Yıl 2019, Cilt 3 , Sayı 2, Sayfalar 47 - 56 2019-12-31

Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends

Naile ANGIN [1] , Sena ÇAYLAK [2] , Murat ERTAŞ [3]


Polyurethane foams are used in many different applications, such as insulation and coating materials, packaging, furniture and so on.  It has very low weight, low cost and thermal conductivity hereby frequently preferred by architectural and construction industry. On the other hand, these large-scale uses bring with waste problem after applications. In this study, the effect of polyurethane foam waste (PUw) on the thermal and morphological properties of polypropylene (PP)/ poly(lactic acid) (PLA) composites plasticized with polyethylene glycol (PEG 400) was investigated. PUw filled PP/PLA composites were prepared using melt blending followed by compression molding. Thermal and morphological properties of PUw filled PP/PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), thermal conductivity analyzer and scanning electron microscopy (SEM). The results shown that the thermal conductivity of the composites improved significantly with addition of PUw, while glass transition temperature (Tg), the melting temperature (Tm) and melting enthalpy (ΔHm) values of the composites decreased. Based on finding, the PUw could be used as filler in PP/PLA composites for insulation and energy efficiency.

Polyurethane foam, Polylactic acid, Polypropylene, Thermal properties, Thermal conductivity
  • Ertas, M., Altuntas, E. and Donmez Cavdar, A. (2019). Effects of halloysite nanotube on the performance of natural fiber filled poly (lactic acid) composites. Polymer Composites, 2019:1-10
  • Bulut, Y., Erdoğan, Ü. H. (2011). Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı. Tekstil ve Mühendis, 18: 82-85.
  • Mohanty, A. K., Misra, M. A. and Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular materials and Engineering, 276(1): 1-24.
  • Hong, C. K., Hwang, I., Kim, N., Park, D. H., Hwang, B. S. and Nah, C. (2008). Mechanical properties of silanized jute–polypropylene composites. Journal of Industrial and Engineering Chemistry, 14(1): 71-76.
  • García, M., Garmendia, I. and García, J. (2008). Influence of natural fiber type in eco‐composites. Journal of Applied Polymer Science, 107(5): 2994-3004.
  • Oksman, K., Skrifvars, M. and Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites science and technology, 63(9): 1317-1324.
  • De Silva, R. T., Pasbakhsh, P., Goh, K. L., Chai, S. P. and Chen, J. (2014). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30): 3705-3717.
  • Krishnaiah, P., Ratnam, C. T. and Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135: 583-595.
  • Sangeetha, V. H., Deka, H., Varghese, T. O. and Nayak, S. K. (2018). State of the art and future prospectives of poly (lactic acid) based blends and composites. Polymer composites, 39(1): 81-101.
  • Dorgan, J. R. (1999). Poly (lactic acid) properties and prospects of an environmentally benign plastic. In 3rd Annual Green Chemistry and Engineering Conference Proceedings 99:145-149.
  • Ren, J. (2010). Modification of PLA. In Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications, Springer Berlin Heidelberg, Germany. pp 38-141. ISBN: 978-3-642-17596-1
  • Chiellini, E., Covolan, V. L., Orsini, L. M. and Solaro, R. (2003). Polymeric nanoparticles based on polylactide and related copolymers. In Macromolecular Symposia, 197(1): 345-354.
  • Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource technology, 99(11): 4661-4667.
  • Hartmann, M. H. (1998). High molecular weight polylactic acid polymers. In Biopolymers from renewable resources Springer, Berlin, Heidelberg. Germany. pp. 367-411. ISBN: 978-3-662-03680-8
  • Drumright, E. Gruber, R. and Henton E. (2000). Polylactic acid technology, Advanced Materials, 12: 1841-1846.
  • Rajan, K. P., Thomas, S. P., Gopanna, A., Al-Ghamdi, A. And Chavali, M. (2018). Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Materials Research Express, 5(8): 085304.
  • Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., Narongchai, O., Pavasupree, S. and Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89: 353-360.
  • Yurtseven, R., Tarakçılar, A. and Topçu, M. (2013). Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan Köpük Malzemelerin Mekanik Özellikleri İle Isıl Ve Yanma Davranışları Üzerine Etkileri. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(4).
  • Ubowska, A. (2010). Montmorillonite as a polyurethane foams flame retardant. Archivum Combustionis, 30(4): 459-462.
  • Goods, S. H., Neuschwanger, C. L., Whinnery, L. L. and Nix, W. D. (1999). Mechanical properties of a particle‐strengthened polyurethane foam. Journal of Applied Polymer Science, 74(11): 2724-2736.
  • Wang, J. Q. and Chow, W. K. (2005). A brief review on fire retardants for polymeric foams. Journal of applied polymer science, 97(1): 366-376.
  • Romero-Ibarra, I. C., Bonilla-Blancas, E., Sanchez-Solis, A. and Manero, O. (2012). Influence of the morphology of barium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites. European Polymer Journal, 48(4): 670-676.
  • Saha, M. C., Kabir, M. E., & Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering: 479(1-2): 213-222.
  • Saint-Michel, F., Chazeau, L. and Cavaillé, J. Y. (2006). Mechanical properties of high density polyurethane foams: II Effect of the filler size. Composites Science and Technology, 66(15): 2709-2718.
  • Aydoğan, B. and Usta, N. (2015). Nanokil ve Kabaran Alev Geciktirici ilavesinin Rijit Poliüretan Köpük Malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1): 9-18.
  • Yu, L., Dean, K. and Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6): 576-602.
  • Mohanty, A. K., Misra, M. and Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2): 19-26.
  • Zhang, M. Q., Rong, M. Z. and Lu, X. (2005). Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites. Composites Science and Technology, 65(15-16): 2514-2525.
  • Nyambo, C., Mohanty, A. K. and Misra, M. (2010). Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11(6):1654-1660.
  • Chow, W. S., Tham, W. L., Poh, B. T. and Ishak, Z. M. (2018). Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. Journal of Polymers and the Environment, 26(7): 2973-2982.
  • Ndazi, B. S. And Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2).
  • Quero, E., Müller, A. J., Signori, F., Coltelli, M. B. and Bronco, S. (2012). Isothermal Cold‐Crystallization of PLA/PBAT Blends With and Without the Addition of Acetyl Tributyl Citrate. Macromolecular Chemistry and Physics, 213(1): 36-48.
  • Ploypetchara, N., Suppakul, P., Atong, D. And Pechyen, C. (2014). Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia, 56: 201-210.
Birincil Dil en
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Orcid: 0000-0001-8384-7546
Yazar: Naile ANGIN
Kurum: BURSA TECHNICAL UNIVERSITY
Ülke: Turkey


