Review
BibTex RIS Cite

Communication Network Simulation for Smart Metering Applications: A Review

Year 2021, , 101 - 128, 18.12.2021
https://doi.org/10.38088/jise.835725

Abstract

Many countries are witnessing the deployment of millions of smart meters, as they strive to upgrade their traditional grid to the smart grid already prominent in the developed parts of the world. Communication networks that can offer high-speed communication will be required for transmission of the copious amount of data resulting from the numerous smart meters and other intelligent electronic devices (IEDs) in the distribution network substation. Therefore, there is a need to critically assess the available communication infrastructure for eventual upgrade and deployment. In this paper, a survey of the communication network and networks simulation software used for this purpose was carried out, with specific emphasis on smart metering applications. Some critical requirements identified are security, quality of service (QoS) and optimal cost for system operation. Also discussed are methods employed in the works of literature to handle the critical issues raised. For data transmission between the meters and data concentrators; power line communication (PLC) was mostly cost-effective and hence, mostly deployed. In the wireless category, ZigBee (802.15.4), Wi-Fi (802.11), and WiMAX (802.16) among others are suitable and have been successfully deployed. OPNET, NS-3, NS-2, and OMNET++ have been successfully employed for communication network simulations in smart metering applications.

Supporting Institution

This research was funded by TETFund Research Fund Grant 2020.

