Research Article
BibTex RIS Cite

Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system

Year 2023, Volume: 12 Issue: 4, 1219 - 1231, 15.10.2023
https://doi.org/10.28948/ngumuh.1285885

Abstract

This study addresses the need for sustainable methodologies in antimicrobial resistance (AMR) surveillance, particularly in wastewater treatment, to ensure efficient disinfection and control of AMR. The use of photocatalysis (PC) has gained attention as a scalable and suitable approach for research and development. This study evaluates the effect of UV-vis driven sub-lethal photocatalytic oxidation on conjugative gene transfer between two E. coli strains using a pilot plant reactor system. Photocatalysts composed of graphene-oxide-Ti-CuFe2O4 nanocomposites were synthesized through a green approach and used to enhance bacteria inactivation rates, resulting in hindered frequency and absolute abundance of trans-conjugants in the recipient strains. Experiments plan was built with the intent to determine the contribution of photocatalyst type, mode of operation on the conjugation mechanism and also distinguish between the scenarios where individual or simultaneous exposure to PC oxidation of donor and recipient strains occur. Simultaneous photocatalytic treatment of both donor and recipient strains resulted in the removal of ~3 LOG of both bacteria and eligible conditions were obtained for controlling trans-conjugants formation compared to no treatment conditions. The photocatalyst surface, reactive oxygen species, and bacterial cells' interaction played a determining role in controlling ARG transfer. The impact of photocatalytic oxidation mechanisms on the vitality of recipient cells was evident during the continuous mode of operation, where conjugative transfer of ARGs was mitigated, and the number of trans-conjugants decreased to below 102 CFU mL-1. This study demonstrates the potential of PC for efficient disinfection and control of AMR in wastewater treatment.

Supporting Institution

TNKU Scientific Research Projects Funding Office

Project Number

NKUBAP.06.GA.21.343

Thanks

As the author of the study, I would like to acknowledge Prof. Dr. Ayten Yazgan Karataş from İstanbul Technical University, Department of Molecular Biology and Genetics and Prof. Dr. İdil Arslan Alaton from İstanbul Technical University, Department of Environmental Engineering for their support.

