Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters

Yıl 2022, Cilt 6, Sayı 1, 46 - 60, 08.06.2022
https://doi.org/10.38088/jise.904809

Öz

Adsorption has traditionally been evaluated as an economical and easily applicable process for treating certain wastewaters, such as ones including dyes and heavy metals. Even though adsorbent materials specifically produced for the purpose of wastewater treatment commercially exist, the production cost may create an economic burden on wastewater treatment processes. Agricultural wastes can be valorized as adsorbents in adsorption processes. The adsorption capacity of these wastes can be improved via pre-treatment methods such as chemical application and microwave irradiation. This study investigated the potential applicability of hazelnut husk as an adsorbent for methylene blue (MB) dye. To this purpose, the husk was activated by sequential chemical or water and microwave applications. Structural analysis on the produced adsorbent was performed by Fourier transform infrared spectrophotometry (FTIR) and field emission scanning electron microscopy (FE-SEM). Isotherm (Langmuir, Freundlich, Temkin and Harkins-Jura isotherms) and kinetic (pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion kinetic models) behaviours of adsorption were also evaluated. The results indicated that MB could be removed by 92-94% considering all adsorbents produced. Further isotherm and kinetic studies revealed that MB adsorption was both physically and chemically induced, and the reaction followed the pseudo-second-order kinetic model (R2>0.99).