References

  • [1] V. C. Gungor et al., “A Survey on Smart Grid Potential Applications and Communication Requirements,” IEEE Trans. Ind. Informatics, vol. 9, no. 1, pp. 28–42, 2013, doi: 10.1109/TII.2012.2218253.
  • [2] Y. Wang, Q. Chen, T. Hong, C. Kang, and C. Y. Mar, “Review of Smart Meter Data Analytics : Applications, Methodologies, and Challenges,” no. June, pp. 1–24, 2017.
  • [3] M. Vogt, F. Marten, and M. Braun, “A survey and statistical analysis of smart grid co-simulations,” Applied Energy, vol. 222, no. September 2017. Elsevier, pp. 67–78, 2018, doi: 10.1016/j.apenergy.2018.03.123.
  • [4] W. Li and X. Zhang, “Simulation of the smart grid communications: Challenges, techniques, and future trends,” Comput. Electr. Eng., vol. 40, no. 1, pp. 270–288, 2014, doi: 10.1016/j.compeleceng.2013.11.022.
  • [5] K. Mets, J. A. Ojea, and C. Develder, “Combining Power and Communication Network Simulation For Cost-Effective Smart Grid Analysis,” IEEE Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1771–1796, 2014, doi: 10.1109/SURV.2014.021414.00116.
  • [6] Y. Kabalci, “A survey on smart metering and smart grid communication,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier, pp. 302–318, 2016, doi: 10.1016/j.rser.2015.12.114.
  • [7] N. I. Sarkar, S. Member, and S. A. Halim, “A Review of Simulation of Telecommunication Networks : Simulators , Classification , Comparison , Methodologies , and Recommendations,” no. May, 2014.
  • [8] C. Rehtanz and X. Guillaud, “Real-time and co-simulations for the development of power system monitoring, control and protection,” 2016, doi: 10.1109/PSCC.2016.7541030.
  • [9] A. Mahmood, N. Javaid, and S. Razzaq, “A review of wireless communications for smart grid,” Renew. Sustain. Energy Rev., vol. 41, pp. 248–260, 2015, doi: 10.1016/j.rser.2014.08.036.
  • [10] D. Bian, M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Analysis of communication schemes for Advanced Metering Infrastructure (AMI),” in IEEE Power and Energy Society General Meeting, 2014, vol. 2014-Octob, no. October, doi: 10.1109/PESGM.2014.6939562.
  • [11] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Review of communication technologies for smart homes/building applications,” in Proceedings of the 2015 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2015, 2016, pp. 1–6, doi: 10.1109/ISGT-Asia.2015.7437036.
  • [12] J. Leiva, A. Palacios, and J. A. Aguado, “Smart metering trends , implications and necessities : A policy review,” Renew. Sustain. Energy Rev., vol. 55, pp. 227–233, 2016, doi: 10.1016/j.rser.2015.11.002.
  • [13] M. C. Falvo, L. Martirano, D. Sbordone, and E. Bocci, “Technologies for smart grids: A brief review,” in 12th International Conference on Environment and Electrical Engineering, EEEIC 2013, 2013, pp. 369–375, doi: 10.1109/EEEIC.2013.6549544.
  • [14] N. Uribe-Pérez, L. Hernández, D. de la Vega, and I. Angulo, “State of the Art and Trends Review of Smart Metering in Electricity Grids,” Appl. Sci., vol. 6, no. 3, pp. 1–24, 2016, doi: 10.3390/app6030068.
  • [15] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart meter data privacy: A survey,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2820–2835, 2017, doi: 10.1109/COMST.2017.2720195.
  • [16] Y. Wang, Q. Chen, T. Hong, C. Kang, and C. Y. Mar, “Review of Smart Meter Data Analytics : Applications , Methodologies , and Challenges,” no. June, pp. 1–24, 2017.
  • [17] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: Motivations, requirements and challenges,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1. pp. 5–20, 2013, doi: 10.1109/SURV.2012.021312.00034.
  • [18] R. Deng, Z. Yang, M. Y. Chow, and J. Chen, “A survey on demand response in smart grids: Mathematical models and approaches,” IEEE Trans. Ind. Informatics, vol. 11, no. 3, pp. 570–582, 2015, doi: 10.1109/TII.2015.2414719.
  • [19] S. Garlapati, T. Kuruganti, M. R. Buehrer, and J. H. Reed, “SMAC: A Soft MAC to Reduce Control Overhead and Latency in CDMA-Based AMI Networks,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2648–2662, 2016, doi: 10.1109/TNET.2015.2481718.
  • [20] A. Kondoro, I. Ben Dhaou, D. Rwegasira, A. Kelati, H. Tenhunen, and N. Mvungi, “A Simulation Model for the Analysis of Security Attacks in Advanced Metering Infrastructure,” in 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 2018, pp. 533–538, doi: 10.1109/PowerAfrica.2018.8521089.
  • [21] F. G. Gonzalez, “An intelligent controller for the smart grid,” in Procedia Computer Science, 2013, vol. 16, pp. 776–785, doi: 10.1016/j.procs.2013.01.081.
  • [22] N. Andreadou, M. O. Guardiola, and G. Fulli, “Telecommunication technologies for smart grid projects with focus on smart metering applications,” Energies, vol. 9, no. 5. 2016, doi: 10.3390/en9050375.
  • [23] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication network requirements for major smart grid applications in HAN, NAN and WAN,” Computer Networks, vol. 67. Elsevier B.V., pp. 74–88, 2014, doi: 10.1016/j.comnet.2014.03.029.
  • [24] M. F. Khan, A. Jain, V. Arunachalam, and A. Paventhan, “Communication technologies for smart metering infrastructure,” 2014, doi: 10.1109/SCEECS.2014.6804427.
  • [25] Z. Lipošcak and M. Bošković, “Survey of smart metering communication technologies,” in IEEE EuroCon 2013, 2013, no. November 2015, pp. 1391–1400, doi: 10.1109/EUROCON.2013.6625160.
  • [26] D. Baimel, S. Tapuchi, and N. Baimel, “Smart grid communication technologies- overview, research challenges and opportunities,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, 2016, pp. 116–120, doi: 10.1109/SPEEDAM.2016.7526014.
  • [27] M. Burunkaya and T. Pars, “A smart meter design and implementation using ZigBee based Wireless Sensor Network in Smart Grid,” in 2017 4th International Conference on Electrical and Electronics Engineering, ICEEE 2017, 2017, pp. 158–162, doi: 10.1109/ICEEE2.2017.7935812.
  • [28] R. S. Chauhan, J. Sharma, M. K. Jha, and J. V Desai, “Simulation-based performance analysis of ZigBee in three dimensional smart grid environments,” in International Conference on Communication and Signal Processing, ICCSP 2016, 2016, pp. 1546–1550, doi: 10.1109/ICCSP.2016.7754418.
  • [29] D. Chen, J. Brown, and J. Y. Khan, “6LoWPAN based neighborhood area network for a smart grid communication infrastructure,” in International Conference on Ubiquitous and Future Networks, ICUFN, 2013, pp. 576–581, doi: 10.1109/ICUFN.2013.6614885.
  • [30] J. Hoglund, D. Ilic, S. Karnouskos, R. Sauter, and P. Goncalves Da Silva, “Using a 6LoWPAN smart meter mesh network for event-driven monitoring of power quality,” in 2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012, 2012, no. November, pp. 448–453, doi: 10.1109/SmartGridComm.2012.6486025.
  • [31] D. Chen, J. Brown, and J. Y. Khan, “Performance analysis of a distributed 6LoWPAN network for the Smart Grid applications,” in IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings, 2014, no. April, pp. 21–24, doi: 10.1109/ISSNIP.2014.6827646.
  • [32] A. Yarali and S. Rahman, “Smart grid networks: Promises and challenges,” J. Commun., vol. 7, no. 6 SPECL. ISSUE, pp. 409–417, 2012, doi: 10.4304/jcm.7.6.409-417.