References

  • A. Catalano, D. Iacopetta, J. Ceramella, D. Scumaci, F. Giuzio, C. Saturnino, S. Aquaro, C. Rosano, M.S. Sinicropi, Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies, Molecules, 27, 2022. doi:10.3390/molecules27030616.
  • Y. Zhang, A.Z. Gu, M. He, D. Li, J. Chen, Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera, Environ. Sci. Technol., 51, 570–580, 2017. doi:10.1021/acs.est.6b03132.
  • I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res., 47, 957–995, 2013. doi:10.1016/j.watres. 2012.11.027.
  • C.B. Özkal, 11 Control of antibiotic resistance by advanced treatment: recent advances, in a nutshell, Environ. Microbiol. Emerg. Technol, 265, 2022.
  • P.Y. Hong, T.R. Julian, M.L. Pype, S.C. Jiang, K.L. Nelson, D. Graham, A. Pruden, C.M. Manaia, Reusing treated wastewater: Consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes, Water, 10, 2018. doi:10.3390/w10030244.
  • D.-W. Kim, C.-J. Cha, Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission, Exp. Mol. Med., 53, 301-309, 2021.
  • J. Davies, Inactivation of antibiotics and the dissemination of resistance genes, Science, 264, 375–382, 1994.
  • R. Jayaraman, Antibiotic resistance: an overview of mechanisms and a paradigm shift, Curr. Sci., 1475–1484, 2009.
  • M.P. Nikolich, G. Hong, N.B. Shoemaker, A.A. Salyers, Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock., Appl. Environ. Microbiol., 60, 3255–3260, 1994.
  • A. Goulas, B. Livoreil, N. Grall, P. Benoit, C. Couderc-Obert, C. Dagot, D. Patureau, F. Petit, C. Laouénan, A. Andremont, What are the effective solutions to control the dissemination of antibiotic resistance in the environment? A systematic review protocol, Environ. Evid. 7, 1–9, 2018. doi:10.1186/s13750-018-0118-2.
  • F. Barancheshme, M. Munir, Strategies to combat antibiotic resistance in the wastewater treatment plants, Front. Microbiol. 8, 2018. doi:10.3389/fmicb.2017. 02603.
  • E. Jamrozik, M. Selgelid, Ethics and drug resistance: collective responsibility for global public health, 2020.
  • K. Liguori, I. Keenum, B.C. Davis, J. Calarco, E. Milligan, V.J. Harwood, A. Pruden, Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control, Environ. Sci. Technol. 56, 9149–9160, 2022.
  • C.U. Schwermer, P. Krzeminski, A.C. Wennberg, C. Vogelsang, W. Uhl, Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes, Water Sci. Technol. 77, 1115–1126, 2018. doi:10.2166/wst.2017 .642.
  • G. Ferro, F. Guarino, A. Cicatelli, L. Rizzo, β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2, J. Hazard. Mater. 323 426–433, 2017. doi:10.1016/j.jhazmat.2016.03.014.
  • M. Jin, L. Liu, D. Wang, D. Yang, W. Liu, J. Yin, Z. Yang, H. Wang, Z. Qiu, Z. Shen, Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation, ISME J. 14, 1847–1856, 2020. doi: 10.1038/s41396-020-0656-9
  • J. Lu, Y. Wang, M. Jin, Z. Yuan, P. Bond, J. Guo, Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes, Water Res., 169, 2020. doi:10.1016/j.watres.2019.115229.
  • Z. Qiu, Z. Shen, D. Qian, M. Jin, D. Yang, J. Wang, B. Zhang, Z. Yang, Z. Chen, X. Wang, C. Ding, D. Wang, J.W. Li, Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid, Nanotoxicology. 9, 895–904, 2015. doi:10.3109/17435390.2014.991429.
  • S. Zhang, Y. Wang, H. Song, J. Lu, Z. Yuan, J. Guo, Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera, Environ. Int. 129, 478–487, 2019. doi:10.1016/j.envint .2019.05.054.
  • S. Ghosh, Y. Chen, J. Hu, Application of UVC and UVC based advanced disinfection technologies for the inactivation of antibiotic resistance genes and elimination of horizontal gene transfer activities: Opportunities and challenges, Chem. Eng. J. 450, 2022. doi:10.1016/j.cej.2022.138234.
  • C. Kong, X. He, M. Guo, S. Ma, B. Xu, Y. Tang, The Impacts of Chlorine and Disinfection Byproducts on Antibiotic-Resistant Bacteria (ARB) and Their Conjugative Transfer, Water, 14, 2022. doi:10.3390 /w14193009.
