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Abstract 

In recent years, the use of composites has attracted great interest in both academia and 

industry, especially due to their lightness and mechanical properties. In this study, 

acrylonitrile butadiene styrene (ABS), poly(ethylene-co-methacrylic) acid (EMAA) and 

ethylene vinyl acetate (EVA) filaments were produced in a single screw extruder. The 

produced filaments were integrated into composite materials by stitching method, and then, 

the mechanical properties of the filaments and composites were investigated. According to 

the tensile test results, it is concluded that the stitching process affects the mechanical 

properties of the composite material.   

The strength of the composite material produced with EVA filament with a maximum 

diameter of 1mm increased by 23%. Apart from these, the composite materials produced with 

1mm ABS and 0.6mm and 0.8mm EMAA filaments increased by an average of 15%. There 

was no significant change in the elongation of the composite material produced with 0.6mm, 

0.8mm, and 1mm diameter filaments. The elongation of the composite material produced 

with only 1mm diameter ABS filament increased by 12%. The elongation values of the 

composite material prepared with 0.6mm diameter EMAA and EVA polymers decreased  also 

by 15%. 
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1. Introduction 

 
Fibre-reinforced polymer composites (FRPCs) are preferable in many areas due to their promising mechanical 

properties, such as high specific strength, high specific modulus, good fatigue resistance, high damage tolerance, and 

excellent processability [1–3]. For example, using carbon fibre-reinforced polymers (CFRPs), instead of metal in 

automotive, can result in a weight reduction of up to 15%. This feature has been proven to improve the fuel efficiency 

of vehicles [4]. FRPCs are mostly formed by overlapping fibre reinforcements or prepreg layers under the heat and 

pressure to form a complex three-dimensional network structure [5]. In addition, thermoplastic additives, such as 

particles, filaments, nanoflakes or nanotubes affecting the material properties, can be applied with different techniques 

to obtain improved properties in the composite materials [6]. 

The through-the-thickness stitching method with filament increases high in-plane strength, interlaminar fracture 

toughness, impact damage tolerance, [7] and tensile strength of composite materials [8–10]. It also has a higher resistance 

to delamination cracking under low energy, high energy, dynamic loading, and ballistic effects [11,12]. However, they 

suffer from damage by delamination cracking when the stitching needle passes through the prepreg tape or fabric, a gap 

is formed in the area, and the fibres are separated from each other. The type and structure of the stitch are the most 

important parameters affecting the composite performance. Four different types of stitches are applied: lock stitch, 

modified lock stitch, chain stitch, and double lock stitch [13,14]. While conventional lock stitches are used in the fabric 

industry, other stitch types are frequently used in the composite industry [13]. 

To develop stitched composites, the poly(ethylene-co-methacrylic) acid (EMAA) and ethylene vinyl acetate (EVA) and 

acrylonitrile butadiene styrene (ABS) polymers can be chosen because of their properties. EMAA is a hard, light, easily 

workable, thermoplastic polymer without the need for plasticizers. It also has applications in composite materials due to 

its low melting point, toughness, and high melt flow index. The most important feature is that it is an effective agent 

because it contains functional groups that are chemically reactive with the amine groups in the epoxy [15–22].  

EVA is a transparent, high mechanical strength, flexible, rubbery thermoplastic copolymer. In addition, its structure 

consists of varying amounts of vinyl acetate (VA) and ethylene. Its crystallinity, melting point, and hardness depend on 

the VA content in its structure. Generally, the VA rate varies between 1-40%. As the VA content increases, its 

crystallinity decreases, so the melting temperature (Tm) decreases. It becomes softer and more elastic. Impact resistance 

and tear resistance increase. The glass transition temperature (Tg) in EVA is not affected by the VA ratio and is between 

(-35) and (-25).  The EVA is a  well-known adhesive and has a very low viscosity [23,24].  

