Research Article
BibTex RIS Cite
Year 2022, , 248 - 258, 31.12.2022
https://doi.org/10.38088/jise.979229

Abstract

Supporting Institution

ERMETAL OTOMOTİV VE EŞYA SANAYİ TİC. A.Ş.

References

  • [1] Zakaria MR, Md Akil H, Abdul Kudus MH, Ullah F, Javed F, Nosbi N. Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review. Composites Part B: Engineering 2019;176. https://doi.org/10.1016/j.compositesb.2019.107313.
  • [2] Chung DDL. Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Materials Science and Engineering R: Reports 2017;113:1–29. https://doi.org/10.1016/j.mser.2017.01.002.
  • [3] Wang Z, Yang B, Xian G, Tian Z, Weng J, Zhang F, et al. An effective method to improve the interfacial shear strength in GF/CF reinforced epoxy composites characterized by fiber pull-out test. Composites Communications 2020;19:168–72. https://doi.org/10.1016/j.coco.2020.03.013.
  • [4] Kim P. A Comparative Study of the Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials 1998 5:3 1998;5:175–87. https://doi.org/10.1023/A:1008830017745.
  • [5] Boon Y di, Joshi SC. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Materials Today Communications 2020;22. https://doi.org/10.1016/j.mtcomm.2019.100830.
  • [6] Rajak DK, Pagar DD, Kumar R, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology 2019. https://doi.org/10.1016/j.jmrt.2019.09.068.
  • [7] Tada Y, Ishikawa T. Experimental evaluation of the effects of stitching on CFRP laminate specimens with various shapes and loadings. Mechanical and Corrosion Properties Series A, Key Engineering Materials 1989. https://doi.org/10.4028/www.scientific.net/kem.37.305.
  • [8] Kang TJ, Lee S ho. Effect of Stitching on the Mechanical and Impact Properties of Woven Laminate Composite. Journal of Composite Materials 1994. https://doi.org/10.1177/002199839402801604.
  • [9] Chung WC, Jang BZ, Chang TC, Hwang LR, Wilcox RC. Fracture behavior in stitched multidirectional composites. Materials Science and Engineering A 1989. https://doi.org/10.1016/0921- 5093(89)90355-9.
  • [10] Dransfield K, Baillie C, Mai YW. Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology 1994. https://doi.org/10.1016/0266-3538(94)90019-1.
  • [11] Jain LK, Mai YW. On the effect of stitching on mode I delamination toughness of laminated composites. Composites Science and Technology 1994. https://doi.org/10.1016/0266-3538(94)90103-1.
  • [12] Mouritz AP. The damage to stitched GRP laminates by underwater explosion shock loading. Composites Science and Technology 1995. https://doi.org/10.1016/0266-3538(95)00122-0.
  • [13] Saboktakin A. 3D textile preforms and composites for aircraft strcutures: A review. International Journal of Aviation, Aeronautics, and Aerospace 2019. https://doi.org/10.15394/ijaaa.2019.1299.
  • [14] Mouritz AP, Leong KH, Herszberg I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing 1997;28:979–91. https://doi.org/10.1016/S1359-835X(97)00057-2.
  • [15] Zhang P, Li G. Advances in healing-on-demand polymers and polymer composites. Progress in Polymer Science 2016. https://doi.org/10.1016/j.progpolymsci.2015.11.005.
  • [16] Yuan YC, Rong MZ, Zhang MQ, Chen J, Yang GC, Li XM. Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules 2008;41:5197–202. https://doi.org/10.1021/ma800028d.
  • [17] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates. Composites Part A: Applied Science and Manufacturing 2013. https://doi.org/10.1016/j.compositesa.2013.02.014.
  • [18] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates. Composites Part A: Applied Science and Manufacturing 2013. https://doi.org/10.1016/j.compositesa.2013.02.014.
  • [19] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Thermoplastic fibre stitching: a new self-healing method for carbon-epoxy composites 2013:708–11.
  • [20] Khomkrit Pingkarawat. THERMOPLASTIC FIBRE STITCHING: A NEW SELF-HEALING METHOD FOR CARBON-EPOXY COMPOSITES 2013.
  • [21] Pingkarawat K, Mouritz AP. Stitched mendable composites: Balancing healing performance against mechanical performance. Composite Structures 2015. https://doi.org/10.1016/j.compstruct.2014.12.034.
  • [22] Hargou K, Pingkarawat K, Mouritz AP, Wang CH. Ultrasonic activation of mendable polymer for self-healing carbon-epoxy laminates. Composites Part B: Engineering 2013;45:1031–9. https://doi.org/10.1016/j.compositesb.2012.07.016.
  • [23] Varley RJ, Craze DA, Mouritz AP, Wang CH. Thermoplastic healing in epoxy networks: Exploring performance and mechanism of alternative healing agents. Macromolecular Materials and Engineering 2013. https://doi.org/10.1002/mame.201200394.
