviolet disinfection. In Microbiology of waterborne diseases (pp. 617-630). Academic Press.
  • [21]. Kohs, J., Lichtenthäler, T., Gouma, C., Cho, H. K., Reith, A., Kramer, A., ... & Zwicker, P. (2024). Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths. Viruses, 16(12), 1904.
  • [22]. Ploydaeng, M., Rajatanavin, N., & Rattanakaemakorn, P. (2021). UV‐C light: A powerful technique for inactivating microorganisms and the related side effects to the skin. Photodermatology, photoimmunology & photomedicine, 37(1), 12-19.
  • [23]. Heßling, M., Hönes, K., Vatter, P., & Lingenfelder, C. (2020). Ultraviolet irradiation doses for coronavirus inactivation–review and analysis of coronavirus photoinactivation studies. GMS hygiene and infection control, 15, Doc08.
  • [24]. Čeplikas, P. (2023). Ultra-violet-C light source investigation and application for healthcare premises disinfection (Doctoral dissertation, Kauno technologijos universitetas.).
  • [25]. Santamera, A., Escott, C., Loira, I., del Fresno, J. M., González, C., & Morata, A. (2020). Pulsed light: Challenges of a non-thermal sanitation technology in the winemaking industry. Beverages, 6(3), 45.
  • [26]. Beck, S. E., Rodriguez, R. A., Hawkins, M. A., Hargy, T. M., Larason, T. C., & Linden, K. G. (2016). Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Applied and environmental microbiology, 82(5), 1468-1474.
  • [27]. Vasilyak, L. M. (2021). Physical methods of disinfection (a review). Plasma Physics Reports, 47, 318-327.
  • [28]. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28(1), 4-13.
  • [29]. Kowalski, W. (2010). Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer science & business media.
  • [30]. Mahesh M, Siewerdsen JH. Ultraviolet germicidal irradiation of the inner bore of a CT gantry. J Appl Clin Med Phys. 2020 Dec;21(12):325-328. doi: 10.1002/acm2.13067.
  • [31]. Sinaga, A. O. Y., Handayani, S. A. F., & Marpaung, D. S. S. (2024). Destructive effect of UV-C light radiation on lettuce growth: risk assessment of long time exposure. Radiation Effects and Defects in Solids, 1-12.
  • [32]. Rufyikiri, A. S., Martinez, R., Addo, P. W., Wu, B. S., Yousefi, M., Malo, D., ... & Lefsrud, M. (2024). Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2. Photochemical & Photobiological Sciences, 23(2), 339-354.
  • [33]. Rastogi VK, Wallace L, Smith LS. Disinfection of Acinetobacter baumannii-contaminated surfaces relevant to medical treatment facilities with ultraviolet C light. Mil Med. 2007 Nov;172(11):1166-9. doi: 10.7205/milmed.172.11.1166.
  • [34]. Nwachuku N, Gerba CP, Oswald A, Mashadi FD. Comparative inactivation of adenovirus serotypes by UV light disinfection. Appl Environ Microbiol. 2005 Sep;71(9):5633-6. doi: 10.1128/AEM.71.9.5633-5636.2005.
  • [35]. Gerba CP, Pepper IL, Whitehead LF 3rd. A risk assessment of emerging pathogens of concern in the land application of biosolids. Water Sci Technol. 2002;46(10):225-30.
  • [36]. Ballester, N. A., & Malley Jr, J. P. (2004). Sequential Disinfection of adenovirus type 2 with UV‐Chlorine‐Chloramine. Journal‐American Water Works Association, 96(10), 97-103. Doi: 10.1002/j.1551-8833.2004.tb10726.x
  • [37]. Boczek, N. J., Gomez-Hurtado, N., Ye, D., Calvert, M. L., Tester, D. J., Kryshtal, D. O., ... & Ackerman, M. J. (2016). Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome–Associated Calmodulin Missense Variant, E141G. Circulation: Cardiovascular Genetics, 9(2), 136-146. Doi: 10.1161/CIRCGENETICS.115.001323
  • [38]. Gerrity D, Ryu H, Crittenden J, Abbaszadegan M. UV inactivation of adenovirus type 4 measured by integrated cell culture qPCR. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008 Dec;43(14):1628-38. doi: 10.1080/10934520802329919.
  • [39]. Guo H, Chu X, Hu J. Effect of host cells on low- and medium-pressure UV inactivation of adenoviruses. Appl Environ Microbiol. 2010 Nov;76(21):7068-75. doi: 10.1128/AEM.00185-10.