Orcid: 0000-0003-1324-3741
Yazar: Sena ÇAYLAK
Kurum: BURSA TECHNICAL UNIVERSITY
Ülke: Turkey


Orcid: 0000-0001-9218-5513
Yazar: Murat ERTAŞ (Sorumlu Yazar)
Kurum: BURSA TECHNICAL UNIVERSITY
Ülke: Turkey


Teşekkür The authors are grateful to NuhPol for PEG 400 and polyurethane foam waste samples supply.
Tarihler

Yayımlanma Tarihi : 31 Aralık 2019

Bibtex @araştırma makalesi { jise654790, journal = {Journal of Innovative Science and Engineering (JISE)}, issn = {}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Teknik Üniversitesi}, year = {2019}, volume = {3}, pages = {47 - 56}, doi = {10.38088/jise.654790}, title = {Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends}, key = {cite}, author = {ANGIN, Naile and ÇAYLAK, Sena and ERTAŞ, Murat} }
APA ANGIN, N , ÇAYLAK, S , ERTAŞ, M . (2019). Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. Journal of Innovative Science and Engineering (JISE) , 3 (2) , 47-56 . DOI: 10.38088/jise.654790
MLA ANGIN, N , ÇAYLAK, S , ERTAŞ, M . "Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends". Journal of Innovative Science and Engineering (JISE) 3 (2019 ): 47-56 <http://jise.btu.edu.tr/tr/issue/50983/654790>
Chicago ANGIN, N , ÇAYLAK, S , ERTAŞ, M . "Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends". Journal of Innovative Science and Engineering (JISE) 3 (2019 ): 47-56
RIS TY - JOUR T1 - Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends AU - Naile ANGIN , Sena ÇAYLAK , Murat ERTAŞ Y1 - 2019 PY - 2019 N1 - doi: 10.38088/jise.654790 DO - 10.38088/jise.654790 T2 - Journal of Innovative Science and Engineering (JISE) JF - Journal JO - JOR SP - 47 EP - 56 VL - 3 IS - 2 SN - -2602-4217 M3 - doi: 10.38088/jise.654790 UR - https://doi.org/10.38088/jise.654790 Y2 - 2019 ER -
EndNote %0 Journal of Innovative Science and Engineering (JISE) Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends %A Naile ANGIN , Sena ÇAYLAK , Murat ERTAŞ %T Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends %D 2019 %J Journal of Innovative Science and Engineering (JISE) %P -2602-4217 %V 3 %N 2 %R doi: 10.38088/jise.654790 %U 10.38088/jise.654790
ISNAD ANGIN, Naile , ÇAYLAK, Sena , ERTAŞ, Murat . "Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends". Journal of Innovative Science and Engineering (JISE) 3 / 2 (Aralık 2020): 47-56 . https://doi.org/10.38088/jise.654790
AMA ANGIN N , ÇAYLAK S , ERTAŞ M . Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. JISE. 2019; 3(2): 47-56.
Vancouver ANGIN N , ÇAYLAK S , ERTAŞ M . Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. Journal of Innovative Science and Engineering (JISE). 2019; 3(2): 56-47.