Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 103 - 117, 17.06.2025

Abstract

References

  • [1] Amanor-Boadu J. M., Guiseppi-Elie A., Sánchez-Sinencio E., The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries, Energies, 11 (8), 2162, 2018.
  • [2] Lithium-ion Battery Market. https://www.precedenceresearch.com/lithium-ion-battery-market#:~:text=The%20Asia%20Pacific%20lithium%2Dion,with%20revenue%20share%20of%2047%25.
  • [3] Su X., Xu X.-P., Ji Z.-Q., Wu J., Ma F., Fan L.-Z., Polyethylene Oxide-Based Composite Solid Electrolytes for Lithium Batteries: Current Progress, Low-Temperature and High-Voltage Limitations, and Prospects, Electrochemical Energy Reviews, 7 (1), 2, 2024.
  • [4] Gielinger S., Hein T., Ziegler A., Oeser D., Breitfelder S., Bohn G., A Short Time Expansion Measurement Method for the Detection of Aging Effect of Lithium Ion Cells Using a High Resolution Laser Interfometric Setup, IEEE Access, 11, 139924-139934, 2023.
  • [5] Diolaiti V., Andreoli A., Chauque S., Bernardoni P., Mangherini G., Ricci M., Zaccaria R. P., Ferroni M., Vincenzi D., Comparison of Porous Germanium Thin Films on SS and Mo as Anode for High-Performance LIBs, IEEE Transactions on Nanotechnology, 22, 552-557, 2023.
  • [6] Huang X., Liu W., Meng J., Li Y., Jin S., Teodorescu R., Stroe D. I., Lifetime Extension of Lithium-Ion Batteries With Low-Frequency Pulsed Current Charging, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11 (1), 57-66, 2023.
  • [7] Huang X., Meng J., Liu W., Ru F., Duan C., Xu X., Stroe D. I., Teodorescu R., Lithium-Ion Battery Lifetime Extension With Positive Pulsed Current Charging, IEEE Transactions on Industrial Electronics, 71 (1), 484-492, 2024.
  • [8] Yan H. W., Farivar G. G., Beniwal N., Tafti H. D., Ceballos S., Pou J., Konstantinou G., Battery Lifetime Extension in a Stand-Alone Microgrid With Flexible Power Point Tracking of Photovoltaic System, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11 (2), 2281-2290, 2023.
  • [9] Lv H., Huang X., Liu Y., Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries, Ionics, 26 (4), 1749-1770, 2020.
  • [10] Chen P.-T., Yang F.-H., Cao Z.-T., Jhang J.-M., Gao H.-M., Yang M.-H., Huang K. D., Reviving Aged Lithium-Ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy, Batteries & Supercaps, 2 (8), 673-677, 2019.
  • [11] Li H., Zhang X., Peng J., He J., Huang Z., Wang J., Cooperative CC–CV Charging of Supercapacitors Using Multicharger Systems, IEEE Transactions on Industrial Electronics, 67 (12), 10497-10508, 2020.
  • [12] Lee Y. D., Park S. Y., Electrochemical State-Based Sinusoidal Ripple Current Charging Control, IEEE Transactions on Power Electronics, 30 (8), 4232-4243, 2015.
  • [13] Zhu S., Hu C., Xu Y., Jin Y., Shui J., Performance improvement of lithium-ion battery by pulse current, Journal of Energy Chemistry, 46, 208-214, 2020.
  • [14] Huang X., Li Y., Acharya A. B., Sui X., Meng J., Teodorescu R., Stroe D.-I., A Review of Pulsed Current Technique for Lithium-ion Batteries, Energies, 13 (10), 2458, 2020.
  • [15] Tang A., Gong P., Huang Y., Wu X., Yu Q., Research on pulse charging current of lithium-ion batteries for electric vehicles in low-temperature environment, Energy Reports, 9, 1447-1457, 2023.
  • [16] Chen L. R., Wu S. L., Shieh D. T., Chen T. R., Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries, IEEE Transactions on Industrial Electronics, 60 (1), 88-97, 2013.
  • [17] Li J., Murphy E., Winnick J., Kohl P. A., The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries, Journal of Power Sources, 102 (1), 302-309, 2001.
  • [18] MOLICEL Lithium-ion Rechargeable Battery Cell Characteristics. https://www.molicel.com/wp-content/uploads/INR18650M35A-V2-80096.pdf. 29.02.2024.
  • [19] ORION 18650P/25 Lithium Ion Cell. https://static.ticimax.cloud/37661/uploads/dosyalar/orion-18650p-2500.pdf. 29.02.2024.
  • [20] Keil P., Jossen A., Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells, Journal of Energy Storage, 6, 125-141, 2016.
  • [21] Savoye F., Venet P., Millet M., Groot J., Impact of Periodic Current Pulses on Li-Ion Battery Performance, IEEE Transactions on Industrial Electronics, 59 (9), 3481-3488, 2012.
  • [22] Abdel-Monem M., Trad K., Omar N., Hegazy O., Van den Bossche P., Van Mierlo J., Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries, Energy, 120, 179-191, 2017.
  • [23] Tremblay O., Dessaint L. A., Dekkiche A. I., A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles, 2007 IEEE Vehicle Power and Propulsion Conference, 284-289, 9-12 Sept. 2007.
  • [24] Omar N., Monem M. A., Firouz Y., Salminen J., Smekens J., Hegazy O., Gaulous H., Mulder G., Van den Bossche P., Coosemans T., Van Mierlo J., Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model, Applied Energy, 113, 1575-1585, 2014.
  • [25] Yang F., Wang D., Zhao Y., Tsui K.-L., Bae S. J., A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries, Energy, 145, 486-495, 2018.
  • [26] Dubarry M., Liaw B. Y., Identify capacity fading mechanism in a commercial LiFePO4 cell, Journal of Power Sources, 194 (1), 541-549, 2009.
  • [27] Rajagopalan Kannan D. R., Weatherspoon M. H., The effect of pulse charging on commercial lithium nickel cobalt oxide (NMC) cathode lithium-ion batteries, Journal of Power Sources, 479, 229085, 2020.
  • [28] Li Q., Tan S., Li L., Lu Y., He Y., Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries, Science Advances, 3 (7), e1701246, 2017.
  • [29] Kopczyński A., Liu Z., Krawczyk P., Parametric analysis of Li-ion battery based on laboratory tests, E3S Web Conf., 44, 00074, 2018.
  • [30] 12.8 V, 40 Ah, Lithium-Ion (LiFePO4) Battery Aging Model (1000 h Simulation). https://www.mathworks.com/help/sps/ug/12-8-v-40-ah-lithium-ion-lifepo4-battery-aging-model-1000-h-simulation.html. 17.03.2024.