  • X. Chen, H. Yin, G. Li, W. Wang, P.K. Wong, H. Zhao, T. An, Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression, Water Res. 149, 282–291, 2022. doi:10.1016/j.watres. 2018.11.019.
  • H. Ji, Y. Cai, Z. Wang, G. Li, T. An, Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability, Water Res., 221, 2022. doi:10.10 16/j.watres.2022.118808.
  • R.K. Manoharan, F. Ishaque, Y.H. Ahn, Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review, Chemosphere., 298, 2022. doi:10.1016/j.chemosphere.2022.134671.
  • M.C. Maria, R.P. d. Mendonça Neto, G.F.F. Pires, P.B. Vilela, C.C. Amorim, Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives, Sci. Total Environ. 786, 2021. doi:10.1016/j.scitotenv.2021.147448.
  • I. Michael-Kordatou, P. Karaolia, D. Fatta-Kassinos, The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater, Water Res. 129, 208–230, 2018. doi.org/10.1016/j.watres.20 17.10.007
  • G. Mamba, A. Mishra, Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation, Catalysts, 2016. doi:10.3390/catal6060079.
  • N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review, Ceram. Int. 43, 14552–14571, 2022. doi.org/10.1016 /j.ceramint.2017.08.143
  • D. Li, P. Yu, X. Zhou, J.H. Kim, Y. Zhang, P.J.J. Alvarez, Hierarchical Bi2O2CO3 wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes, Water Res., 184, 2020. doi:10.1016/j.watres.2020.116157.
  • H. Wang, X. Li, Q. Ge, Y. Chong, Y. Zhang, A multifunctional Fe2O3@MoS2@SDS z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination, Colloids Surfaces B Biointerfaces., 219, 2022. doi:10.1016/j.colsurfb.2022.112833.
  • K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review, Sustain. Mater. Technol. 23, 2020. e00140. doi:10.1016/j.susmat.2019 .e00140.
  • R. Kodasma, B. Palas, G. Ersöz, S. Atalay, Photocatalytic activity of copper ferrite graphene oxide particles for an efficient catalytic degradation of Reactive Black 5 in water, Ceram. Int., 46, 6284–6292, 2020. doi:10.1016/j.ceramint.2019.11.100.
  • Q. Jiang, M. Feng, C. Ye, X. Yu, Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review, Sci. Total Environ., 806, 2022. doi:10.1016/j.scitotenv.2021.150568.
  • P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G.S. Armatas, L. Sygellou, T. Schwartz, N.P. Xekoukoulotakis, Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters, Appl. Catal. B Environ., 224, 810–824, 2018. doi.org/10.1016/j.apcatb.2017.11.020
  • K. Yu, F. Chen, L. Yue, Y. Luo, Z. Wang, B. Xing, CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer, Environ. Sci. Technol. 54, 10012-10021, 2020. doi.org/10.1021/acs.est.0c01870
  • L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives, Small. 12, 4165–4184, 810–824, 2022. doi:10.1002/smll.20160 1841.
  • D. Xia, H. Liu, Z. Jiang, T.W. Ng, W.S. Lai, T. An, W. Wang, P.K. Wong, Visible-light-driven photocatalytic inactivation of Escherichia coli K-12 over thermal treated natural magnetic sphalerite: Band structure analysis and toxicity evaluation, Appl. Catal. B Environ. 224, 541–552, 2018. doi.org/10.1016/j.ap catb.2017.10.030
  • H. Yin, X. Chen, G. Li, W. Wang, P.K. Wong, T. An, Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation, Appl. Catal. B Environ., 287, 2021. doi:10.1016/j.apcatb.2021.119 977.
  • Q. Zhang, X. Liu, H. Zhou, Y. Lu, Y. Fan, L. Wu, X. Xiao, Reduction pathway of graphene oxide affects conjugation-mediated horizontal gene transfer under environmental conditions, Chem. Eng. J. 450, 2022. doi:10.1016/j.cej.2022.138301.
  • M.A.S. Mc Mahon, I.S. Blair, J.E. Moore, D.A. Mc Dowell, The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria, J. Appl. Microbiol. 103, 1883–1888, 2007. doi:10.1111/j.1365-2672.2007.03 412.x.
  • C.A. Woodall, E . coli Plasmid Vectors DNA Transfer by Bacterial Conjugation, Methods Mol. Biol., 235, 61–65, 2003. doi.org/10.1385/1-59259-409-3:61
  • M.T. Guo, X.B. Tian, Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation, J. Hazard. Mater., 380, 2019. doi:10.10 16/j.jhazmat.2019.120877.