  • [33] M. Collotta and G. Pau, “A Solution Based on Bluetooth Low Energy for Smart Home Energy Management,” pp. 11916–11938, 2015, doi: 10.3390/en81011916.
  • [34] O. Neagu and W. Hamouda, “Performance of WiMAX for smart grid applications,” 2016, doi: 10.1109/MoWNet.2016.7496613.
  • [35] L. Štastný, L. Franek, and P. Fiedler, “Wireless Communications in Smart Metering,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 12, no. PART 1, pp. 330–335, doi: 10.3182/20130925-3-CZ-3023.00035.
  • [36] G. D. Castellanos and J. Y. Khan, “Performance Analysis of WiMAX Polling Service For Smart Grid Meter Reading Applications,” in 2012 IEEE Colombian Communications Conference, COLCOM 2012 - Conference Proceedings, 2012, no. May, doi: 10.1109/ColComCon.2012.6233661.
  • [37] Y. Kabalci, E. Kabalci, S. Padmanaban, J. B. Holm-Nielsen, and F. Blaabjerg, “Internet of Things Applications as Energy Internet in Smart Grids And Smart Environments,” Electron., vol. 8, no. 9, pp. 1–16, 2019, doi: 10.3390/electronics8090972.
  • [38] C. Paolini, H. Adigal, and M. Sarkar, “Upper Bound on LoRa Smart Metering Uplink Rate,” in 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, 2020, pp. 1–4, doi: 10.1109/CCNC46108.2020.9045439.
  • [39] F. Helder, P. S. Dester, E. M. G. Stancanelli, and P. Cardieri, “Feasibility of Alarm Events Upon Smart Metering in LoRa Networks,” in Proceedings of the International Symposium on Wireless Communication Systems, 2019, vol. 2019-August, no. August, pp. 480–484, doi: 10.1109/ISWCS.2019.8877346.
  • [40] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive Configuration of LoRa Networks for Dense IoT deployments,” IEEE/IFIP Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber World, NOMS 2018, pp. 1–9, 2018, doi: 10.1109/NOMS.2018.8406255.
  • [41] Z. Xia, H. Zhou, K. Gu, B. Yin, Y. Zeng, and M. Xu, “Secure Session Key Management Scheme For A Meter-Reading System Based on LoRa Technology,” IEEE Access, vol. 6, pp. 75015–75024, 2018, doi: 10.1109/ACCESS.2018.2883657.
  • [42] Y. Cheng, H. Saputra, L. M. Goh, and Y. Wu, “Secure Smart Metering Based on LoRa Technology,” 2018 IEEE 4th Int. Conf. Identity, Secur. Behav. Anal. ISBA 2018, vol. 2018-January, pp. 1–8, 2018, doi: 10.1109/ISBA.2018.8311466.
  • [43] L. Di Bert, S. D’Alessandro, and A. M. Tonello, “A G3-PLC Simulator for Access Networks,” in IEEE ISPLC 2014 - 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 99–104, doi: 10.1109/ISPLC.2014.6812329.
  • [44] S. Panchadcharam, G. A. Taylor, Q. Ni, I. Pisica, and S. Fateri, “Performance Evaluation of Smart Metering Infrastructure using Simulation Tool,” pp. 1–6, 2020.
  • [45] W. Chen, K. Zhou, S. Yang, and C. Wu, “Data Quality of Electricity Consumption Data in a Smart Grid Environment,” Renewable and Sustainable Energy Reviews, vol. 75, no. October 2016. Elsevier Ltd, pp. 98–105, 2017, doi: 10.1016/j.rser.2016.10.054.
  • [46] M. Ge, S. Chren, B. Rossi, and T. Pitner, “Data Quality Management Framework for Smart Grid Systems,” in Lecture Notes in Business Information Processing, 2019, vol. 354, no. March, pp. 299–310, doi: 10.1007/978-3-030-20482-2_24.
  • [47] J. Shishido and E. U. Solutions, “Smart Meter Data Quality Insights,” ACEEE Summer Study Energy Effic. Build., pp. 277–288, 2012.
  • [48] A. Razaq, B. Pranggono, H. Tianfield, and H. Yue, “Simulating Smart Grid: Co-Simulation Of Power and Communication Network,” in Proceedings of the Universities Power Engineering Conference, 2015, vol. 2015-Novem, no. September, pp. 1–4, doi: 10.1109/UPEC.2015.7339763.
  • [49] S. Saba, K. Ajay, and R.-B. Gupta, “Network Simulation Tools Survey,” Int. J. Adv. Res. Comput. Commun. Eng. Vol., vol. 1, no. 4, pp. 201–210, 2012.
  • [50] C. Sun, S. Member, D. J. Sebastian, and S. Member, “Intrusion Detection for Cybersecurity of Smart Meters,” EEE Trans. Smart Grid, vol. 3053, no. c, pp. 1–11, 2019, doi: 10.1109/TSG.2020.3010230.
  • [51] P. Ganguly, M. Nasipuri, and S. Dutta, “A Novel Approach for Detecting and Mitigating the Energy Theft Issues in the Smart Metering Infrastructure,” Technol. Econ. Smart Grids Sustain. Energy, vol. 3, no. 1, pp. 1–11, 2018, doi: 10.1007/s40866-018-0053-x.
  • [52] M. Cebe and K. Akkaya, “Efficient Certificate Revocation Management Schemes for IoT-Based Advanced Metering Infrastructures in Smart Cities,” Ad Hoc Networks, vol. 92, pp. 1–47, 2019, doi: 10.1016/j.adhoc.2018.10.027.
  • [53] F. Wu, X. Li, L. Xu, and S. Kumari, “A privacy-preserving scheme with identity traceable property for smart grid,” Comput. Commun., vol. 157, no. April, pp. 38–44, 2020, doi: 10.1016/j.comcom.2020.03.047.
  • [54] Y. Liu and S. Hu, “Cyber threat analysis and detection for energy theft in social networking of smart homes,” IEEE Trans. Comput. Soc. Syst., vol. 2, no. 4, pp. 148–158, 2015, doi: 10.1109/TCSS.2016.2519506.
  • [55] M. Cebe and K. Akkaya, “Utilizing advanced metering infrastructure to build a public key infrastructure for electric vehicles,” in DIVANet 2017 - Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, Co-located with MSWiM 2017, 2017, pp. 91–98, doi: 10.1145/3132340.3132359.
  • [56] S. Asri and B. Pranggono, “Impact of Distributed Denial-of-Service Attack on Advanced Metering Infrastructure,” Wirel. Pers. Commun., vol. 83, no. 3, pp. 2211–2223, 2015, doi: 10.1007/s11277-015-2510-3.
  • [57] G. Eibl and D. Engel, “Differential privacy for real smart metering data,” Comput. Sci. - Res. Dev., vol. 32, no. 1–2, pp. 173–182, 2017, doi: 10.1007/s00450-016-0310-y.
  • [58] S. Kim et al., “A secure smart-metering protocol over power-line communication,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2370–2379, 2011, doi: 10.1109/TPWRD.2011.2158671.
  • [59] D. Mert, M. U. Şimşek, and S. Özdemir, “Privacy-Preserving Metering Protocol in Smart Grids,” IFIP Adv. Inf. Commun. Technol., vol. 458, no. AIAI 2015, pp. 467–477, 2015, doi: 10.1007/978-3-319-23868-5_34.
  • [60] K. Akkaya, K. Rabieh, M. Mahmoud, and S. Tonyali, “Customized Certificate Revocation Lists for IEEE 802.11s-Based Smart Grid AMI Networks,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2366–2374, 2015, doi: 10.1109/TSG.2015.2390131.
  • [61] S. Tonyali, O. Cakmak, K. Akkaya, M. M. E. A. Mahmoud, and I. Guvenc, “Secure Data Obfuscation Scheme to Enable Privacy-Preserving State Estimation in Smart Grid AMI Networks,” IEEE Internet Things J., vol. 3, no. 5, pp. 709–719, 2016, doi: 10.1109/JIOT.2015.2510504.
  • [62] J. Y. Kim, Y. M. Hwang, Y. G. Sun, I. Sim, D. I. Kim, and X. Wang, “Detection for Non-Technical Loss by Smart Energy Theft with Intermediate Monitor Meter in Smart Grid,” IEEE Access, vol. 7, pp. 129043–129053, 2019, doi: 10.1109/ACCESS.2019.2940443.
  • [63] R. Ullah, Y. Faheem, and B. S. Kim, “Energy and Congestion-Aware Routing Metric For Smart Grid AMI Networks in Smart City,” IEEE Access, vol. 5, pp. 13799–13810, 2017, doi: 10.1109/ACCESS.2017.2728623.
  • [64] P. Li, S. Guo, and Z. Cheng, “Joint Optimization of Electricity And Communication Cost For Meter Data Collection in Smart Grid,” IEEE Trans. Emerg. Top. Comput., vol. 1, no. 2, pp. 297–306, 2013, doi: 10.1109/TETC.2013.2273890.