Kaynakça

  • [1] M. N. Rashed, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In M.N. Rashed,ed., Org. Pollut. - Monit. Risk Treat. (IntechOpen, 2013). https://doi.org/10.5772/54048.
  • [2] E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148 (2018) 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
  • [3] N. A. Fathy, O. I. El-shafey, L. B. Khalil, Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw: The removal of methylene blue dye. ISRN Physical Chemistry, (2013). https://doi.org/10.1155/2013/208087.
  • [4] A. Najafpoor, O. Nemati Sani, H. Alidadi, M. Yazdani, A. A. Navaei Fezabady, M. Taghavi, Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: An experimental design based on response surface methodology. Colloids and Interface Science Communications, 33 (2019) 100212. https://doi.org/10.1016/j.colcom.2019.100212.
  • [5] S. Sabar, H. A. Aziz, N. H. Yusof, S. Subramaniam, K. Y. Foo, L. D. Wilson, H. K. Lee, Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. Reactive and Functional Polymers, (2020) 104584. https://doi.org/10.1016/j.reactfunctpolym.2020.104584.
  • [6] K. Prajapati, M. K. Mondal, Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. Journal of Molecular Liquids, 307 (2020) 112949. https://doi.org/10.1016/j.molliq.2020.112949.
  • [7] T. Kekes, C. Tzia, Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. Journal of Environmental Management, 262 (2020) 110372. https://doi.org/10.1016/j.jenvman.2020.110372.
  • [8] S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9 (2016) 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.
  • [9] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chemical Engineering Journal, 157 (2010) 277–296. https://doi.org/10.1016/j.cej.2010.01.007.
  • [10] TB (T. C. Ticaret Bakanlığı), 2018 Yılı Fındık Raporu (2019).
  • [11] İ. Doğan, M. Tekinok, Fındık zürufu ve deniz yosunlarından saksı toprağı geliştirilmesi. Sakarya Ticaret Borsası, 41 (2011) 25–27.
  • [12] C. Ozer, M. Imamoglu, Y. Turhan, F. Boysan, Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicological and Environmental Chemistry, 94 (2012) 1283–1293. https://doi.org/10.1080/02772248.2012.707656.
  • [13] P. Liu, Z. Wu, X. Ge, X. Yang, Hydrothermal synthesis and microwave-assisted activation of starch-derived carbons as an effective adsorbent for naphthalene removal. RSC Advances Open, 9 (2019) 11696–11706. https://doi.org/10.1039/c9ra01386e.
  • [14] M. Imamoglu, Adsorption of Cd(II) ions onto activated carbon prepared from hazelnut husks. Journal of Dispersion Science and Technology, 34 (2013) 1183–1187. https://doi.org/10.1080/01932691.2012.739869.
  • [15] M. Imamoglu, A. Ozturk, Ş. Aydın, A. Manzak, A. Gündoğdu, C. Duran, Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate. Journal of Dispersion Science and Technology, 39 (2018) 1144–1148. https://doi.org/10.1080/01932691.2017.1385479.
  • [16] G. Karaçetin, S. Sivrikaya, M. Imamoʇlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. Journal of Analytical and Applied Pyrolysis, 110 (2014) 270–276. https://doi.org/10.1016/j.jaap.2014.09.006.
  • [17] S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu, C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: A novel sorbent for removal of Ni(II) ions from aqueous solution. Desalination and Water Treatment, 50 (2012) 2–13. https://doi.org/10.1080/19443994.2012.708234.
  • [18] M. Imamoglu, H. Şahin, Ş. Aydın, F. Tosunoğlu, H. Yılmaz, S. Z. Yıldız, Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation. Desalination and Water Treatment, 57 (2016) 4587–4596. https://doi.org/10.1080/19443994.2014.995135.
  • [19] H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 163 (2010) 373–381. https://doi.org/10.1016/j.cej.2010.08.019.
  • [20] T. H. Tran, A. H. Le, T. H. Pham, D. T. Nguyen, S. W. Chang, W. J. Chung, D. D. Nguyen, Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725 (2020) 138325. https://doi.org/10.1016/j.scitotenv.2020.138325.
  • [21] Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, Y. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process - A review. Advances in Colloid and Interface Science, 163 (2011) 39–52. https://doi.org/10.1016/j.cis.2011.01.006.
  • [22] Ahmadpour D. D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35 (1997) 1723–1732.
  • [23] D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140 (2008) 32–42. https://doi.org/10.1016/j.cej.2007.08.032.
  • [24] S. Al-Asheh, F. Banat, L. Abu-Aitah, The removal of methylene blue dye from aqueous solutions using activated and non-activated bentonites. Adsorption Science and Technology, 21 (2003) 451–462. https://doi.org/10.1260/026361703769645780.
  • [25] O. S. Bello, K. A. Adegoke, A. A. Olaniyan, H. Abdulazeez, Dye adsorption using biomass wastes and natural adsorbents: Overview and future prospects. Desalination and Water Treatment, 53 (2015) 1292–1315. https://doi.org/10.1080/19443994.2013.862028.
  • [26] W. Jiang, L. Zhang, X. Guo, M. Yang, Y. Lu, Y. Wang, Y. Zheng, G. Wei, Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environmental Technology (United Kingdom), (2019) 1–14. https://doi.org/10.1080/09593330.2019.1627425.
  • [27] L. Ma, C. Jiang, Z. Lin, Z. Zou, Microwave-hydrothermal treated grape peel as an efficient biosorbent for methylene blue removal. International Journal of Environmental Research and Public Health, 15 (2018). https://doi.org/10.3390/ijerph15020239. [28] F. E. Titchou, R. A. Akbour, A. Assabbane, M. Hamdani, Removal of cationic dye from aqueous solution using Moroccan pozzolana as adsorbent: Isotherms, kinetic studies, and application on real textile wastewater treatment. Groundwater for Sustainable Development, 11 (2020) 100405. https://doi.org/10.1016/j.gsd.2020.100405.