  • C.B. Ozkal, S. Meric, Photocatalytic Bacteria Inactivation by TiO2-Ag based Photocatalysts and the Effect on Antibiotic Resistance Profile, Curr. Anal. Chem., 17, 98–106, 2021. doi.org/10.2174/15734110 16999200711145845
  • C.B. Özkal, Synthesis of CuFe2O4‐Ti and CuFe2O4‐Ti‐GO nanocomposite photocatalysts using green‐synthesized CuFe2O4: determination of photocatalytic activity, bacteria inactivation and antibiotic degradation potentials under visible light, J. Chem. Technol. Biotechnol., 97(7), 1842-1859, 2022. doi.org/10.1002/jctb.7058
  • I.A. Alaton, A.Y. Karataş, Ö. Pehlivan, T.O. Hanci, Elimination of antibiotic resistance in treated urban wastewater by iron-based advanced oxidation processes, Desalin. Water Treat., 172, 235–253, 2019. doi:10.5004/dwt.2019.24929.
  • P.S.M. Dunlop, M. Ciavola, L. Rizzo, D.A. McDowell, J.A. Byrne, Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater, Catal. Today., 240, 55–60, 2015. doi:10.1016/j.cattod.2014.0 3.049.
  • D. Saha, M.C. Visconti, M.M. Desipio, R. Thorpe, Inactivation of antibiotic resistance gene by ternary nanocomposites of carbon nitride, reduced graphene oxide and iron oxide under visible light, Chem. Eng. J., 382, 2020. doi:10.1016/j.cej.2019.122857.
  • H. Wang, J. Wang, S. Li, G. Ding, K. Wang, T. Zhuang, X. Huang, X. Wang, Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking, Water Res., 185, 2020. doi:10.1016/j.watres.2020.116290.
  • H. Yin, X. Chen, G. Li, Y. Chen, W. Wang, T. An, P.K. Wong, H. Zhao, Sub-lethal photocatalysis bactericidal technology cause longer persistence of antibiotic-resistance mutant and plasmid through the mechanism of reduced fitness cost, Appl. Catal. B Environ., 245, 698–705, 2019. doi.org/10.1016/j.apcatb.2019.01.041
  • Venieri, D.; Fraggedaki, A.; Kostadima, M.; Chatzisymeon, E.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl Catal B 2014, 154, 93–101, doi:10.1016/j.apcatb.2014.02.007.
  • Alrousan, D.M.A.; Dunlop, P.S.M.; McMurray, T.A.; Byrne, J.A. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 2009, 43, 47–54. doi.org/10. 1016/j.watres.2008.10.015
  • Mehrotra, K.; Yablonsky, G.S.; Ray, A.K. Kinetic Studies of photocatalytic degradation in a TiO2 slurry system: Distinguishing working regimes and determining rate dependences. Ind Eng Chem Res 2003, 42, 2273–2281. doi.org/10.1021/ie0209881
  • P. Fernández-Ibáñez, C. Sichel, M.I. Polo-López, M. de Cara-García, J.C. Tello, Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors, Catal. Today., 144, 62–68, 2009. doi.org/10.1016/j.cattod. 2009.01.039
  • T. Tsai, H. Chang, K. Chang, Y. Liu, A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive, J. áChem. Technol. Biotechnol., 85.12, 1642–1653, 2010. doi:10.1002/jctb.2476.
  • V.M. Sousa, C.M. Manaia, A. Mendes, O.C. Nunes, Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat, J. Photochem. Photobiol. A Chem., 251, 148–153, 2013. doi:10.101 6/j.jphotochem.2012.10.027.
  • M. Karbasi, F. Karimzadeh, K. Raeissi, S. Rtimi, J. Kiwi, S. Giannakis, C. Pulgarin, Insights into the photocatalytic bacterial inactivation by flower-like Bi2WO6 under solar or visible light, through in situ monitoring and determination of reactive oxygen species (ROS), Water, 12, 2020. doi:10.3390/W1204 1099.
  • V. Palmieri, F. Bugli, M.C. Lauriola, M. Cacaci, R. Torelli, G. Ciasca, C. Conti, M. Sanguinetti, M. Papi, M. De Spirito, Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy, ACS Biomater. Sci. Eng., 3, 619–627, 2017. doi.org/10.1021/acsbiomaterials.6b00812
  • T. Pulingam, K.L. Thong, M.E. Ali, J.N. Appaturi, I.J. Dinshaw, Z.Y. Ong, B.F. Leo, Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria, Colloids Surfaces B Biointerfaces., 181, 6–15, 2019. doi.org/10.1016/j. colsurfb.2019.05.023
  • P. Chen, X. Guo, S. Li, F. Li, A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes, Environ. Int., 156, 106689, 2021. doi.org/10.1016 /j.envint.2021.106689