  • [65] U. Das and V. Namboodiri, “A Quality-Aware Multi-Level Data Aggregation Approach to Manage Smart Grid AMI Traffic,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 2, pp. 245–256, 2019, doi: 10.1109/TPDS.2018.2865937.
  • [66] S. Xu, Y. Qian, and R. Q. Hu, “Reliable nd Resilient Access Network Design For Advanced Metering Infrastructures In Smart Grid,” IET Smart Grid, vol. 1, no. 1, pp. 24–30, 2018, doi: 10.1049/iet-stg.2018.0008.
  • [67] K. Gajowniczek and T. Ząbkowski, “Short Term Electricity Forecasting Using Individual Smart Meter Data,” Procedia - Procedia Comput. Sci., vol. 35, no. 2014, pp. 589–597, 2014, doi: 10.1016/j.procs.2014.08.140.
  • [68] O. Valgaev, F. Kupzog, and H. Schmeck, “Adequacy Of Neural Networks For Wide-Scale Day-Ahead Load Forecasts On Buildings nd Distribution Systems Using Smart Meter Data,” Energy Informatics, vol. 3, no. 1, pp. 1–17, 2020, doi: 10.1186/s42162-020-00132-6.
  • [69] Q. Ma, F. Meng, and X. J. Zeng, “Optimal Dynamic Pricing For Smart Grid Having Mixed Customers With and Without Smart Meters,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 6, pp. 1244–1254, 2018, doi: 10.1007/s40565-018-0389-1.
  • [70] R. Bonnefoi, C. Moy, and J. Palicot, “Improvement of the LPWAN AMI Backhaul’s Latency Thanks To Reinforcement Learning Algorithms,” Eurasip J. Wirel. Commun. Netw., vol. 2018, no. 1, pp. 1–18, 2018, doi: 10.1186/s13638-018-1044-2. Frequency-Hopping Based Communication Network With Multi-Level QoS in Smart Grid: Code Design And Performance Analysis,
  • [71] K. Kim, H. Kim, J. Jung, and H. Kim, “AFAR : A Robust and Delay-Constrained Communication Framework for Smart Grid Applications,” Comput. Networks, vol. 91, no. 2015, pp. 1–25, 2015, doi: 10.1016/j.comnet.2015.08.001.
  • [72] Y. Ben-Shimol, S. Greenberg, and K. Danilchenko, “Application-Layer Approach for Efficient Smart Meter Reading in Low-Voltage PLC Networks,” IEEE Trans. Commun., vol. 66, no. 9, pp. 4249–4258, 2018, doi: 10.1109/TCOMM.2018.2828849.
  • [73] Q. Zeng, H. Li, and D. Peng, “Frequency-Hopping Based Communication Network With Multi-Level QoSs in Smart Grid: Code Design and Performance Analysis” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1841–1852, 2012, doi: 10.1109/TSG.2012.2214067.
  • [74] C. K. Huynh and W. C. Lee, “An Efficient Channel Selection And Power Allocation Scheme for TVWS based on Interference Analysis In Smart Metering Infrastructure,” J. Commun. Networks, vol. 18, no. 1, pp. 50–64, 2016, doi: 10.1109/JCN.2016.000008.
  • [75] J. A. Cortés, A. Sanz, P. Estopiñán, and J. I. García, “Analysis of Narrowband Power Line Communication Channels for Advanced Metering Infrastructure,” EURASIP J. Adv. Signal Process., vol. 2015, no. 1, 2015, doi: 10.1186/s13634-015-0211-4.
  • [76] I. Parvez, M. Aghili, A. I. Sarwat, S. Rahman, and F. Alam, “Online Power Quality Disturbance Detection by Support Vector Machine in Smart Meter,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1328–1339, 2019, doi: 10.1007/s40565-018-0488-z.
  • [77] G. López, J. I. Moreno, H. Amarís, and F. Salazar, “Metering Infrastructures,” Electr. Power Syst. Res., 2014, doi: 10.1016/j.epsr.2014.05.006.
  • [78] Y. He, N. Jenkins, and J. Wu, “Smart Metering for Outage Management of Electric Power Distribution Networks,” Energy Procedia, vol. 103, no. April, pp. 159–164, 2016, doi: 10.1016/j.egypro.2016.11.266.
  • [79] A. Al-Wakeel, J. Wu, and N. Jenkins, “State Estimation of Medium Voltage Distribution Networks Using Smart Meter Measurements,” Appl. Energy, vol. 184, pp. 207–218, 2016, doi: 10.1016/j.apenergy.2016.10.010.
  • [80] F. Malandra and B. Sansò, “A Simulation Framework for Network Performance Evaluation Of Large-Scale RF-Mesh AMIs,” Simul. Model. Pract. Theory, vol. 75, no. 2017, pp. 165–181, 2017, doi: 10.1016/j.simpat.2017.04.004.
  • [81] B. Sivaneasan, E. Gunawan, and P. L. So, “Modeling and Performance Analysis Of Automatic Meter-Reading Systems using PLC Under Impulsive Noise Interference,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1465–1475, 2010, doi: 10.1109/TPWRD.2010.2041257.
  • [82] M. Korki, N. Hosseinzadeh, and T. Moazzeni, “Performance Evaluation of a Narrowband Power Line Communication For Smart Grid With Noise Reduction Technique,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1598–1606, 2011, doi: 10.1109/TCE.2011.6131131.
  • [83] J. Matanza, S. Alexandres, and C. Rodríguez-Morcillo, “Advanced Metering Infrastructure Performance Using European Low-Voltage Power Line Communication Networks,” IET Commun., vol. 8, no. 7, pp. 1041–1047, 2014, doi: 10.1049/iet-com.2013.0793.
  • [84] L. González-Sotres, C. Mateo, P. Frías, C. Rodríguez-Morcillo, and J. Matanza, “Replicability Analysis of PLC PRIME Networks for Smart Metering Applications,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 827–835, 2018, doi: 10.1109/TSG.2016.2569487.
  • [85] B. E. Bilgin, S. Baktir, and V. C. Gungor, “Collecting Smart Meter Data Via Public Transportation Buses,” IET Intell. Transp. Syst., vol. 10, no. 8, pp. 515–523, 2016, doi: 10.1049/iet-its.2015.0058.
  • [86] Y. Cao, D. Duan, X. Cheng, L. Yang, and J. Wei, “QoS-oriented Wireless Routing For Smart Meter Data Collection: Stochastic Learning on Graph,” IEEE Trans. Wirel. Commun., vol. 13, no. 8, pp. 4470–4482, 2014, doi: 10.1109/TWC.2014.2314121.
  • [87] H. Gharavi and C. Xu, “Traffic Scheduling Technique or Smart Grid Advanced Metering Applications,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1646–1658, 2012, doi: 10.1109/TCOMM.2012.12.100620.
  • [88] H. Y. Tung et al., “The Generic Design of a High-Traffic Advanced Metering Infrastructure Using ZigBee,” IEEE Trans. Ind. Informatics, vol. 10, no. 1, pp. 836–844, 2014, doi: 10.1109/TII.2013.2280084.
  • [89] H. R. Chi, K. F. Tsang, K. T. Chui, H. S. H. Chung, B. W. K. Ling, and L. L. Lai, “Interference-Mitigated ZigBee-Based Advanced Metering Infrastructure,” IEEE Trans. Ind. Informatics, vol. 12, no. 2, pp. 672–684, 2016, doi: 10.1109/TII.2016.2527618.
  • [90] S. M. S. Hussain, A. Tak, T. S. Ustun, and I. Ali, “Communication Modeling of Solar Home System and Smart Meter in Smart Grids,” IEEE Access, vol. 6, pp. 16985–16996, 2018, doi: 10.1109/ACCESS.2018.2800279.
  • [91] F. Malandra and B. Sanso, “A Markov-Modulated End-to-End Delay Analysis of Large-Scale RF Mesh Networks with Time-Slotted ALOHA and FHSS for Smart Grid Applications,” IEEE Trans. Wirel. Commun., vol. 17, no. 11, pp. 7116–7127, 2018, doi: 10.1109/TWC.2018.2860965.
  • [92] C. Karupongsiri, K. S. Munasinghe, and A. Jamalipour, “A Novel Random Access Mechanism for Timely Reliable Communications for Smart Meters,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 3256–3264, 2017, doi: 10.1109/TII.2017.2706754.
  • [93] A. Robert Singh, D. Devaraj, and R. Narmatha Banu, “Geographic HWMP (Geo-HWMP) Routing Method for AMI network with lossless packet forwarding,” IET Cyber-Physical Syst. Theory Appl., vol. 4, no. 1, pp. 68–78, 2019, doi: 10.1049/iet-cps.2017.0115.
Year 2021, , 101 - 128, 18.12.2021
https://doi.org/10.38088/jise.835725