  • [29] Kahoul, N. Bougdah, F. Djazi, C. Djilani, P. Magri, M. S. Medjram, Removal of methylene blue by adsorption onto activated carbons produced from agricultural wastes by microwave induced KOH activation. Chemistry and Chemical Technology, 13 (2019) 365–371. https://doi.org/10.23939/chcht13.03.365.
  • [30] D. S. P. Franco, E. H. Tanabe, D. A. Bertuol, G. S. Dos Reis, É. C. Lima, G. L. Dotto, Alternative treatments to improve the potential of rice husk as adsorbent for methylene blue. Water Science and Technology, 75 (2017) 296–305. https://doi.org/10.2166/wst.2016.504.
  • [31] O. O. Namal, E. Kalipci, Adsorption kinetics of methylene blue using alkali and microwave-modified apricot stones. Separation Science and Technology (Philadelphia), 54 (2019) 1722–1738. https://doi.org/10.1080/01496395.2018.1541469.
  • [32] P. Liao, Z. Malik Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang, J. Bao, Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal. Chemical Engineering Journal, 195–196 (2012) 339–346. https://doi.org/10.1016/j.cej.2012.04.092.
  • [33] O. Quansah, T. Hlaing, F. N. Lyonga, P. P. Kyi, S. H. Hong, C. G. Lee, S. J. Park, Nascent rice husk as an adsorbent for removing cationic dyes from textile wastewater. Applied Sciences (Switzerland), 10 (2020). https://doi.org/10.3390/app10103437.
  • [34] M. A. Al-Ghouti, R. S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 10 (2020) 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • [35] Sheikhmohammadi, M. Safari, A. Alinejad, A. Esrafili, H. Nourmoradi, E. Asgari, The synthesis and application of the Fe3O4@SiO2 nanoparticles functionalized with 3-aminopropyltriethoxysilane as an efficient sorbent for the adsorption of ethylparaben from wastewater: Synthesis, kinetic, thermodynamic and equilibrium studies. Journal of Environmental Chemical Engineering, 7 (2019). https://doi.org/10.1016/j.jece.2019.103315.
  • [36] Mehdinia, S. Heydari, A. Jabbari, Synthesis and characterization of reduced graphene oxide-Fe3O4@polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies. Materials Chemistry and Physics, 239 (2020) 121964. https://doi.org/10.1016/j.matchemphys.2019.121964.
  • [37] N. Wekoye, W. C. Wanyonyi, P. T. Wangila, M. K. Tonui, Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2 (2020) 24–31. https://doi.org/10.1016/j.enceco.2020.01.004.
  • [38] P. B. Vilela, C. A. Matias, A. Dalalibera, V. A. Becegato, A. T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 7 (2019) 103327. https://doi.org/10.1016/j.jece.2019.103327.
  • [39] Y. Dehmani, L. Sellaoui, Y. Alghamdi, J. Lainé, M. Badawi, A. Amhoud, A. Bonilla-Petriciolet, T. Lamhasni, S. Abouarnadasse, Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. Journal of Molecular Liquids, 312 (2020) 113383. https://doi.org/10.1016/j.molliq.2020.113383.
  • [40] H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal, A. Nazir, Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150 (2020) 861–870. https://doi.org/10.1016/j.ijbiomac.2020.02.093.
  • [41] A. Akinpelu, M. E. Ali, M. R. Johan, R. Saidur, Z. Z. Chowdhury, A. M. Shemsi, T. A. Saleh, Effect of the oxidation process on the molecular interaction of polyaromatic hydrocarbons (PAH) with carbon nanotubes: Adsorption kinetic and isotherm study. Journal of Molecular Liquids, 289 (2019). https://doi.org/10.1016/j.molliq.2019.111107.
  • [42] S. Noreen, U. Khalid, S. M. Ibrahim, T. Javed, A. Ghani, S. Naz, M. Iqbal, ZnO, MgO and FeO adsorption efficiencies for direct sky-Blue dye: Equilibrium, kinetics and thermodynamics studies. Journal of Materials Research and Technology, 9 (2020) 5881–5893. https://doi.org/10.1016/j.jmrt.2020.03.115.
  • [43] M. Oloo, J. M. Onyari, W. C. Wanyonyi, J. N. Wabomba, V. M. Muinde, Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environmental Chemistry and Ecotoxicology, 2 (2020) 64–72. https://doi.org/10.1016/j.enceco.2020.05.001.
  • [44] S. Anantha, S. Olivera, C. Hu, B. K. Jayanna, N. Reddy, K. Venkatesh, H. B. Muralidhara, R. Naidu, Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environmental Technology and Innovation, 17 (2020) 100612. https://doi.org/10.1016/j.eti.2020.100612.
  • [45] S. T. Araújo, I. L. S. Almeida, H. C. Rezende, S. M. L. O. Marcionilio, J. J. L. Léon, T. N. de Matos, Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137 (2018) 348–354. https://doi.org/10.1016/j.microc.2017.11.009.
  • [46] S. Parvizi Ghaleh, E. Khodapanah, S. A. Tabatabaei-Nezhad, Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: Experimental and modeling approaches. Journal of Molecular Liquids, 306 (2020) 112942. https://doi.org/10.1016/j.molliq.2020.112942.
  • [47] Y. Liu, Y. Xiong, P. Xu, Y. Pang, C. Du, Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling. Science of the Total Environment, 708 (2020) 134918. https://doi.org/10.1016/j.scitotenv.2019.134918.
  • [48] X. J. Hu, J. S. Wang, Y. G. Liu, X. Li, G. M. Zeng, Z. L. Bao, X. X. Zeng, A. W. Chen, F. Long, Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185 (2011) 306–314. https://doi.org/10.1016/j.jhazmat.2010.09.034.
  • [49] J. Mate, S. Mishra, Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. International Journal of Biological Macromolecules, 151 (2020) 677–690. https://doi.org/10.1016/j.ijbiomac.2020.02.192.
  • [50] H. Jawad, A. S. Abdulhameed, Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18 (2020) 100422. https://doi.org/10.1016/j.surfin.2019.100422.
  • [51] V. Yönten, N. K. Sanyürek, M. R. Kivanç, A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces, 20 (2020) 1–8. https://doi.org/10.1016/j.surfin.2020.100529.