ABS is an opaque, amorphous polymer. It is one of the important engineering plastics consisting of the polymerization 

of styrene, acrylonitrile, and butadiene monomers. Each monomer in its structure has different properties. Acrylonitrile, 

heat and chemical resistance, long-term thermal stability, and toughness; Butadiene, impact resistance and maintaining 

its properties at low temperature; Styrene provides hardness, surface gloss, and easy workability [25]. Also, ABS has a 

pendant functionality from maleic anhydride and cyanate groups which may have been capable of interacting with the 

epoxy resin with the aromatic pendant group [14,26–28]  
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According to the literature review, there is no similar study with EVA and ABS filaments. The stitching method with 

EMAA filaments has been studied, but its mechanical properties has not been studied sufficiently. 

Therefore, the aim of this study is to produce filaments with 0.6mm, 0.8mm, and 1mm diameters from EMAA, EVA, 

and ABS polymers and use them to stitch the prepregs to improve the mechanical properties. In order to measure the 

mechanical properties, tensile and flexural tests were performed both on the stitched and un-stitched composites.  

2. Material and Methods 

In this study, EMAA, ABS, and EVA polymers which are suitable for injection method were preferred. The EMAA 

polymer has a density of 0.94 g/cm3, MFI value was 395 g/10 min, and trade name Nucrel® 2940 was obtained from 

DuPont. ABS polymer has a density of 1.02 g/cm3, MFI has a value of 12g/20min, trade name ABS HI100. EVA 

polymer, vinyl acetate content has a 19%, has a density of 0.941g/cm3 and has a MFI value of 2.5 g/10min and trade 

name Greenfleks ML 50 was purchased from RESINEX. The composite materials used in this study were fabricated by 

unidirectional carbon fibre-epoxy prepreg (VTM 264) was supplied by SPM Prepreg System.  

2.1. Preparation of Thermoplastic Filaments 

Extrusion Line (Polmak Plastik/Lab Extruder) 18MM device was used for filament production. In this study, the effects 

of two different parameters on the filaments were investigated as shown in Table 1. In the article, EMAA, EVA, and 

ABS filaments with diameters of 0.6 mm, 0.8 mm, and 1 mm were produced using the optimum parameters. 

Table 1. Extrusion parameters of filaments 

 

Filament 

Code 

 

Extrusion rate (r/min) 

 

Extrusion traction rate 

(r/min) 

ABS06 2.5 8 

ABS08 4 7.5 

ABS1 4.5 4.6 

      

EVA06 3.5 10 

EVA08 5 7 

EVA1 5.5 5.1 

      

EMAA06 3.5 6 

EMAA08 5 6.5 

EMAA1 7.5 
 

 

2.2. Fabrication of Unstitched and Stitched Composites 

The carbon fibre/epoxy composite prepreg was stitched manually in the thickness direction with EMAA, ABS, and EVA 

filaments, respectively. The demonstration of the stitched structure is shown in Fig.1. In the process, the stitch density 
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was 1.0 stitch/cm2. The unstitched and stitched composites were hot press cured at 120°C under 0.05 MPa. Subsequently, 

all composite materials were post-cured in an air-circulated oven for 40 minutes at 150°C under 0.05 MPa [29].  In the 

stitching process, the process was easier as the EMAA and EVA filaments are very flexible and was more difficult 

because the ABS filament is hard. 

 

Figure 1. The demonstration of the stitches in the carbon fibre–epoxy composite 

2.3. Characterization 

The tensile strength, elastic modulus, yield strength and tensile strength tests of the filaments were performed with 

reference to ASTM D3822/D3822M-14 standard. The length of the filaments prepared in accordance with the standard 

is 150mm [30] . 

In order to measure the tensile strength and tensile modulus of elasticity of the composite materials, tensile tests were 

carried out according to the ASTM D 3039/D 3039M-00 standard. Composite materials were prepared as 25mm in 

width, 250 mm in length, and 2.5mm in thickness in accordance with the standard [31]. For each composite type, at least 

five samples were tested. Tensile tests of composite materials were carried out in accordance with the standards at 2 

mm/min [30,31]. 

The flexural strength of the composites produced were tested in accordance with ASTM D 7264/D 7264M-07 standard. 