Abstract

References

  • [1] V. C. Gungor et al., “A Survey on Smart Grid Potential Applications and Communication Requirements,” IEEE Trans. Ind. Informatics, vol. 9, no. 1, pp. 28–42, 2013, doi: 10.1109/TII.2012.2218253.
  • [2] Y. Wang, Q. Chen, T. Hong, C. Kang, and C. Y. Mar, “Review of Smart Meter Data Analytics : Applications, Methodologies, and Challenges,” no. June, pp. 1–24, 2017.
  • [3] M. Vogt, F. Marten, and M. Braun, “A survey and statistical analysis of smart grid co-simulations,” Applied Energy, vol. 222, no. September 2017. Elsevier, pp. 67–78, 2018, doi: 10.1016/j.apenergy.2018.03.123.
  • [4] W. Li and X. Zhang, “Simulation of the smart grid communications: Challenges, techniques, and future trends,” Comput. Electr. Eng., vol. 40, no. 1, pp. 270–288, 2014, doi: 10.1016/j.compeleceng.2013.11.022.
  • [5] K. Mets, J. A. Ojea, and C. Develder, “Combining Power and Communication Network Simulation For Cost-Effective Smart Grid Analysis,” IEEE Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1771–1796, 2014, doi: 10.1109/SURV.2014.021414.00116.
  • [6] Y. Kabalci, “A survey on smart metering and smart grid communication,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier, pp. 302–318, 2016, doi: 10.1016/j.rser.2015.12.114.
  • [7] N. I. Sarkar, S. Member, and S. A. Halim, “A Review of Simulation of Telecommunication Networks : Simulators , Classification , Comparison , Methodologies , and Recommendations,” no. May, 2014.
  • [8] C. Rehtanz and X. Guillaud, “Real-time and co-simulations for the development of power system monitoring, control and protection,” 2016, doi: 10.1109/PSCC.2016.7541030.
  • [9] A. Mahmood, N. Javaid, and S. Razzaq, “A review of wireless communications for smart grid,” Renew. Sustain. Energy Rev., vol. 41, pp. 248–260, 2015, doi: 10.1016/j.rser.2014.08.036.
  • [10] D. Bian, M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Analysis of communication schemes for Advanced Metering Infrastructure (AMI),” in IEEE Power and Energy Society General Meeting, 2014, vol. 2014-Octob, no. October, doi: 10.1109/PESGM.2014.6939562.
  • [11] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Review of communication technologies for smart homes/building applications,” in Proceedings of the 2015 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2015, 2016, pp. 1–6, doi: 10.1109/ISGT-Asia.2015.7437036.
  • [12] J. Leiva, A. Palacios, and J. A. Aguado, “Smart metering trends , implications and necessities : A policy review,” Renew. Sustain. Energy Rev., vol. 55, pp. 227–233, 2016, doi: 10.1016/j.rser.2015.11.002.
  • [13] M. C. Falvo, L. Martirano, D. Sbordone, and E. Bocci, “Technologies for smart grids: A brief review,” in 12th International Conference on Environment and Electrical Engineering, EEEIC 2013, 2013, pp. 369–375, doi: 10.1109/EEEIC.2013.6549544.
  • [14] N. Uribe-Pérez, L. Hernández, D. de la Vega, and I. Angulo, “State of the Art and Trends Review of Smart Metering in Electricity Grids,” Appl. Sci., vol. 6, no. 3, pp. 1–24, 2016, doi: 10.3390/app6030068.
  • [15] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart meter data privacy: A survey,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2820–2835, 2017, doi: 10.1109/COMST.2017.2720195.
  • [16] Y. Wang, Q. Chen, T. Hong, C. Kang, and C. Y. Mar, “Review of Smart Meter Data Analytics : Applications , Methodologies , and Challenges,” no. June, pp. 1–24, 2017.
  • [17] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: Motivations, requirements and challenges,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1. pp. 5–20, 2013, doi: 10.1109/SURV.2012.021312.00034.
  • [18] R. Deng, Z. Yang, M. Y. Chow, and J. Chen, “A survey on demand response in smart grids: Mathematical models and approaches,” IEEE Trans. Ind. Informatics, vol. 11, no. 3, pp. 570–582, 2015, doi: 10.1109/TII.2015.2414719.
  • [19] S. Garlapati, T. Kuruganti, M. R. Buehrer, and J. H. Reed, “SMAC: A Soft MAC to Reduce Control Overhead and Latency in CDMA-Based AMI Networks,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2648–2662, 2016, doi: 10.1109/TNET.2015.2481718.
  • [20] A. Kondoro, I. Ben Dhaou, D. Rwegasira, A. Kelati, H. Tenhunen, and N. Mvungi, “A Simulation Model for the Analysis of Security Attacks in Advanced Metering Infrastructure,” in 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 2018, pp. 533–538, doi: 10.1109/PowerAfrica.2018.8521089.
  • [21] F. G. Gonzalez, “An intelligent controller for the smart grid,” in Procedia Computer Science, 2013, vol. 16, pp. 776–785, doi: 10.1016/j.procs.2013.01.081.
  • [22] N. Andreadou, M. O. Guardiola, and G. Fulli, “Telecommunication technologies for smart grid projects with focus on smart metering applications,” Energies, vol. 9, no. 5. 2016, doi: 10.3390/en9050375.
  • [23] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication network requirements for major smart grid applications in HAN, NAN and WAN,” Computer Networks, vol. 67. Elsevier B.V., pp. 74–88, 2014, doi: 10.1016/j.comnet.2014.03.029.
  • [24] M. F. Khan, A. Jain, V. Arunachalam, and A. Paventhan, “Communication technologies for smart metering infrastructure,” 2014, doi: 10.1109/SCEECS.2014.6804427.
  • [25] Z. Lipošcak and M. Bošković, “Survey of smart metering communication technologies,” in IEEE EuroCon 2013, 2013, no. November 2015, pp. 1391–1400, doi: 10.1109/EUROCON.2013.6625160.
  • [26] D. Baimel, S. Tapuchi, and N. Baimel, “Smart grid communication technologies- overview, research challenges and opportunities,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, 2016, pp. 116–120, doi: 10.1109/SPEEDAM.2016.7526014.
  • [27] M. Burunkaya and T. Pars, “A smart meter design and implementation using ZigBee based Wireless Sensor Network in Smart Grid,” in 2017 4th International Conference on Electrical and Electronics Engineering, ICEEE 2017, 2017, pp. 158–162, doi: 10.1109/ICEEE2.2017.7935812.
  • [28] R. S. Chauhan, J. Sharma, M. K. Jha, and J. V Desai, “Simulation-based performance analysis of ZigBee in three dimensional smart grid environments,” in International Conference on Communication and Signal Processing, ICCSP 2016, 2016, pp. 1546–1550, doi: 10.1109/ICCSP.2016.7754418.
  • [29] D. Chen, J. Brown, and J. Y. Khan, “6LoWPAN based neighborhood area network for a smart grid communication infrastructure,” in International Conference on Ubiquitous and Future Networks, ICUFN, 2013, pp. 576–581, doi: 10.1109/ICUFN.2013.6614885.
  • [30] J. Hoglund, D. Ilic, S. Karnouskos, R. Sauter, and P. Goncalves Da Silva, “Using a 6LoWPAN smart meter mesh network for event-driven monitoring of power quality,” in 2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012, 2012, no. November, pp. 448–453, doi: 10.1109/SmartGridComm.2012.6486025.
  • [31] D. Chen, J. Brown, and J. Y. Khan, “Performance analysis of a distributed 6LoWPAN network for the Smart Grid applications,” in IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings, 2014, no. April, pp. 21–24, doi: 10.1109/ISSNIP.2014.6827646.
  • [32] A. Yarali and S. Rahman, “Smart grid networks: Promises and challenges,” J. Commun., vol. 7, no. 6 SPECL. ISSUE, pp. 409–417, 2012, doi: 10.4304/jcm.7.6.409-417.