Yıl 2022, Cilt 6, Sayı 1, 46 - 60, 08.06.2022
https://doi.org/10.38088/jise.904809

Öz

Kaynakça

  • [1] M. N. Rashed, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In M.N. Rashed,ed., Org. Pollut. - Monit. Risk Treat. (IntechOpen, 2013). https://doi.org/10.5772/54048.
  • [2] E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148 (2018) 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
  • [3] N. A. Fathy, O. I. El-shafey, L. B. Khalil, Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw: The removal of methylene blue dye. ISRN Physical Chemistry, (2013). https://doi.org/10.1155/2013/208087.
  • [4] A. Najafpoor, O. Nemati Sani, H. Alidadi, M. Yazdani, A. A. Navaei Fezabady, M. Taghavi, Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: An experimental design based on response surface methodology. Colloids and Interface Science Communications, 33 (2019) 100212. https://doi.org/10.1016/j.colcom.2019.100212.
  • [5] S. Sabar, H. A. Aziz, N. H. Yusof, S. Subramaniam, K. Y. Foo, L. D. Wilson, H. K. Lee, Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. Reactive and Functional Polymers, (2020) 104584. https://doi.org/10.1016/j.reactfunctpolym.2020.104584.
  • [6] K. Prajapati, M. K. Mondal, Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. Journal of Molecular Liquids, 307 (2020) 112949. https://doi.org/10.1016/j.molliq.2020.112949.
  • [7] T. Kekes, C. Tzia, Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. Journal of Environmental Management, 262 (2020) 110372. https://doi.org/10.1016/j.jenvman.2020.110372.
  • [8] S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9 (2016) 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.
  • [9] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chemical Engineering Journal, 157 (2010) 277–296. https://doi.org/10.1016/j.cej.2010.01.007.
  • [10] TB (T. C. Ticaret Bakanlığı), 2018 Yılı Fındık Raporu (2019).
  • [11] İ. Doğan, M. Tekinok, Fındık zürufu ve deniz yosunlarından saksı toprağı geliştirilmesi. Sakarya Ticaret Borsası, 41 (2011) 25–27.
  • [12] C. Ozer, M. Imamoglu, Y. Turhan, F. Boysan, Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicological and Environmental Chemistry, 94 (2012) 1283–1293. https://doi.org/10.1080/02772248.2012.707656.
  • [13] P. Liu, Z. Wu, X. Ge, X. Yang, Hydrothermal synthesis and microwave-assisted activation of starch-derived carbons as an effective adsorbent for naphthalene removal. RSC Advances Open, 9 (2019) 11696–11706. https://doi.org/10.1039/c9ra01386e.
  • [14] M. Imamoglu, Adsorption of Cd(II) ions onto activated carbon prepared from hazelnut husks. Journal of Dispersion Science and Technology, 34 (2013) 1183–1187. https://doi.org/10.1080/01932691.2012.739869.
  • [15] M. Imamoglu, A. Ozturk, Ş. Aydın, A. Manzak, A. Gündoğdu, C. Duran, Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate. Journal of Dispersion Science and Technology, 39 (2018) 1144–1148. https://doi.org/10.1080/01932691.2017.1385479.
  • [16] G. Karaçetin, S. Sivrikaya, M. Imamoʇlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. Journal of Analytical and Applied Pyrolysis, 110 (2014) 270–276. https://doi.org/10.1016/j.jaap.2014.09.006.
  • [17] S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu, C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: A novel sorbent for removal of Ni(II) ions from aqueous solution. Desalination and Water Treatment, 50 (2012) 2–13. https://doi.org/10.1080/19443994.2012.708234.
  • [18] M. Imamoglu, H. Şahin, Ş. Aydın, F. Tosunoğlu, H. Yılmaz, S. Z. Yıldız, Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation. Desalination and Water Treatment, 57 (2016) 4587–4596. https://doi.org/10.1080/19443994.2014.995135.
  • [19] H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 163 (2010) 373–381. https://doi.org/10.1016/j.cej.2010.08.019.