The width of the samples prepared in accordance with the ASTM D 7264/D 7264M-07 standard was 13 mm, and the 

thickness/gap ratio was taken as 1/32 [32]. 

3.  Results and Discussion 

3.1. Tensile Test Results of Filaments 

As seen in table 2, the tensile stress of the 0.6 mm diameter EMAA filament is 25.21 MPa. The strength of the 0.8mm 

and 1.0mm diameter filaments decreased by 4% and 2%, respectively. Test results showed that filament diameters did 

not have a serious effect on strength [33]. 
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The tensile strength of the 0.6 mm diameter EVA filament is 33.73 MPa. According to the test results, it was observed 

that as the diameter of the filaments increased, the strength increased by more than 30%. 

The tensile strength of the 0.6 mm diameter ABS filament is 19.84 MPa. The strength of 0.8mm and 1.0mm diameter 

filaments increased by 70%. According to the results, there was a significant increase in mechanical values as the 

diameter increased for ABS [34,35]. 

Table 2. Stress-strain values obtained as a result of tensile tests of filaments 

Material type 
Filament 

diameters 

Stress 

(MPa) 

Standard 

deviation 

Strain 

(%) 

Standard 

deviation 

EMAA 

0.6 25.51 0.84 139.36 3.96 

0.8 24.23 0.39 329.4 14.16 

1 22.66 0.18 200.39 4.55 

EVA 

0.6 33.73 1.44 163.03 27.32 

0.8 21.05 1.28 146.96 17.29 

1 24.07 0.43 408.22 33.08 

ABS 

0.6 19.84 4.21 16.93 2.32 

0.8 33.59 0.46 47.35 23.12 

1 33.97 0.33 16.45 2.05 

 

3.2. Tensile Test Results of Composites 

As seen in Fig. 3, the tensile strength of the unstitched composite is 368 MPa. The strength of the stitched composite 

material prepared with 1 mm diameter ABS filament increased by 14%. The strength of composite materials produced 

with 0.6 mm and 0.8 mm diameter filaments decreased by 41% and 36%, respectively. When the chemical structure of 

ABS is examined, it contains unsaturated hydrocarbon and nitrile groups that react with epoxy groups. ABS has a high 

melting point. In this study, the process temperature was approximately 150°C, and ABS could not completely melt in 

the composite material, and it could not spread between the layers because its viscosity was too dense. For this reason, 

although ABS has functional groups that will react with the epoxy matrix, it has not been found to have an effect on the 

tensile strength since it  cannot come into contact with the sufficient surface [36,37]. As a result, its strength decreased. 

As shown in Fig. 2 , the strength of the stitched composite material produced with EMAA filament with 0.6 mm and 0.8 

mm diameters increased by 16% and 7%, respectively. The strength of the composite material produced with the filament 

used with a diameter of 1mm decreased by 6%.  The test results reveal that the filament diameter did not have a great 

effect on the tensile strength. EMAA contains functional groups that are chemically reactive with amine groups in epoxy. 

As a result of the reaction, water is released, and the resulting water creates vapor pressure in the temperature 

environment. With this high pressure, EMAA spreads easily between the layers. As the diffusion of EMAA between 

layers increased, its chemical reaction amount with the epoxy matrix increased. [17,38,39].  Therefore, there was no 

significant change in the strength properties depending on the filament diameter.  

The strength of stitched composite materials produced with 1 mm diameter EVA filaments increased by 23%, as shown 

in Fig. 2. The strength of composite materials produced with EVA filaments used in 0.6mm and 0.8mm diameters 

decreased by 7% and 16%, respectively. The composite manufacturing process temperature is above the EVA melting 
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temperature. EVA has a very low viscosity compared to EMAA and ABS and shows adhesive feature [40–42]. 

Therefore, the 1 mm diameter filament caused an increase in strength in the stitched composite. 

 

 

Figure 2. Stress-strain curves of composite materials produced with different filament diameters 

 

3.3. Flexural Test Results of Composites 

A three-point bending test was performed according to ASTM D 7264/D 7264M-07 test standards on both stitched and 

unstitched composites produced with filaments using different types and diameters. In this test, the specimen is in a 

support opening, and the load is applied to the midpoint by the loading nose [43]. 