UV-VIS kaynaklı CFT-GO tabanlı pilot ölçek fotokataliz prosesinin konjugatif gen transfer mekanizmasına etkisinin belirlenmesi

Year 2023, Volume: 12 Issue: 4, 1219 - 1231, 15.10.2023
https://doi.org/10.28948/ngumuh.1285885

Abstract

Bu çalışma, antimikrobiyal direncin kontrolünde (AMR) sürdürülebilir yaklaşımlar arasında olan, atıksuyun etkin dezenfeksiyonu üzerine kurulmuştur. Fotokataliz prosesi, ölçeklenebilir, araştırma ve geliştirmeye açık bir ileri oksidasyon prosesidir. Deneysel çalışmalarda kullanılan grafen-oksit-Ti-CuFe2O4 nanokompozit fotokatalizörleri, yeşil bir yaklaşımla sentezlenmiştir. Parabolik kolektör destekli fotoreaktörde, sub-letal fotokatalitik oksidasyonun alıcı ve verici E. coli suşları arasındaki konjugatif gen transferi mekanizmasına etkileri deneysel olarak araştırılmıştır. Farklı fotokatalizörlerin bakteri inaktivasyon hızı üzerine etkisi yanında, alıcı suşlarda eşleşmiş çiftlerin oluşumu (transkonjugan) frekansını ve nihai miktarını azaltan bir etki gösterdiği ortaa konulmuştur. Deney planı, fotokatalizör tipinin ve proses işletme modunun konjugasyon ile gen tranfer mekanizmasına katkısını belirlemek, verici ve alıcı suşların PC oksidasyona tekil veya eşzamanlı maruz kalma senaryoları arasındaki farkı ortaya koabilmek amacıyla oluşturulmuştur. Alıcı ve verici suşların eşzamanlı olarak fotokatalitik oksidasyona maruz kalması, her iki suş için de yaklaşık ~3 LOG giderim sağlamış ve transkonjugan oluşumunu kontrol edebilecek koşular oluşturmuştur. Fotokatalizör yüzeyi, reaktif oksijen türleri ve bakteriyel hücrelerin etkileşimi, ARG transferinin kontrolünde belirleyici bir rol oynamıştır. Alıcı hücrelerin canlılığı üzerindeki fotokatalitik oksidasyon mekanizmalarının etkisi, konjugatif ARG transferinin azaltıldığı sürekli işletme sırasında açıkça görülmüş ve transkonjuganların sayısı 102 CFU mL-1'nin altına düşmüştür. Bu çalışma, PC'nin atıksu arıtımında etkili dezenfeksiyon ve AMR kontrolü için potansiyelini göstermektedir.