  • [20] T. H. Tran, A. H. Le, T. H. Pham, D. T. Nguyen, S. W. Chang, W. J. Chung, D. D. Nguyen, Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725 (2020) 138325. https://doi.org/10.1016/j.scitotenv.2020.138325.
  • [21] Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, Y. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process - A review. Advances in Colloid and Interface Science, 163 (2011) 39–52. https://doi.org/10.1016/j.cis.2011.01.006.
  • [22] Ahmadpour D. D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35 (1997) 1723–1732.
  • [23] D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140 (2008) 32–42. https://doi.org/10.1016/j.cej.2007.08.032.
  • [24] S. Al-Asheh, F. Banat, L. Abu-Aitah, The removal of methylene blue dye from aqueous solutions using activated and non-activated bentonites. Adsorption Science and Technology, 21 (2003) 451–462. https://doi.org/10.1260/026361703769645780.
  • [25] O. S. Bello, K. A. Adegoke, A. A. Olaniyan, H. Abdulazeez, Dye adsorption using biomass wastes and natural adsorbents: Overview and future prospects. Desalination and Water Treatment, 53 (2015) 1292–1315. https://doi.org/10.1080/19443994.2013.862028.
  • [26] W. Jiang, L. Zhang, X. Guo, M. Yang, Y. Lu, Y. Wang, Y. Zheng, G. Wei, Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environmental Technology (United Kingdom), (2019) 1–14. https://doi.org/10.1080/09593330.2019.1627425.
  • [27] L. Ma, C. Jiang, Z. Lin, Z. Zou, Microwave-hydrothermal treated grape peel as an efficient biosorbent for methylene blue removal. International Journal of Environmental Research and Public Health, 15 (2018). https://doi.org/10.3390/ijerph15020239. [28] F. E. Titchou, R. A. Akbour, A. Assabbane, M. Hamdani, Removal of cationic dye from aqueous solution using Moroccan pozzolana as adsorbent: Isotherms, kinetic studies, and application on real textile wastewater treatment. Groundwater for Sustainable Development, 11 (2020) 100405. https://doi.org/10.1016/j.gsd.2020.100405.
  • [29] Kahoul, N. Bougdah, F. Djazi, C. Djilani, P. Magri, M. S. Medjram, Removal of methylene blue by adsorption onto activated carbons produced from agricultural wastes by microwave induced KOH activation. Chemistry and Chemical Technology, 13 (2019) 365–371. https://doi.org/10.23939/chcht13.03.365.
  • [30] D. S. P. Franco, E. H. Tanabe, D. A. Bertuol, G. S. Dos Reis, É. C. Lima, G. L. Dotto, Alternative treatments to improve the potential of rice husk as adsorbent for methylene blue. Water Science and Technology, 75 (2017) 296–305. https://doi.org/10.2166/wst.2016.504.
  • [31] O. O. Namal, E. Kalipci, Adsorption kinetics of methylene blue using alkali and microwave-modified apricot stones. Separation Science and Technology (Philadelphia), 54 (2019) 1722–1738. https://doi.org/10.1080/01496395.2018.1541469.
  • [32] P. Liao, Z. Malik Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang, J. Bao, Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal. Chemical Engineering Journal, 195–196 (2012) 339–346. https://doi.org/10.1016/j.cej.2012.04.092.
  • [33] O. Quansah, T. Hlaing, F. N. Lyonga, P. P. Kyi, S. H. Hong, C. G. Lee, S. J. Park, Nascent rice husk as an adsorbent for removing cationic dyes from textile wastewater. Applied Sciences (Switzerland), 10 (2020). https://doi.org/10.3390/app10103437.
  • [34] M. A. Al-Ghouti, R. S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 10 (2020) 1–18. https://doi.org/10.1038/s41598-020-72996-3.
  • [35] Sheikhmohammadi, M. Safari, A. Alinejad, A. Esrafili, H. Nourmoradi, E. Asgari, The synthesis and application of the Fe3O4@SiO2 nanoparticles functionalized with 3-aminopropyltriethoxysilane as an efficient sorbent for the adsorption of ethylparaben from wastewater: Synthesis, kinetic, thermodynamic and equilibrium studies. Journal of Environmental Chemical Engineering, 7 (2019). https://doi.org/10.1016/j.jece.2019.103315.