The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries

Year 2025, Volume: 9 Issue: 1, 103 - 117, 17.06.2025

Abstract

This study proposes a new pulsed charging current technique to reduce aging and capacity losses in lithium-ion battery cells. The charging techniques developed to minimize aging and capacity losses are critical for battery cells with longer life cycles and higher energy efficiency. Continuous Current – Continuous Voltage charging (CC-CV), Positive Pulsed Current (PPC), and proposed Alternating Half Wave Pulsed Current (AHWPC) techniques were tested on a 12.8V-40Ah Li-ion battery. In PPC and AHWPC techniques, the pulse frequency of the charging current is chosen as f_(i_ch )=1 Hz. The average value of the charging current for PPC and AHWPC techniques is calculated based on the CC-CV technique. The aging and capacity losses caused by the three charging techniques in the battery were measured in five different scenarios: at various temperatures, different discharge currents, and different depths of discharge (DoD). Using the AHWPC technique, improvements of 45.93%, 46.57% and 46.29% were achieved in cell aging compared to the CC-CV technique at temperatures of 20°C, 30°C and 40°C, respectively. According to the results, the proposed AHWPC technique performed better than the PPC and CC-CV techniques in all test conditions.

References

  • [1] Amanor-Boadu J. M., Guiseppi-Elie A., Sánchez-Sinencio E., The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries, Energies, 11 (8), 2162, 2018.
  • [2] Lithium-ion Battery Market. https://www.precedenceresearch.com/lithium-ion-battery-market#:~:text=The%20Asia%20Pacific%20lithium%2Dion,with%20revenue%20share%20of%2047%25.
  • [3] Su X., Xu X.-P., Ji Z.-Q., Wu J., Ma F., Fan L.-Z., Polyethylene Oxide-Based Composite Solid Electrolytes for Lithium Batteries: Current Progress, Low-Temperature and High-Voltage Limitations, and Prospects, Electrochemical Energy Reviews, 7 (1), 2, 2024.
  • [4] Gielinger S., Hein T., Ziegler A., Oeser D., Breitfelder S., Bohn G., A Short Time Expansion Measurement Method for the Detection of Aging Effect of Lithium Ion Cells Using a High Resolution Laser Interfometric Setup, IEEE Access, 11, 139924-139934, 2023.
  • [5] Diolaiti V., Andreoli A., Chauque S., Bernardoni P., Mangherini G., Ricci M., Zaccaria R. P., Ferroni M., Vincenzi D., Comparison of Porous Germanium Thin Films on SS and Mo as Anode for High-Performance LIBs, IEEE Transactions on Nanotechnology, 22, 552-557, 2023.
  • [6] Huang X., Liu W., Meng J., Li Y., Jin S., Teodorescu R., Stroe D. I., Lifetime Extension of Lithium-Ion Batteries With Low-Frequency Pulsed Current Charging, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11 (1), 57-66, 2023.
  • [7] Huang X., Meng J., Liu W., Ru F., Duan C., Xu X., Stroe D. I., Teodorescu R., Lithium-Ion Battery Lifetime Extension With Positive Pulsed Current Charging, IEEE Transactions on Industrial Electronics, 71 (1), 484-492, 2024.
  • [8] Yan H. W., Farivar G. G., Beniwal N., Tafti H. D., Ceballos S., Pou J., Konstantinou G., Battery Lifetime Extension in a Stand-Alone Microgrid With Flexible Power Point Tracking of Photovoltaic System, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11 (2), 2281-2290, 2023.
  • [9] Lv H., Huang X., Liu Y., Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries, Ionics, 26 (4), 1749-1770, 2020.
  • [10] Chen P.-T., Yang F.-H., Cao Z.-T., Jhang J.-M., Gao H.-M., Yang M.-H., Huang K. D., Reviving Aged Lithium-Ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy, Batteries & Supercaps, 2 (8), 673-677, 2019.