  • [33] M. Collotta and G. Pau, “A Solution Based on Bluetooth Low Energy for Smart Home Energy Management,” pp. 11916–11938, 2015, doi: 10.3390/en81011916.
  • [34] O. Neagu and W. Hamouda, “Performance of WiMAX for smart grid applications,” 2016, doi: 10.1109/MoWNet.2016.7496613.
  • [35] L. Štastný, L. Franek, and P. Fiedler, “Wireless Communications in Smart Metering,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 12, no. PART 1, pp. 330–335, doi: 10.3182/20130925-3-CZ-3023.00035.
  • [36] G. D. Castellanos and J. Y. Khan, “Performance Analysis of WiMAX Polling Service For Smart Grid Meter Reading Applications,” in 2012 IEEE Colombian Communications Conference, COLCOM 2012 - Conference Proceedings, 2012, no. May, doi: 10.1109/ColComCon.2012.6233661.
  • [37] Y. Kabalci, E. Kabalci, S. Padmanaban, J. B. Holm-Nielsen, and F. Blaabjerg, “Internet of Things Applications as Energy Internet in Smart Grids And Smart Environments,” Electron., vol. 8, no. 9, pp. 1–16, 2019, doi: 10.3390/electronics8090972.
  • [38] C. Paolini, H. Adigal, and M. Sarkar, “Upper Bound on LoRa Smart Metering Uplink Rate,” in 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, 2020, pp. 1–4, doi: 10.1109/CCNC46108.2020.9045439.
  • [39] F. Helder, P. S. Dester, E. M. G. Stancanelli, and P. Cardieri, “Feasibility of Alarm Events Upon Smart Metering in LoRa Networks,” in Proceedings of the International Symposium on Wireless Communication Systems, 2019, vol. 2019-August, no. August, pp. 480–484, doi: 10.1109/ISWCS.2019.8877346.
  • [40] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive Configuration of LoRa Networks for Dense IoT deployments,” IEEE/IFIP Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber World, NOMS 2018, pp. 1–9, 2018, doi: 10.1109/NOMS.2018.8406255.
  • [41] Z. Xia, H. Zhou, K. Gu, B. Yin, Y. Zeng, and M. Xu, “Secure Session Key Management Scheme For A Meter-Reading System Based on LoRa Technology,” IEEE Access, vol. 6, pp. 75015–75024, 2018, doi: 10.1109/ACCESS.2018.2883657.
  • [42] Y. Cheng, H. Saputra, L. M. Goh, and Y. Wu, “Secure Smart Metering Based on LoRa Technology,” 2018 IEEE 4th Int. Conf. Identity, Secur. Behav. Anal. ISBA 2018, vol. 2018-January, pp. 1–8, 2018, doi: 10.1109/ISBA.2018.8311466.
  • [43] L. Di Bert, S. D’Alessandro, and A. M. Tonello, “A G3-PLC Simulator for Access Networks,” in IEEE ISPLC 2014 - 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 99–104, doi: 10.1109/ISPLC.2014.6812329.
  • [44] S. Panchadcharam, G. A. Taylor, Q. Ni, I. Pisica, and S. Fateri, “Performance Evaluation of Smart Metering Infrastructure using Simulation Tool,” pp. 1–6, 2020.
  • [45] W. Chen, K. Zhou, S. Yang, and C. Wu, “Data Quality of Electricity Consumption Data in a Smart Grid Environment,” Renewable and Sustainable Energy Reviews, vol. 75, no. October 2016. Elsevier Ltd, pp. 98–105, 2017, doi: 10.1016/j.rser.2016.10.054.
  • [46] M. Ge, S. Chren, B. Rossi, and T. Pitner, “Data Quality Management Framework for Smart Grid Systems,” in Lecture Notes in Business Information Processing, 2019, vol. 354, no. March, pp. 299–310, doi: 10.1007/978-3-030-20482-2_24.
  • [47] J. Shishido and E. U. Solutions, “Smart Meter Data Quality Insights,” ACEEE Summer Study Energy Effic. Build., pp. 277–288, 2012.
  • [48] A. Razaq, B. Pranggono, H. Tianfield, and H. Yue, “Simulating Smart Grid: Co-Simulation Of Power and Communication Network,” in Proceedings of the Universities Power Engineering Conference, 2015, vol. 2015-Novem, no. September, pp. 1–4, doi: 10.1109/UPEC.2015.7339763.
  • [49] S. Saba, K. Ajay, and R.-B. Gupta, “Network Simulation Tools Survey,” Int. J. Adv. Res. Comput. Commun. Eng. Vol., vol. 1, no. 4, pp. 201–210, 2012.
  • [50] C. Sun, S. Member, D. J. Sebastian, and S. Member, “Intrusion Detection for Cybersecurity of Smart Meters,” EEE Trans. Smart Grid, vol. 3053, no. c, pp. 1–11, 2019, doi: 10.1109/TSG.2020.3010230.
  • [51] P. Ganguly, M. Nasipuri, and S. Dutta, “A Novel Approach for Detecting and Mitigating the Energy Theft Issues in the Smart Metering Infrastructure,” Technol. Econ. Smart Grids Sustain. Energy, vol. 3, no. 1, pp. 1–11, 2018, doi: 10.1007/s40866-018-0053-x.
  • [52] M. Cebe and K. Akkaya, “Efficient Certificate Revocation Management Schemes for IoT-Based Advanced Metering Infrastructures in Smart Cities,” Ad Hoc Networks, vol. 92, pp. 1–47, 2019, doi: 10.1016/j.adhoc.2018.10.027.
  • [53] F. Wu, X. Li, L. Xu, and S. Kumari, “A privacy-preserving scheme with identity traceable property for smart grid,” Comput. Commun., vol. 157, no. April, pp. 38–44, 2020, doi: 10.1016/j.comcom.2020.03.047.
  • [54] Y. Liu and S. Hu, “Cyber threat analysis and detection for energy theft in social networking of smart homes,” IEEE Trans. Comput. Soc. Syst., vol. 2, no. 4, pp. 148–158, 2015, doi: 10.1109/TCSS.2016.2519506.
  • [55] M. Cebe and K. Akkaya, “Utilizing advanced metering infrastructure to build a public key infrastructure for electric vehicles,” in DIVANet 2017 - Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, Co-located with MSWiM 2017, 2017, pp. 91–98, doi: 10.1145/3132340.3132359.
  • [56] S. Asri and B. Pranggono, “Impact of Distributed Denial-of-Service Attack on Advanced Metering Infrastructure,” Wirel. Pers. Commun., vol. 83, no. 3, pp. 2211–2223, 2015, doi: 10.1007/s11277-015-2510-3.
  • [57] G. Eibl and D. Engel, “Differential privacy for real smart metering data,” Comput. Sci. - Res. Dev., vol. 32, no. 1–2, pp. 173–182, 2017, doi: 10.1007/s00450-016-0310-y.
  • [58] S. Kim et al., “A secure smart-metering protocol over power-line communication,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2370–2379, 2011, doi: 10.1109/TPWRD.2011.2158671.
  • [59] D. Mert, M. U. Şimşek, and S. Özdemir, “Privacy-Preserving Metering Protocol in Smart Grids,” IFIP Adv. Inf. Commun. Technol., vol. 458, no. AIAI 2015, pp. 467–477, 2015, doi: 10.1007/978-3-319-23868-5_34.
  • [60] K. Akkaya, K. Rabieh, M. Mahmoud, and S. Tonyali, “Customized Certificate Revocation Lists for IEEE 802.11s-Based Smart Grid AMI Networks,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2366–2374, 2015, doi: 10.1109/TSG.2015.2390131.
  • [61] S. Tonyali, O. Cakmak, K. Akkaya, M. M. E. A. Mahmoud, and I. Guvenc, “Secure Data Obfuscation Scheme to Enable Privacy-Preserving State Estimation in Smart Grid AMI Networks,” IEEE Internet Things J., vol. 3, no. 5, pp. 709–719, 2016, doi: 10.1109/JIOT.2015.2510504.
  • [62] J. Y. Kim, Y. M. Hwang, Y. G. Sun, I. Sim, D. I. Kim, and X. Wang, “Detection for Non-Technical Loss by Smart Energy Theft with Intermediate Monitor Meter in Smart Grid,” IEEE Access, vol. 7, pp. 129043–129053, 2019, doi: 10.1109/ACCESS.2019.2940443.
  • [63] R. Ullah, Y. Faheem, and B. S. Kim, “Energy and Congestion-Aware Routing Metric For Smart Grid AMI Networks in Smart City,” IEEE Access, vol. 5, pp. 13799–13810, 2017, doi: 10.1109/ACCESS.2017.2728623.
  • [64] P. Li, S. Guo, and Z. Cheng, “Joint Optimization of Electricity And Communication Cost For Meter Data Collection in Smart Grid,” IEEE Trans. Emerg. Top. Comput., vol. 1, no. 2, pp. 297–306, 2013, doi: 10.1109/TETC.2013.2273890.