  • [40]. Walker CM, Ko G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol. 2007 Aug 1;41(15):5460-5. doi: 10.1021/es070056u.
  • [41]. Weiss M, Horzinek MC. Resistance of Berne virus to physical and chemical treatment. Vet Microbiol. 1986 Feb;11(1-2):41-9. doi: 10.1016/0378-1135(86)90005-2.
  • [42]. Hirano N, Hino S, Fujiwara K. Physico-chemical properties of mouse hepatitis virus (MHV-2) grown on DBT cell culture. Microbiol Immunol. 1978;22(7):377-90. doi: 10.1111/j.1348-0421.1978.tb00384.x.
  • [43]. Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, Han J, Bi SL, Ruan L, Dong XP; SARS Research Team. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. 2003 Sep;16(3):246-55.
  • [44]. Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res. 2004 Nov;52(3):105-12.
  • [45]. Buonanno M, Welch D, Shuryak I, Brenner DJ. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci Rep. 2020 Jun 24;10(1):10285. doi: 10.1038/s41598-020-67211-2.
  • [46]. Sabino, C. P., Sellera, F. P., Sales-Medina, D. F., Machado, R. R. G., Durigon, E. L., Freitas-Junior, L. H., & Ribeiro, M. S. (2020). UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagnosis and Photodynamic Therapy, 32, 101995.
  • [47]. Shin, G. A., Linden, K. G., & Sobsey, M. D. (2005). Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages. Journal of environmental engineering and science, 4(S1), S7-S11.
  • [48]. Wilson, B. (1992). Coliphage MS-2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens. In Proc. of the AWWA Water Quality Technology Conference. Toronto, Ont., AWWA, 1992.
  • [49]. UV Dosage Required to Kill Microorganisms https://uv-light.co.uk/ [Accessed: 5 May 2025]
  • [50]. Nuanualsuwan S, Thongtha P, Kamolsiripichaiporn S, Subharat S. UV inactivation and model of UV inactivation of foot-and-mouth disease viruses in suspension. Int J Food Microbiol. 2008 Sep 30;127(1-2):84-90. doi: 10.1016/j.ijfoodmicro.2008.06.014.
  • [51]. Liltved, H., & Landfald, B. (1996). Influence of liquid holding recovery and photoreactivation on survival of ultraviolet-irradiated fish pathogenic bacteria. Water research, 30(5), 1109-1114.
  • [52]. Rose, L. J., & O'Connell, H. (2009). UV light inactivation of bacterial biothreat agents. Applied and Environmental Microbiology, 75(9), 2987-2990.
  • [53]. Maya, C., Beltrán, N., Jiménez, B., & Bonilla, P. (2003). Evaluation of the UV disinfection process in bacteria and amphizoic amoebae inactivation. Water Science and Technology: Water Supply, 3(4), 285-291.
  • [54]. Giese, N., & Darby, J. (2000). Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems. Water Research, 34(16), 4007-4013. Doi: 10.1016/S0043-1354(00)00172-X
  • [55]. Cervero-Aragó S, Sommer R, Araujo RM. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. Water Res. 2014 Dec 15;67:299-309. doi: 10.1016/j.watres.2014.09.023.
  • [56]. Hayes SL, Sivaganesan M, White KM, Pfaller SL. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms. Lett Appl Microbiol. 2008 Nov;47(5):386-92. doi: 10.1111/j.1472-765X.2008.02442.x.
  • [57]. Shin, G. A., Lee, J. K., Freeman, R., & Cangelosi, G. A. (2008). Inactivation of Mycobacterium avium complex by UV irradiation. Applied and environmental microbiology, 74(22), 7067-7069.
  • [58]. Yaun BR, Sumner SS, Eifert JD, Marcy JE. Response of Salmonella and Escherichia coli O157:H7 to UV energy. J Food Prot. 2003 Jun;66(6):1071-3. doi: 10.4315/0362-028x-66.6.1071.
  • [59]. Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD. UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol. 1985 Jun;49(6):1361-5. doi: 10.1128/aem.49.6.1361-1365.1985.
  • [60]. Qiu X, Sundin GW, Chai B, Tiedje JM. Survival of Shewanella oneidensis MR-1 after UV radiation exposure. Appl Environ Microbiol. 2004 Nov;70(11):6435-43. doi: 10.1128/AEM.70.11.6435-6443.2004.