  • [36] Mehdinia, S. Heydari, A. Jabbari, Synthesis and characterization of reduced graphene oxide-Fe3O4@polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies. Materials Chemistry and Physics, 239 (2020) 121964. https://doi.org/10.1016/j.matchemphys.2019.121964.
  • [37] N. Wekoye, W. C. Wanyonyi, P. T. Wangila, M. K. Tonui, Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2 (2020) 24–31. https://doi.org/10.1016/j.enceco.2020.01.004.
  • [38] P. B. Vilela, C. A. Matias, A. Dalalibera, V. A. Becegato, A. T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 7 (2019) 103327. https://doi.org/10.1016/j.jece.2019.103327.
  • [39] Y. Dehmani, L. Sellaoui, Y. Alghamdi, J. Lainé, M. Badawi, A. Amhoud, A. Bonilla-Petriciolet, T. Lamhasni, S. Abouarnadasse, Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. Journal of Molecular Liquids, 312 (2020) 113383. https://doi.org/10.1016/j.molliq.2020.113383.
  • [40] H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal, A. Nazir, Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150 (2020) 861–870. https://doi.org/10.1016/j.ijbiomac.2020.02.093.
  • [41] A. Akinpelu, M. E. Ali, M. R. Johan, R. Saidur, Z. Z. Chowdhury, A. M. Shemsi, T. A. Saleh, Effect of the oxidation process on the molecular interaction of polyaromatic hydrocarbons (PAH) with carbon nanotubes: Adsorption kinetic and isotherm study. Journal of Molecular Liquids, 289 (2019). https://doi.org/10.1016/j.molliq.2019.111107.
  • [42] S. Noreen, U. Khalid, S. M. Ibrahim, T. Javed, A. Ghani, S. Naz, M. Iqbal, ZnO, MgO and FeO adsorption efficiencies for direct sky-Blue dye: Equilibrium, kinetics and thermodynamics studies. Journal of Materials Research and Technology, 9 (2020) 5881–5893. https://doi.org/10.1016/j.jmrt.2020.03.115.
  • [43] M. Oloo, J. M. Onyari, W. C. Wanyonyi, J. N. Wabomba, V. M. Muinde, Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environmental Chemistry and Ecotoxicology, 2 (2020) 64–72. https://doi.org/10.1016/j.enceco.2020.05.001.
  • [44] S. Anantha, S. Olivera, C. Hu, B. K. Jayanna, N. Reddy, K. Venkatesh, H. B. Muralidhara, R. Naidu, Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environmental Technology and Innovation, 17 (2020) 100612. https://doi.org/10.1016/j.eti.2020.100612.
  • [45] S. T. Araújo, I. L. S. Almeida, H. C. Rezende, S. M. L. O. Marcionilio, J. J. L. Léon, T. N. de Matos, Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137 (2018) 348–354. https://doi.org/10.1016/j.microc.2017.11.009.
  • [46] S. Parvizi Ghaleh, E. Khodapanah, S. A. Tabatabaei-Nezhad, Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: Experimental and modeling approaches. Journal of Molecular Liquids, 306 (2020) 112942. https://doi.org/10.1016/j.molliq.2020.112942.
  • [47] Y. Liu, Y. Xiong, P. Xu, Y. Pang, C. Du, Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling. Science of the Total Environment, 708 (2020) 134918. https://doi.org/10.1016/j.scitotenv.2019.134918.
  • [48] X. J. Hu, J. S. Wang, Y. G. Liu, X. Li, G. M. Zeng, Z. L. Bao, X. X. Zeng, A. W. Chen, F. Long, Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185 (2011) 306–314. https://doi.org/10.1016/j.jhazmat.2010.09.034.
  • [49] J. Mate, S. Mishra, Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. International Journal of Biological Macromolecules, 151 (2020) 677–690. https://doi.org/10.1016/j.ijbiomac.2020.02.192.
  • [50] H. Jawad, A. S. Abdulhameed, Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18 (2020) 100422. https://doi.org/10.1016/j.surfin.2019.100422.
  • [51] V. Yönten, N. K. Sanyürek, M. R. Kivanç, A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces, 20 (2020) 1–8. https://doi.org/10.1016/j.surfin.2020.100529.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Yayınlanma Tarihi june 2022
Bölüm Research Articles
Yazarlar