  • [65] U. Das and V. Namboodiri, “A Quality-Aware Multi-Level Data Aggregation Approach to Manage Smart Grid AMI Traffic,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 2, pp. 245–256, 2019, doi: 10.1109/TPDS.2018.2865937.
  • [66] S. Xu, Y. Qian, and R. Q. Hu, “Reliable nd Resilient Access Network Design For Advanced Metering Infrastructures In Smart Grid,” IET Smart Grid, vol. 1, no. 1, pp. 24–30, 2018, doi: 10.1049/iet-stg.2018.0008.
  • [67] K. Gajowniczek and T. Ząbkowski, “Short Term Electricity Forecasting Using Individual Smart Meter Data,” Procedia - Procedia Comput. Sci., vol. 35, no. 2014, pp. 589–597, 2014, doi: 10.1016/j.procs.2014.08.140.
  • [68] O. Valgaev, F. Kupzog, and H. Schmeck, “Adequacy Of Neural Networks For Wide-Scale Day-Ahead Load Forecasts On Buildings nd Distribution Systems Using Smart Meter Data,” Energy Informatics, vol. 3, no. 1, pp. 1–17, 2020, doi: 10.1186/s42162-020-00132-6.
  • [69] Q. Ma, F. Meng, and X. J. Zeng, “Optimal Dynamic Pricing For Smart Grid Having Mixed Customers With and Without Smart Meters,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 6, pp. 1244–1254, 2018, doi: 10.1007/s40565-018-0389-1.
  • [70] R. Bonnefoi, C. Moy, and J. Palicot, “Improvement of the LPWAN AMI Backhaul’s Latency Thanks To Reinforcement Learning Algorithms,” Eurasip J. Wirel. Commun. Netw., vol. 2018, no. 1, pp. 1–18, 2018, doi: 10.1186/s13638-018-1044-2. Frequency-Hopping Based Communication Network With Multi-Level QoS in Smart Grid: Code Design And Performance Analysis,
  • [71] K. Kim, H. Kim, J. Jung, and H. Kim, “AFAR : A Robust and Delay-Constrained Communication Framework for Smart Grid Applications,” Comput. Networks, vol. 91, no. 2015, pp. 1–25, 2015, doi: 10.1016/j.comnet.2015.08.001.
  • [72] Y. Ben-Shimol, S. Greenberg, and K. Danilchenko, “Application-Layer Approach for Efficient Smart Meter Reading in Low-Voltage PLC Networks,” IEEE Trans. Commun., vol. 66, no. 9, pp. 4249–4258, 2018, doi: 10.1109/TCOMM.2018.2828849.
  • [73] Q. Zeng, H. Li, and D. Peng, “Frequency-Hopping Based Communication Network With Multi-Level QoSs in Smart Grid: Code Design and Performance Analysis” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1841–1852, 2012, doi: 10.1109/TSG.2012.2214067.
  • [74] C. K. Huynh and W. C. Lee, “An Efficient Channel Selection And Power Allocation Scheme for TVWS based on Interference Analysis In Smart Metering Infrastructure,” J. Commun. Networks, vol. 18, no. 1, pp. 50–64, 2016, doi: 10.1109/JCN.2016.000008.
  • [75] J. A. Cortés, A. Sanz, P. Estopiñán, and J. I. García, “Analysis of Narrowband Power Line Communication Channels for Advanced Metering Infrastructure,” EURASIP J. Adv. Signal Process., vol. 2015, no. 1, 2015, doi: 10.1186/s13634-015-0211-4.
  • [76] I. Parvez, M. Aghili, A. I. Sarwat, S. Rahman, and F. Alam, “Online Power Quality Disturbance Detection by Support Vector Machine in Smart Meter,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1328–1339, 2019, doi: 10.1007/s40565-018-0488-z.
  • [77] G. López, J. I. Moreno, H. Amarís, and F. Salazar, “Metering Infrastructures,” Electr. Power Syst. Res., 2014, doi: 10.1016/j.epsr.2014.05.006.
  • [78] Y. He, N. Jenkins, and J. Wu, “Smart Metering for Outage Management of Electric Power Distribution Networks,” Energy Procedia, vol. 103, no. April, pp. 159–164, 2016, doi: 10.1016/j.egypro.2016.11.266.
  • [79] A. Al-Wakeel, J. Wu, and N. Jenkins, “State Estimation of Medium Voltage Distribution Networks Using Smart Meter Measurements,” Appl. Energy, vol. 184, pp. 207–218, 2016, doi: 10.1016/j.apenergy.2016.10.010.
  • [80] F. Malandra and B. Sansò, “A Simulation Framework for Network Performance Evaluation Of Large-Scale RF-Mesh AMIs,” Simul. Model. Pract. Theory, vol. 75, no. 2017, pp. 165–181, 2017, doi: 10.1016/j.simpat.2017.04.004.
  • [81] B. Sivaneasan, E. Gunawan, and P. L. So, “Modeling and Performance Analysis Of Automatic Meter-Reading Systems using PLC Under Impulsive Noise Interference,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1465–1475, 2010, doi: 10.1109/TPWRD.2010.2041257.
  • [82] M. Korki, N. Hosseinzadeh, and T. Moazzeni, “Performance Evaluation of a Narrowband Power Line Communication For Smart Grid With Noise Reduction Technique,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1598–1606, 2011, doi: 10.1109/TCE.2011.6131131.
  • [83] J. Matanza, S. Alexandres, and C. Rodríguez-Morcillo, “Advanced Metering Infrastructure Performance Using European Low-Voltage Power Line Communication Networks,” IET Commun., vol. 8, no. 7, pp. 1041–1047, 2014, doi: 10.1049/iet-com.2013.0793.
  • [84] L. González-Sotres, C. Mateo, P. Frías, C. Rodríguez-Morcillo, and J. Matanza, “Replicability Analysis of PLC PRIME Networks for Smart Metering Applications,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 827–835, 2018, doi: 10.1109/TSG.2016.2569487.
  • [85] B. E. Bilgin, S. Baktir, and V. C. Gungor, “Collecting Smart Meter Data Via Public Transportation Buses,” IET Intell. Transp. Syst., vol. 10, no. 8, pp. 515–523, 2016, doi: 10.1049/iet-its.2015.0058.
  • [86] Y. Cao, D. Duan, X. Cheng, L. Yang, and J. Wei, “QoS-oriented Wireless Routing For Smart Meter Data Collection: Stochastic Learning on Graph,” IEEE Trans. Wirel. Commun., vol. 13, no. 8, pp. 4470–4482, 2014, doi: 10.1109/TWC.2014.2314121.
  • [87] H. Gharavi and C. Xu, “Traffic Scheduling Technique or Smart Grid Advanced Metering Applications,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1646–1658, 2012, doi: 10.1109/TCOMM.2012.12.100620.
  • [88] H. Y. Tung et al., “The Generic Design of a High-Traffic Advanced Metering Infrastructure Using ZigBee,” IEEE Trans. Ind. Informatics, vol. 10, no. 1, pp. 836–844, 2014, doi: 10.1109/TII.2013.2280084.
  • [89] H. R. Chi, K. F. Tsang, K. T. Chui, H. S. H. Chung, B. W. K. Ling, and L. L. Lai, “Interference-Mitigated ZigBee-Based Advanced Metering Infrastructure,” IEEE Trans. Ind. Informatics, vol. 12, no. 2, pp. 672–684, 2016, doi: 10.1109/TII.2016.2527618.
  • [90] S. M. S. Hussain, A. Tak, T. S. Ustun, and I. Ali, “Communication Modeling of Solar Home System and Smart Meter in Smart Grids,” IEEE Access, vol. 6, pp. 16985–16996, 2018, doi: 10.1109/ACCESS.2018.2800279.
  • [91] F. Malandra and B. Sanso, “A Markov-Modulated End-to-End Delay Analysis of Large-Scale RF Mesh Networks with Time-Slotted ALOHA and FHSS for Smart Grid Applications,” IEEE Trans. Wirel. Commun., vol. 17, no. 11, pp. 7116–7127, 2018, doi: 10.1109/TWC.2018.2860965.
  • [92] C. Karupongsiri, K. S. Munasinghe, and A. Jamalipour, “A Novel Random Access Mechanism for Timely Reliable Communications for Smart Meters,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 3256–3264, 2017, doi: 10.1109/TII.2017.2706754.
  • [93] A. Robert Singh, D. Devaraj, and R. Narmatha Banu, “Geographic HWMP (Geo-HWMP) Routing Method for AMI network with lossless packet forwarding,” IET Cyber-Physical Syst. Theory Appl., vol. 4, no. 1, pp. 68–78, 2019, doi: 10.1049/iet-cps.2017.0115.
There are 93 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Articles
Authors