  • [24] Pingkarawat K, Bhat T, Craze DA, Wang CH, Varley RJ, Mouritz AP. Healing of carbon fibre-epoxy composites using thermoplastic additives. Polymer Chemistry 2013;4:5007–15. https://doi.org/10.1039/c3py00459g.
  • [25] McKeen LW. Styrenic Plastics. Fatigue and Tribological Properties of Plastics and Elastomers 2010:51–71. https://doi.org/10.1016/B978-0-08-096450-8.00004-1.
  • [26] Pingkarawat K, Bhat T, Craze DA, Wang CH, Varley RJ, Mouritz AP. Healing of carbon fibre-epoxy composites using thermoplastic additives. Polymer Chemistry 2013. https://doi.org/10.1039/c3py00459g.
  • [27] Yang T, Zhang J, Mouritz AP, Wang CH. Healing of carbon fibre-epoxy composite T-joints using mendable polymer fibre stitching. Composites Part B: Engineering 2013. https://doi.org/10.1016/j.compositesb.2012.08.022.
  • [28] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Self-healing of delamination fatigue cracks in carbon fibre-epoxy laminate using mendable thermoplastic. Journal of Materials Science 2012;47:4449–56. https://doi.org/10.1007/s10853-012-6303-8.
  • [29] Yang T, Wang CH, Zhang J, He S, Mouritz AP. Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching. Composites Science and Technology 2012. https://doi.org/10.1016/j.compscitech.2012.05.012.
  • [30] ASTM International. ASTM D3822/D3822M - 14 Standard Test Method for Tensile Properties of Single Textile Fibers. Standards 2014.
  • [31] ASTM D3039. ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials -D3039 2008, Annual Book of ASTM Standards n.d. https://doi.org/10.1520/D3039_D3039M-17.
  • [32] ASTM D7264/D7264M-07. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, 2007.
  • [33] Calderón-Villajos R, López AJ, Peponi L, Manzano-Santamaría J, Ureña A. 3D-printed self-healing composite polymer reinforced with carbon nanotubes. Materials Letters 2019;249:91–4. https://doi.org/10.1016/J.MATLET.2019.04.069.
  • [34] Kim H, Park E, Kim S, Park B, Kim N, Lee S. Experimental Study on Mechanical Properties of Single- and Dual-material 3D Printed Products. Procedia Manufacturing 2017;10:887–97. https://doi.org/10.1016/J.PROMFG.2017.07.076.
  • [35] Grabowik C, Kalinowski K, Ćwikła G, Paprocka I, Kogut P. Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web of Conferences 2017;112. https://doi.org/10.1051/MATECCONF/201711204017.
  • [36] Nabi G, Malik N, Tahir MB, Raza W, Rizwan M, Maraj M, et al. Synthesis of graphitic carbon nitride and industrial applications as tensile strength reinforcement agent in red Acrylonitrile-Butadiene- Styrene (ABS). Physica B: Condensed Matter 2021;602:412556. https://doi.org/10.1016/J.PHYSB.2020.412556.
  • [37] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Healing of fatigue delamination cracks in carbon-epoxy composite using mendable polymer stitching. Journal of Intelligent Material Systems and Structures 2014;25:75–86. https://doi.org/10.1177/1045389X13505005.
  • [38] Meure S, Wu DY, Furman SA. FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin. Vibrational Spectroscopy 2010. https://doi.org/10.1016/j.vibspec.2009.09.005.
  • [39] Meure S, Wu DY, Furman S. Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins. Acta Materialia 2009;57:4312–20. https://doi.org/10.1016/j.actamat.2009.05.032.
  • [40] Arsac A, Carrot C, Guillet J. Determination of Primary Relaxation Temperatures and Melting Points of Ethylene Vinyl Acetate Copolymers. Journal of Thermal Analysis and Calorimetry 2000 61:3 2000;61:681–5. https://doi.org/10.1023/A:1010160105917.
  • [41] Almeida A, Possemiers S, Boone MN, de Beer T, Quinten T, van Hoorebeke L, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics 2011;77:297–305. https://doi.org/10.1016/J.EJPB.2010.12.004.
  • [42] Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. Journal of Controlled Release 2017;262:284–95. https://doi.org/10.1016/J.JCONREL.2017.08.004.
  • [43] ASTM D7264 / D7264M - 07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials n.d. https://www.astm.org/DATABASE.CART/HISTORICAL/D7264D7264M-07.htm (accessed December 14, 2019).
  • [44] Drake DA, Sullivan RW, Clay SB, DuBien JL. Influence of stitching on the fracture of stitched sandwich composites. Composites Part A: Applied Science and Manufacturing 2021;145:106383. https://doi.org/10.1016/J.COMPOSITESA.2021.106383.
  • [45] Dransfield K, Baillie C, Mai YW. Improving the delamination resistance of CFRP by stitching—a review. Composites Science and Technology 1994;50:305–17. https://doi.org/

Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites

Year 2022, , 248 - 258, 31.12.2022
https://doi.org/10.38088/jise.979229

Abstract

In recent years, the use of composites has attracted great interest in both academia and industry, especially due to their lightness and mechanical properties. In this study, acrylonitrile butadiene styrene (ABS), poly(ethylene-co-methacrylic) acid (EMAA) and ethylene vinyl acetate (EVA) filaments were produced in a single screw extruder. The produced filaments were integrated into composite materials by stitching method, and then, the mechanical properties of the filaments and composites were investigated. According to the tensile test results, it is concluded that the stitching process affects the mechanical properties of the composite material.
The strength of the composite material produced with EVA filament with a maximum diameter of 1mm increased by 23%. Apart from these, the composite materials produced with 1mm ABS and 0.6mm and 0.8mm EMAA filaments increased by an average of 15%. There was no significant change in the elongation of the composite material produced with 0.6mm, 0.8mm, and 1mm diameter filaments. The elongation of the composite material produced with only 1mm diameter ABS filament increased by 12%. The elongation values of the composite material prepared with 0.6mm diameter EMAA and EVA polymers decreased also by 15%.

References

  • [1] Zakaria MR, Md Akil H, Abdul Kudus MH, Ullah F, Javed F, Nosbi N. Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review. Composites Part B: Engineering 2019;176. https://doi.org/10.1016/j.compositesb.2019.107313.
  • [2] Chung DDL. Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Materials Science and Engineering R: Reports 2017;113:1–29. https://doi.org/10.1016/j.mser.2017.01.002.
  • [3] Wang Z, Yang B, Xian G, Tian Z, Weng J, Zhang F, et al. An effective method to improve the interfacial shear strength in GF/CF reinforced epoxy composites characterized by fiber pull-out test. Composites Communications 2020;19:168–72. https://doi.org/10.1016/j.coco.2020.03.013.
  • [4] Kim P. A Comparative Study of the Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials 1998 5:3 1998;5:175–87. https://doi.org/10.1023/A:1008830017745.
  • [5] Boon Y di, Joshi SC. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Materials Today Communications 2020;22. https://doi.org/10.1016/j.mtcomm.2019.100830.
  • [6] Rajak DK, Pagar DD, Kumar R, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology 2019. https://doi.org/10.1016/j.jmrt.2019.09.068.
  • [7] Tada Y, Ishikawa T. Experimental evaluation of the effects of stitching on CFRP laminate specimens with various shapes and loadings. Mechanical and Corrosion Properties Series A, Key Engineering Materials 1989. https://doi.org/10.4028/www.scientific.net/kem.37.305.
  • [8] Kang TJ, Lee S ho. Effect of Stitching on the Mechanical and Impact Properties of Woven Laminate Composite. Journal of Composite Materials 1994. https://doi.org/10.1177/002199839402801604.
  • [9] Chung WC, Jang BZ, Chang TC, Hwang LR, Wilcox RC. Fracture behavior in stitched multidirectional composites. Materials Science and Engineering A 1989. https://doi.org/10.1016/0921- 5093(89)90355-9.
  • [10] Dransfield K, Baillie C, Mai YW. Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology 1994. https://doi.org/10.1016/0266-3538(94)90019-1.
  • [11] Jain LK, Mai YW. On the effect of stitching on mode I delamination toughness of laminated composites. Composites Science and Technology 1994. https://doi.org/10.1016/0266-3538(94)90103-1.
  • [12] Mouritz AP. The damage to stitched GRP laminates by underwater explosion shock loading. Composites Science and Technology 1995. https://doi.org/10.1016/0266-3538(95)00122-0.
  • [13] Saboktakin A. 3D textile preforms and composites for aircraft strcutures: A review. International Journal of Aviation, Aeronautics, and Aerospace 2019. https://doi.org/10.15394/ijaaa.2019.1299.
  • [14] Mouritz AP, Leong KH, Herszberg I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing 1997;28:979–91. https://doi.org/10.1016/S1359-835X(97)00057-2.
  • [15] Zhang P, Li G. Advances in healing-on-demand polymers and polymer composites. Progress in Polymer Science 2016. https://doi.org/10.1016/j.progpolymsci.2015.11.005.
  • [16] Yuan YC, Rong MZ, Zhang MQ, Chen J, Yang GC, Li XM. Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules 2008;41:5197–202. https://doi.org/10.1021/ma800028d.
  • [17] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates. Composites Part A: Applied Science and Manufacturing 2013. https://doi.org/10.1016/j.compositesa.2013.02.014.
  • [18] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates. Composites Part A: Applied Science and Manufacturing 2013. https://doi.org/10.1016/j.compositesa.2013.02.014.
  • [19] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Thermoplastic fibre stitching: a new self-healing method for carbon-epoxy composites 2013:708–11.
  • [20] Khomkrit Pingkarawat. THERMOPLASTIC FIBRE STITCHING: A NEW SELF-HEALING METHOD FOR CARBON-EPOXY COMPOSITES 2013.