  • [11] Li H., Zhang X., Peng J., He J., Huang Z., Wang J., Cooperative CC–CV Charging of Supercapacitors Using Multicharger Systems, IEEE Transactions on Industrial Electronics, 67 (12), 10497-10508, 2020.
  • [12] Lee Y. D., Park S. Y., Electrochemical State-Based Sinusoidal Ripple Current Charging Control, IEEE Transactions on Power Electronics, 30 (8), 4232-4243, 2015.
  • [13] Zhu S., Hu C., Xu Y., Jin Y., Shui J., Performance improvement of lithium-ion battery by pulse current, Journal of Energy Chemistry, 46, 208-214, 2020.
  • [14] Huang X., Li Y., Acharya A. B., Sui X., Meng J., Teodorescu R., Stroe D.-I., A Review of Pulsed Current Technique for Lithium-ion Batteries, Energies, 13 (10), 2458, 2020.
  • [15] Tang A., Gong P., Huang Y., Wu X., Yu Q., Research on pulse charging current of lithium-ion batteries for electric vehicles in low-temperature environment, Energy Reports, 9, 1447-1457, 2023.
  • [16] Chen L. R., Wu S. L., Shieh D. T., Chen T. R., Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries, IEEE Transactions on Industrial Electronics, 60 (1), 88-97, 2013.
  • [17] Li J., Murphy E., Winnick J., Kohl P. A., The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries, Journal of Power Sources, 102 (1), 302-309, 2001.
  • [18] MOLICEL Lithium-ion Rechargeable Battery Cell Characteristics. https://www.molicel.com/wp-content/uploads/INR18650M35A-V2-80096.pdf. 29.02.2024.
  • [19] ORION 18650P/25 Lithium Ion Cell. https://static.ticimax.cloud/37661/uploads/dosyalar/orion-18650p-2500.pdf. 29.02.2024.
  • [20] Keil P., Jossen A., Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells, Journal of Energy Storage, 6, 125-141, 2016.
  • [21] Savoye F., Venet P., Millet M., Groot J., Impact of Periodic Current Pulses on Li-Ion Battery Performance, IEEE Transactions on Industrial Electronics, 59 (9), 3481-3488, 2012.
  • [22] Abdel-Monem M., Trad K., Omar N., Hegazy O., Van den Bossche P., Van Mierlo J., Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries, Energy, 120, 179-191, 2017.
  • [23] Tremblay O., Dessaint L. A., Dekkiche A. I., A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles, 2007 IEEE Vehicle Power and Propulsion Conference, 284-289, 9-12 Sept. 2007.
  • [24] Omar N., Monem M. A., Firouz Y., Salminen J., Smekens J., Hegazy O., Gaulous H., Mulder G., Van den Bossche P., Coosemans T., Van Mierlo J., Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model, Applied Energy, 113, 1575-1585, 2014.
  • [25] Yang F., Wang D., Zhao Y., Tsui K.-L., Bae S. J., A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries, Energy, 145, 486-495, 2018.
  • [26] Dubarry M., Liaw B. Y., Identify capacity fading mechanism in a commercial LiFePO4 cell, Journal of Power Sources, 194 (1), 541-549, 2009.
  • [27] Rajagopalan Kannan D. R., Weatherspoon M. H., The effect of pulse charging on commercial lithium nickel cobalt oxide (NMC) cathode lithium-ion batteries, Journal of Power Sources, 479, 229085, 2020.
  • [28] Li Q., Tan S., Li L., Lu Y., He Y., Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries, Science Advances, 3 (7), e1701246, 2017.
  • [29] Kopczyński A., Liu Z., Krawczyk P., Parametric analysis of Li-ion battery based on laboratory tests, E3S Web Conf., 44, 00074, 2018.
  • [30] 12.8 V, 40 Ah, Lithium-Ion (LiFePO4) Battery Aging Model (1000 h Simulation). https://www.mathworks.com/help/sps/ug/12-8-v-40-ah-lithium-ion-lifepo4-battery-aging-model-1000-h-simulation.html. 17.03.2024.
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage
Journal Section Research Articles
Authors