Project Number

NKUBAP.06.GA.21.343

References

  • A. Catalano, D. Iacopetta, J. Ceramella, D. Scumaci, F. Giuzio, C. Saturnino, S. Aquaro, C. Rosano, M.S. Sinicropi, Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies, Molecules, 27, 2022. doi:10.3390/molecules27030616.
  • Y. Zhang, A.Z. Gu, M. He, D. Li, J. Chen, Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera, Environ. Sci. Technol., 51, 570–580, 2017. doi:10.1021/acs.est.6b03132.
  • I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res., 47, 957–995, 2013. doi:10.1016/j.watres. 2012.11.027.
  • C.B. Özkal, 11 Control of antibiotic resistance by advanced treatment: recent advances, in a nutshell, Environ. Microbiol. Emerg. Technol, 265, 2022.
  • P.Y. Hong, T.R. Julian, M.L. Pype, S.C. Jiang, K.L. Nelson, D. Graham, A. Pruden, C.M. Manaia, Reusing treated wastewater: Consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes, Water, 10, 2018. doi:10.3390/w10030244.
  • D.-W. Kim, C.-J. Cha, Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission, Exp. Mol. Med., 53, 301-309, 2021.
  • J. Davies, Inactivation of antibiotics and the dissemination of resistance genes, Science, 264, 375–382, 1994.
  • R. Jayaraman, Antibiotic resistance: an overview of mechanisms and a paradigm shift, Curr. Sci., 1475–1484, 2009.
  • M.P. Nikolich, G. Hong, N.B. Shoemaker, A.A. Salyers, Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock., Appl. Environ. Microbiol., 60, 3255–3260, 1994.
  • A. Goulas, B. Livoreil, N. Grall, P. Benoit, C. Couderc-Obert, C. Dagot, D. Patureau, F. Petit, C. Laouénan, A. Andremont, What are the effective solutions to control the dissemination of antibiotic resistance in the environment? A systematic review protocol, Environ. Evid. 7, 1–9, 2018. doi:10.1186/s13750-018-0118-2.
  • F. Barancheshme, M. Munir, Strategies to combat antibiotic resistance in the wastewater treatment plants, Front. Microbiol. 8, 2018. doi:10.3389/fmicb.2017. 02603.
  • E. Jamrozik, M. Selgelid, Ethics and drug resistance: collective responsibility for global public health, 2020.
  • K. Liguori, I. Keenum, B.C. Davis, J. Calarco, E. Milligan, V.J. Harwood, A. Pruden, Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control, Environ. Sci. Technol. 56, 9149–9160, 2022.
  • C.U. Schwermer, P. Krzeminski, A.C. Wennberg, C. Vogelsang, W. Uhl, Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes, Water Sci. Technol. 77, 1115–1126, 2018. doi:10.2166/wst.2017 .642.
  • G. Ferro, F. Guarino, A. Cicatelli, L. Rizzo, β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2, J. Hazard. Mater. 323 426–433, 2017. doi:10.1016/j.jhazmat.2016.03.014.
  • M. Jin, L. Liu, D. Wang, D. Yang, W. Liu, J. Yin, Z. Yang, H. Wang, Z. Qiu, Z. Shen, Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation, ISME J. 14, 1847–1856, 2020. doi: 10.1038/s41396-020-0656-9
  • J. Lu, Y. Wang, M. Jin, Z. Yuan, P. Bond, J. Guo, Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes, Water Res., 169, 2020. doi:10.1016/j.watres.2019.115229.
  • Z. Qiu, Z. Shen, D. Qian, M. Jin, D. Yang, J. Wang, B. Zhang, Z. Yang, Z. Chen, X. Wang, C. Ding, D. Wang, J.W. Li, Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid, Nanotoxicology. 9, 895–904, 2015. doi:10.3109/17435390.2014.991429.
  • S. Zhang, Y. Wang, H. Song, J. Lu, Z. Yuan, J. Guo, Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera, Environ. Int. 129, 478–487, 2019. doi:10.1016/j.envint .2019.05.054.
  • S. Ghosh, Y. Chen, J. Hu, Application of UVC and UVC based advanced disinfection technologies for the inactivation of antibiotic resistance genes and elimination of horizontal gene transfer activities: Opportunities and challenges, Chem. Eng. J. 450, 2022. doi:10.1016/j.cej.2022.138234.
  • C. Kong, X. He, M. Guo, S. Ma, B. Xu, Y. Tang, The Impacts of Chlorine and Disinfection Byproducts on Antibiotic-Resistant Bacteria (ARB) and Their Conjugative Transfer, Water, 14, 2022. doi:10.3390 /w14193009.
  • X. Chen, H. Yin, G. Li, W. Wang, P.K. Wong, H. Zhao, T. An, Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression, Water Res. 149, 282–291, 2022. doi:10.1016/j.watres. 2018.11.019.
  • H. Ji, Y. Cai, Z. Wang, G. Li, T. An, Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability, Water Res., 221, 2022. doi:10.10 16/j.watres.2022.118808.
  • R.K. Manoharan, F. Ishaque, Y.H. Ahn, Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review, Chemosphere., 298, 2022. doi:10.1016/j.chemosphere.2022.134671.
  • M.C. Maria, R.P. d. Mendonça Neto, G.F.F. Pires, P.B. Vilela, C.C. Amorim, Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives, Sci. Total Environ. 786, 2021. doi:10.1016/j.scitotenv.2021.147448.