  • [21] Pingkarawat K, Mouritz AP. Stitched mendable composites: Balancing healing performance against mechanical performance. Composite Structures 2015. https://doi.org/10.1016/j.compstruct.2014.12.034.
  • [22] Hargou K, Pingkarawat K, Mouritz AP, Wang CH. Ultrasonic activation of mendable polymer for self-healing carbon-epoxy laminates. Composites Part B: Engineering 2013;45:1031–9. https://doi.org/10.1016/j.compositesb.2012.07.016.
  • [23] Varley RJ, Craze DA, Mouritz AP, Wang CH. Thermoplastic healing in epoxy networks: Exploring performance and mechanism of alternative healing agents. Macromolecular Materials and Engineering 2013. https://doi.org/10.1002/mame.201200394.
  • [24] Pingkarawat K, Bhat T, Craze DA, Wang CH, Varley RJ, Mouritz AP. Healing of carbon fibre-epoxy composites using thermoplastic additives. Polymer Chemistry 2013;4:5007–15. https://doi.org/10.1039/c3py00459g.
  • [25] McKeen LW. Styrenic Plastics. Fatigue and Tribological Properties of Plastics and Elastomers 2010:51–71. https://doi.org/10.1016/B978-0-08-096450-8.00004-1.
  • [26] Pingkarawat K, Bhat T, Craze DA, Wang CH, Varley RJ, Mouritz AP. Healing of carbon fibre-epoxy composites using thermoplastic additives. Polymer Chemistry 2013. https://doi.org/10.1039/c3py00459g.
  • [27] Yang T, Zhang J, Mouritz AP, Wang CH. Healing of carbon fibre-epoxy composite T-joints using mendable polymer fibre stitching. Composites Part B: Engineering 2013. https://doi.org/10.1016/j.compositesb.2012.08.022.
  • [28] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Self-healing of delamination fatigue cracks in carbon fibre-epoxy laminate using mendable thermoplastic. Journal of Materials Science 2012;47:4449–56. https://doi.org/10.1007/s10853-012-6303-8.
  • [29] Yang T, Wang CH, Zhang J, He S, Mouritz AP. Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching. Composites Science and Technology 2012. https://doi.org/10.1016/j.compscitech.2012.05.012.
  • [30] ASTM International. ASTM D3822/D3822M - 14 Standard Test Method for Tensile Properties of Single Textile Fibers. Standards 2014.
  • [31] ASTM D3039. ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials -D3039 2008, Annual Book of ASTM Standards n.d. https://doi.org/10.1520/D3039_D3039M-17.
  • [32] ASTM D7264/D7264M-07. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, 2007.
  • [33] Calderón-Villajos R, López AJ, Peponi L, Manzano-Santamaría J, Ureña A. 3D-printed self-healing composite polymer reinforced with carbon nanotubes. Materials Letters 2019;249:91–4. https://doi.org/10.1016/J.MATLET.2019.04.069.
  • [34] Kim H, Park E, Kim S, Park B, Kim N, Lee S. Experimental Study on Mechanical Properties of Single- and Dual-material 3D Printed Products. Procedia Manufacturing 2017;10:887–97. https://doi.org/10.1016/J.PROMFG.2017.07.076.
  • [35] Grabowik C, Kalinowski K, Ćwikła G, Paprocka I, Kogut P. Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web of Conferences 2017;112. https://doi.org/10.1051/MATECCONF/201711204017.
  • [36] Nabi G, Malik N, Tahir MB, Raza W, Rizwan M, Maraj M, et al. Synthesis of graphitic carbon nitride and industrial applications as tensile strength reinforcement agent in red Acrylonitrile-Butadiene- Styrene (ABS). Physica B: Condensed Matter 2021;602:412556. https://doi.org/10.1016/J.PHYSB.2020.412556.
  • [37] Pingkarawat K, Wang CH, Varley RJ, Mouritz AP. Healing of fatigue delamination cracks in carbon-epoxy composite using mendable polymer stitching. Journal of Intelligent Material Systems and Structures 2014;25:75–86. https://doi.org/10.1177/1045389X13505005.
  • [38] Meure S, Wu DY, Furman SA. FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin. Vibrational Spectroscopy 2010. https://doi.org/10.1016/j.vibspec.2009.09.005.
  • [39] Meure S, Wu DY, Furman S. Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins. Acta Materialia 2009;57:4312–20. https://doi.org/10.1016/j.actamat.2009.05.032.
  • [40] Arsac A, Carrot C, Guillet J. Determination of Primary Relaxation Temperatures and Melting Points of Ethylene Vinyl Acetate Copolymers. Journal of Thermal Analysis and Calorimetry 2000 61:3 2000;61:681–5. https://doi.org/10.1023/A:1010160105917.
  • [41] Almeida A, Possemiers S, Boone MN, de Beer T, Quinten T, van Hoorebeke L, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics 2011;77:297–305. https://doi.org/10.1016/J.EJPB.2010.12.004.
  • [42] Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. Journal of Controlled Release 2017;262:284–95. https://doi.org/10.1016/J.JCONREL.2017.08.004.
  • [43] ASTM D7264 / D7264M - 07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials n.d. https://www.astm.org/DATABASE.CART/HISTORICAL/D7264D7264M-07.htm (accessed December 14, 2019).
  • [44] Drake DA, Sullivan RW, Clay SB, DuBien JL. Influence of stitching on the fracture of stitched sandwich composites. Composites Part A: Applied Science and Manufacturing 2021;145:106383. https://doi.org/10.1016/J.COMPOSITESA.2021.106383.
  • [45] Dransfield K, Baillie C, Mai YW. Improving the delamination resistance of CFRP by stitching—a review. Composites Science and Technology 1994;50:305–17. https://doi.org/
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Gökçenur Sağlam 0000-0003-2267-3751

