Research Article
BibTex RIS Cite
Year 2024, , 226 - 232, 31.12.2024
https://doi.org/10.38088/jise.1533942

Abstract

References

  • [1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
  • [2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
  • [3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
  • [4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
  • [5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
  • [6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
  • [7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
  • [8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
  • [9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.

A Study on Trans-para-Sasakian Manifolds

Year 2024, , 226 - 232, 31.12.2024
https://doi.org/10.38088/jise.1533942

Abstract

In the current paper, we make the first contribution to investigate conditions under which three-dimensional trans-para-Sasakian manifold has η-parallel Ricci tensor and cyclic parallel Ricci tensor. Finally, a three dimensional trans-para-Sasakian manifold example which satisfies our results is constructed

References

  • [1] Oubina, J. A. (1985). New Classes of Almost Contact Metric Structure. Publicationes Mathematicae, 32:187-193.
  • [2] Blair, D. E. and Oubina, J. A. (1990). Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Matemàtiques, 34(1): 199-207.
  • [3] Chinea, D. and Gonzales, C. (1990). A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata, 156:15-36.
  • [4] Marrero, J. C. (1992). The Local Structure of Trans-Sasakian Manifolds. Annali di Matematica Pura ed Applicata, 162:77-86.
  • [5] Zamkovoy, S. (2019). On the Geometry of Trans-para-Sasakian Manifolds. Filomat, 33(18):6015-6024.
  • [6] Özkan, M. Küpeli Erken, I. and De, U. C. (2024). On Trans-para-Sasakian Manifolds. Filomat. (accepted).
  • [7] Zamkovoy, S. (2009). Canonical Connections on Paracontact Manifolds. Annals of Global Analysis and Geometry, 36:37-60.
  • [8] Kon, M. (1976). Invariant Submanifolds in Sasakian Manifolds. Mathematische Annalen, 219:277-290.
  • [9] Gray, A. (1978). Einstein-like Manifolds which are not Einstein. Geometrica Dedicata, 7:259-280.
There are 9 citations in total.

Details

Primary Language English
Subjects Numerical Computation and Mathematical Software
Journal Section Research Articles
Authors

İrem Küpeli Erken 0000-0003-4471-3291

Mustafa Özkan 0000-0002-4483-2912

Early Pub Date December 11, 2024
Publication Date December 31, 2024
Submission Date August 15, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024

Cite

APA Küpeli Erken, İ., & Özkan, M. (2024). A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering, 8(2), 226-232. https://doi.org/10.38088/jise.1533942
AMA Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. December 2024;8(2):226-232. doi:10.38088/jise.1533942
Chicago Küpeli Erken, İrem, and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8, no. 2 (December 2024): 226-32. https://doi.org/10.38088/jise.1533942.
EndNote Küpeli Erken İ, Özkan M (December 1, 2024) A Study on Trans-para-Sasakian Manifolds. Journal of Innovative Science and Engineering 8 2 226–232.
IEEE İ. Küpeli Erken and M. Özkan, “A Study on Trans-para-Sasakian Manifolds”, JISE, vol. 8, no. 2, pp. 226–232, 2024, doi: 10.38088/jise.1533942.
ISNAD Küpeli Erken, İrem - Özkan, Mustafa. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering 8/2 (December 2024), 226-232. https://doi.org/10.38088/jise.1533942.
JAMA Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8:226–232.
MLA Küpeli Erken, İrem and Mustafa Özkan. “A Study on Trans-Para-Sasakian Manifolds”. Journal of Innovative Science and Engineering, vol. 8, no. 2, 2024, pp. 226-32, doi:10.38088/jise.1533942.
Vancouver Küpeli Erken İ, Özkan M. A Study on Trans-para-Sasakian Manifolds. JISE. 2024;8(2):226-32.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.