As seen in Fig.  3, the flexural strength of the unstitched composite is 167.81 MPa. As shown in Fig. 3, the strength of 

the stitched composite material produced with ABS filament with a diameter of 0.8mm and 1mm increased by 119% 

and 147%, respectively, while the strength of the composite produced with a diameter of 0.6mm diameter decreased by 

15%. No significant change was observed in the elongation of composite materials produced with filaments of 0.6mm 

and 0.8mm diameters. However, the elongation of the composite material produced with a 1mm diameter filament rose 

12%, and the material became more ductile. 

As shown in Fig. 3., the strength of the stitched composite material produced with EVA filament with a diameter of 

0.6mm, 0.8mm, and 1mm increased by 140%, 129%, and 67%, respectively, No significant change was observed in the 

elongation of all composite materials. Only, elongation of the composite material produced with 0.6mm  and 1mm 

diameter filament decreased 15% and 20%, respectively, and a more brittle structure was formed in the materials. 
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According to the results of the composite material prepared with EMAA filament, the strength of the composite material 

produced with 0.6 mm, 0.8 mm, and 1 mm diameter EMAA filament increased by 116%, 145%, and 109%, respectively. 

According to the elongation result, there was a 35% reduction in the elongation rate of the composite material produced 

with only 0.6mm diameter filament, and the material reached a more brittle structure. There was no significant change 

in the elongation of the composite material produced with 0.8mm and 1mm diameter filaments.  

When the flexural and tensile test results are examined, it has been proven that all results are in parallel with the results 

of the tensile test of the filaments. 

 

 

 

Figure 3. The variation of the stress(a) strain(b) graphs obtained as a result of the three-point bending test of the composite materials 

prepared with ABS, EMAA, and EVA filaments according to the filament diameter  

 

UNSTIT
CH

ABS06 ABS08 ABS1 EVA06 EVA08 EVA1
EMAA0

6
EMAA0

8
EMAA1

Series1 167.81 143.47 367.95 414.588 401.232 384.13 280.562 362.52 409.12 351.15

0

50

100

150

200

250

300

350

400

450

500

St
re

ss
  (

M
P

a)

Filament Diameter (mm)

(a)

UNSTIT
CH

ABS06 ABS08 ABS1 EVA06 EVA08 EVA1
EMAA0

6
EMAA0

8
EMAA1

Series1 1.26 1.21 1.25 1.56 1.07 1.17 1.004 1.07 1.15 1.19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

St
ra

in
 (

%
)

Filament Diameter (mm)

(b)



 
Saglam and Celik Bedeloglu J Inno Sci Eng 6(2):248-258 

255 

 

4. Conclusion 

In this paper, the effects of using EMAA, EVA, and ABS filaments in the composite materials with stitching process on 

the some mechanical properties of composites were presented. It has been proven that filaments of different types and 

diameters greatly affect the mechanical properties of the stitched composites. According to the test results, it has been 

concluded that the stitching process reduces the mechanical properties of the composite material. The strength of the 

stitched composite material produced with 1 mm diameter EVA filament increased by 23%. Apart from these, an average 

of 15% increase in tensile strength was achieved in stitched composite materials produced with 1mm ABS, 0.6mm and 

0.8mm EMAA filaments. During the stitching process of the filament, the separation of the fibres from each other, the 

formation of resin-rich regions, porosity, fibre breakage, and the formation of cracks between the resin may have caused 

these results [10,44,45]; the decrease in the tensile strength of the composites. According to the 3-point bending test 

results, it has been found out that the stitching process increased the flexural mechanical properties of the composite 

material. There was no significant change in the elongation of the composite material produced with different type and 

diameter of filaments. The elongation of the composite material produced with only 1mm diameter ABS filament 

increased by 12%. The elongation values of the composite material prepared with 0.6mm diameter EMAA and EVA 

polymers also decreased by 15%. 
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