Folasade Dahunsi 0000-0002-6812-9236

Sunday Olayanju 0000-0001-8139-6390

Akinlolu Ponnle 0000-0002-1040-3829

Oluwafemi Sarumi 0000-0001-6463-1029

Publication Date December 18, 2021
Published in Issue Year 2021

Cite

APA Dahunsi, F., Olayanju, S., Ponnle, A., Sarumi, O. (2021). Communication Network Simulation for Smart Metering Applications: A Review. Journal of Innovative Science and Engineering, 5(2), 101-128. https://doi.org/10.38088/jise.835725
AMA Dahunsi F, Olayanju S, Ponnle A, Sarumi O. Communication Network Simulation for Smart Metering Applications: A Review. JISE. December 2021;5(2):101-128. doi:10.38088/jise.835725
Chicago Dahunsi, Folasade, Sunday Olayanju, Akinlolu Ponnle, and Oluwafemi Sarumi. “Communication Network Simulation for Smart Metering Applications: A Review”. Journal of Innovative Science and Engineering 5, no. 2 (December 2021): 101-28. https://doi.org/10.38088/jise.835725.
EndNote Dahunsi F, Olayanju S, Ponnle A, Sarumi O (December 1, 2021) Communication Network Simulation for Smart Metering Applications: A Review. Journal of Innovative Science and Engineering 5 2 101–128.
IEEE F. Dahunsi, S. Olayanju, A. Ponnle, and O. Sarumi, “Communication Network Simulation for Smart Metering Applications: A Review”, JISE, vol. 5, no. 2, pp. 101–128, 2021, doi: 10.38088/jise.835725.
ISNAD Dahunsi, Folasade et al. “Communication Network Simulation for Smart Metering Applications: A Review”. Journal of Innovative Science and Engineering 5/2 (December 2021), 101-128. https://doi.org/10.38088/jise.835725.
JAMA Dahunsi F, Olayanju S, Ponnle A, Sarumi O. Communication Network Simulation for Smart Metering Applications: A Review. JISE. 2021;5:101–128.
MLA Dahunsi, Folasade et al. “Communication Network Simulation for Smart Metering Applications: A Review”. Journal of Innovative Science and Engineering, vol. 5, no. 2, 2021, pp. 101-28, doi:10.38088/jise.835725.
Vancouver Dahunsi F, Olayanju S, Ponnle A, Sarumi O. Communication Network Simulation for Smart Metering Applications: A Review. JISE. 2021;5(2):101-28.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.