Ayşe Bedeloğlu 0000-0003-2960-5188

Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Sağlam, G., & Bedeloğlu, A. (2022). Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites. Journal of Innovative Science and Engineering, 6(2), 248-258. https://doi.org/10.38088/jise.979229
AMA Sağlam G, Bedeloğlu A. Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites. JISE. December 2022;6(2):248-258. doi:10.38088/jise.979229
Chicago Sağlam, Gökçenur, and Ayşe Bedeloğlu. “Mechanical Properties of Thermoplastic Filament Stitched Carbon Fiber Reinforced Composites”. Journal of Innovative Science and Engineering 6, no. 2 (December 2022): 248-58. https://doi.org/10.38088/jise.979229.
EndNote Sağlam G, Bedeloğlu A (December 1, 2022) Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites. Journal of Innovative Science and Engineering 6 2 248–258.
IEEE G. Sağlam and A. Bedeloğlu, “Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites”, JISE, vol. 6, no. 2, pp. 248–258, 2022, doi: 10.38088/jise.979229.
ISNAD Sağlam, Gökçenur - Bedeloğlu, Ayşe. “Mechanical Properties of Thermoplastic Filament Stitched Carbon Fiber Reinforced Composites”. Journal of Innovative Science and Engineering 6/2 (December 2022), 248-258. https://doi.org/10.38088/jise.979229.
JAMA Sağlam G, Bedeloğlu A. Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites. JISE. 2022;6:248–258.
MLA Sağlam, Gökçenur and Ayşe Bedeloğlu. “Mechanical Properties of Thermoplastic Filament Stitched Carbon Fiber Reinforced Composites”. Journal of Innovative Science and Engineering, vol. 6, no. 2, 2022, pp. 248-5, doi:10.38088/jise.979229.
Vancouver Sağlam G, Bedeloğlu A. Mechanical properties of thermoplastic filament stitched carbon fiber reinforced composites. JISE. 2022;6(2):248-5.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.