  • [61]. Collins FM. Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light. Appl Microbiol. 1971 Mar;21(3):411-3. doi: 10.1128/am.21.3.411-413.1971.
  • [62]. McKinney CW, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol. 2012 Dec 18;46(24):13393-400. doi: 10.1021/es303652q.
  • [63]. Banerjee SK, Chatterjee SN. Sensitivity of the vibrios to ultraviolet-radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1977 Aug;32(2):127-33. doi: 10.1080/09553007714550801.
  • [64]. Taylor-Edmonds L, Lichi T, Rotstein-Mayer A, Mamane H. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(4):341-7. doi: 10.1080/10934529.2015.987519.
  • [65]. Nicholson WL, Galeano B. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Appl Environ Microbiol. 2003 Feb;69(2):1327-30. doi: 10.1128/AEM.69.2.1327-1330.2003.
  • [66]. Clauß, M. (2006). Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength. Acta hydrochimica et hydrobiologica, 34(6), 525-532.doi: 10.1002/aheh.200600650
  • [67]. Zhang Y, Zhou L, Zhang Y. Investigation of UV-TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation. J Environ Sci (China). 2014 Sep 1;26(9):1943-8. doi: 10.1016/j.jes.2014.07.007.
  • [68]. Singh PK. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1. Arch Microbiol. 1975 May 5;103(3):297-302. doi: 10.1007/BF00436364.
  • [69]. John, D. E., Nwachuku, N., Pepper, I. L., & Gerba, C. P. (2003). Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation. Journal of microbiological methods, 52(2), 183-196.
  • [70]. Heilingloh, C. S., Aufderhorst, U. W., Schipper, L., Dittmer, U., Witzke, O., Yang, D., ... & Krawczyk, A. (2020). Susceptibility of SARS-CoV-2 to UV irradiation. American journal of infection control, 48(10), 1273-1275.
  • [71]. Gidari, A., Sabbatini, S., Bastianelli, S., Pierucci, S., Busti, C., Bartolini, D., ... & Francisci, D. (2021). SARS-CoV-2 survival on surfaces and the effect of UV-C light. Viruses, 13(3), 408.
  • [72]. van der Schans, M., Yu, J., de Vries, A., & Martin, G. (2024). Estimation of the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm irradiation using CFD-based room disinfection simulations. Scientific Reports, 14(1), 15963.
There are 72 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy
Journal Section Research Articles
Authors

Muhammet Arucu 0000-0001-7620-9044

Mustafa Tasci 0000-0002-8073-8587

Taner Kalaycı 0000-0002-6374-2373

Early Pub Date September 18, 2025
Publication Date September 18, 2025
Submission Date May 5, 2025
Acceptance Date July 7, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Arucu, M., Tasci, M., & Kalaycı, T. (2025). Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research. Journal of Innovative Science and Engineering, 9(2), 232-246. https://doi.org/10.38088/jise.1691959
AMA Arucu M, Tasci M, Kalaycı T. Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research. JISE. September 2025;9(2):232-246. doi:10.38088/jise.1691959
Chicago Arucu, Muhammet, Mustafa Tasci, and Taner Kalaycı. “Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research”. Journal of Innovative Science and Engineering 9, no. 2 (September 2025): 232-46. https://doi.org/10.38088/jise.1691959.
EndNote Arucu M, Tasci M, Kalaycı T (September 1, 2025) Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research. Journal of Innovative Science and Engineering 9 2 232–246.
IEEE M. Arucu, M. Tasci, and T. Kalaycı, “Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research”, JISE, vol. 9, no. 2, pp. 232–246, 2025, doi: 10.38088/jise.1691959.
ISNAD Arucu, Muhammet et al. “Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research”. Journal of Innovative Science and Engineering 9/2 (September2025), 232-246. https://doi.org/10.38088/jise.1691959.
JAMA Arucu M, Tasci M, Kalaycı T. Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research. JISE. 2025;9:232–246.
MLA Arucu, Muhammet et al. “Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research”. Journal of Innovative Science and Engineering, vol. 9, no. 2, 2025, pp. 232-46, doi:10.38088/jise.1691959.
Vancouver Arucu M, Tasci M, Kalaycı T. Ultraviolet-Based Viral Inactivation: A Critical Examination of Current Research. JISE. 2025;9(2):232-46.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.