Nilüfer ÜLGÜDÜR>
DUZCE UNIVERSITY, FACULTY OF ENGINEERING
0000-0003-3410-0598
Türkiye


Pınar SEVİM ELİBOL> (Sorumlu Yazar)
DUZCE UNIVERSITY, FACULTY OF ENGINEERING
0000-0001-7758-4583
Türkiye


Emine MALKOÇ>
DUZCE UNIVERSITY, FACULTY OF ENGINEERING
0000-0002-9030-7684
Türkiye

Destekleyen Kurum Duzce University Scientific Research Projects Coordination
Proje Numarası DUBAP- 2020.06.02.1072
Erken Görünüm Tarihi 22 Şubat 2022
Yayımlanma Tarihi 8 Haziran 2022
Yayınlandığı Sayı Yıl 2022, Cilt 6, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { jise904809, journal = {Journal of Innovative Science and Engineering}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Teknik Üniversitesi}, year = {2022}, volume = {6}, number = {1}, pages = {46 - 60}, doi = {10.38088/jise.904809}, title = {Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters}, key = {cite}, author = {Ülgüdür, Nilüfer and Sevim Elibol, Pınar and Malkoç, Emine} }
APA Ülgüdür, N. , Sevim Elibol, P. & Malkoç, E. (2022). Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters . Journal of Innovative Science and Engineering , 6 (1) , 46-60 . DOI: 10.38088/jise.904809
MLA Ülgüdür, N. , Sevim Elibol, P. , Malkoç, E. "Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters" . Journal of Innovative Science and Engineering 6 (2022 ): 46-60 <https://jise.btu.edu.tr/tr/pub/issue/68623/904809>
Chicago Ülgüdür, N. , Sevim Elibol, P. , Malkoç, E. "Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters". Journal of Innovative Science and Engineering 6 (2022 ): 46-60
RIS TY - JOUR T1 - Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters AU - NilüferÜlgüdür, PınarSevim Elibol, EmineMalkoç Y1 - 2022 PY - 2022 N1 - doi: 10.38088/jise.904809 DO - 10.38088/jise.904809 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 46 EP - 60 VL - 6 IS - 1 SN - -2602-4217 M3 - doi: 10.38088/jise.904809 UR - https://doi.org/10.38088/jise.904809 Y2 - 2021 ER -
EndNote %0 Journal of Innovative Science and Engineering Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters %A Nilüfer Ülgüdür , Pınar Sevim Elibol , Emine Malkoç %T Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters %D 2022 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 6 %N 1 %R doi: 10.38088/jise.904809 %U 10.38088/jise.904809
ISNAD Ülgüdür, Nilüfer , Sevim Elibol, Pınar , Malkoç, Emine . "Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters". Journal of Innovative Science and Engineering 6 / 1 (Haziran 2022): 46-60 . https://doi.org/10.38088/jise.904809
AMA Ülgüdür N. , Sevim Elibol P. , Malkoç E. Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters. JISE. 2022; 6(1): 46-60.
Vancouver Ülgüdür N. , Sevim Elibol P. , Malkoç E. Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters. Journal of Innovative Science and Engineering. 2022; 6(1): 46-60.
IEEE N. Ülgüdür , P. Sevim Elibol ve E. Malkoç , "Production of Chemically and Microwave Activated Hazelnut Husk As An Adsorbent for Dye Contaminated Wastewaters", Journal of Innovative Science and Engineering, c. 6, sayı. 1, ss. 46-60, Haz. 2022, doi:10.38088/jise.904809


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.