Muhammed Reşit Çorapsız 0000-0001-5477-5299

Early Pub Date June 13, 2025
Publication Date June 17, 2025
Submission Date January 31, 2025
Acceptance Date May 4, 2025
Published in Issue Year 2025Volume: 9 Issue: 1

Cite

APA Çorapsız, M. R. (2025). The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries. Journal of Innovative Science and Engineering, 9(1), 103-117. https://doi.org/10.38088/jise.1630283
AMA Çorapsız MR. The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries. JISE. June 2025;9(1):103-117. doi:10.38088/jise.1630283
Chicago Çorapsız, Muhammed Reşit. “The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-Ion Batteries”. Journal of Innovative Science and Engineering 9, no. 1 (June 2025): 103-17. https://doi.org/10.38088/jise.1630283.
EndNote Çorapsız MR (June 1, 2025) The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries. Journal of Innovative Science and Engineering 9 1 103–117.
IEEE M. R. Çorapsız, “The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries”, JISE, vol. 9, no. 1, pp. 103–117, 2025, doi: 10.38088/jise.1630283.
ISNAD Çorapsız, Muhammed Reşit. “The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-Ion Batteries”. Journal of Innovative Science and Engineering 9/1 (June 2025), 103-117. https://doi.org/10.38088/jise.1630283.
JAMA Çorapsız MR. The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries. JISE. 2025;9:103–117.
MLA Çorapsız, Muhammed Reşit. “The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-Ion Batteries”. Journal of Innovative Science and Engineering, vol. 9, no. 1, 2025, pp. 103-17, doi:10.38088/jise.1630283.
Vancouver Çorapsız MR. The Effect of Half Wave Pulsed Current Charging on Age and Capacity Fade for Lithium-ion Batteries. JISE. 2025;9(1):103-17.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.