  • I. Michael-Kordatou, P. Karaolia, D. Fatta-Kassinos, The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater, Water Res. 129, 208–230, 2018. doi.org/10.1016/j.watres.20 17.10.007
  • G. Mamba, A. Mishra, Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation, Catalysts, 2016. doi:10.3390/catal6060079.
  • N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review, Ceram. Int. 43, 14552–14571, 2022. doi.org/10.1016 /j.ceramint.2017.08.143
  • D. Li, P. Yu, X. Zhou, J.H. Kim, Y. Zhang, P.J.J. Alvarez, Hierarchical Bi2O2CO3 wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes, Water Res., 184, 2020. doi:10.1016/j.watres.2020.116157.
  • H. Wang, X. Li, Q. Ge, Y. Chong, Y. Zhang, A multifunctional Fe2O3@MoS2@SDS z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination, Colloids Surfaces B Biointerfaces., 219, 2022. doi:10.1016/j.colsurfb.2022.112833.
  • K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review, Sustain. Mater. Technol. 23, 2020. e00140. doi:10.1016/j.susmat.2019 .e00140.
  • R. Kodasma, B. Palas, G. Ersöz, S. Atalay, Photocatalytic activity of copper ferrite graphene oxide particles for an efficient catalytic degradation of Reactive Black 5 in water, Ceram. Int., 46, 6284–6292, 2020. doi:10.1016/j.ceramint.2019.11.100.
  • Q. Jiang, M. Feng, C. Ye, X. Yu, Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review, Sci. Total Environ., 806, 2022. doi:10.1016/j.scitotenv.2021.150568.
  • P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G.S. Armatas, L. Sygellou, T. Schwartz, N.P. Xekoukoulotakis, Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters, Appl. Catal. B Environ., 224, 810–824, 2018. doi.org/10.1016/j.apcatb.2017.11.020
  • K. Yu, F. Chen, L. Yue, Y. Luo, Z. Wang, B. Xing, CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer, Environ. Sci. Technol. 54, 10012-10021, 2020. doi.org/10.1021/acs.est.0c01870
  • L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives, Small. 12, 4165–4184, 810–824, 2022. doi:10.1002/smll.20160 1841.
  • D. Xia, H. Liu, Z. Jiang, T.W. Ng, W.S. Lai, T. An, W. Wang, P.K. Wong, Visible-light-driven photocatalytic inactivation of Escherichia coli K-12 over thermal treated natural magnetic sphalerite: Band structure analysis and toxicity evaluation, Appl. Catal. B Environ. 224, 541–552, 2018. doi.org/10.1016/j.ap catb.2017.10.030
  • H. Yin, X. Chen, G. Li, W. Wang, P.K. Wong, T. An, Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation, Appl. Catal. B Environ., 287, 2021. doi:10.1016/j.apcatb.2021.119 977.
  • Q. Zhang, X. Liu, H. Zhou, Y. Lu, Y. Fan, L. Wu, X. Xiao, Reduction pathway of graphene oxide affects conjugation-mediated horizontal gene transfer under environmental conditions, Chem. Eng. J. 450, 2022. doi:10.1016/j.cej.2022.138301.
  • M.A.S. Mc Mahon, I.S. Blair, J.E. Moore, D.A. Mc Dowell, The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria, J. Appl. Microbiol. 103, 1883–1888, 2007. doi:10.1111/j.1365-2672.2007.03 412.x.
  • C.A. Woodall, E . coli Plasmid Vectors DNA Transfer by Bacterial Conjugation, Methods Mol. Biol., 235, 61–65, 2003. doi.org/10.1385/1-59259-409-3:61
  • M.T. Guo, X.B. Tian, Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation, J. Hazard. Mater., 380, 2019. doi:10.10 16/j.jhazmat.2019.120877.
  • C.B. Ozkal, S. Meric, Photocatalytic Bacteria Inactivation by TiO2-Ag based Photocatalysts and the Effect on Antibiotic Resistance Profile, Curr. Anal. Chem., 17, 98–106, 2021. doi.org/10.2174/15734110 16999200711145845
  • C.B. Özkal, Synthesis of CuFe2O4‐Ti and CuFe2O4‐Ti‐GO nanocomposite photocatalysts using green‐synthesized CuFe2O4: determination of photocatalytic activity, bacteria inactivation and antibiotic degradation potentials under visible light, J. Chem. Technol. Biotechnol., 97(7), 1842-1859, 2022. doi.org/10.1002/jctb.7058
  • I.A. Alaton, A.Y. Karataş, Ö. Pehlivan, T.O. Hanci, Elimination of antibiotic resistance in treated urban wastewater by iron-based advanced oxidation processes, Desalin. Water Treat., 172, 235–253, 2019. doi:10.5004/dwt.2019.24929.
  • P.S.M. Dunlop, M. Ciavola, L. Rizzo, D.A. McDowell, J.A. Byrne, Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater, Catal. Today., 240, 55–60, 2015. doi:10.1016/j.cattod.2014.0 3.049.
  • D. Saha, M.C. Visconti, M.M. Desipio, R. Thorpe, Inactivation of antibiotic resistance gene by ternary nanocomposites of carbon nitride, reduced graphene oxide and iron oxide under visible light, Chem. Eng. J., 382, 2020. doi:10.1016/j.cej.2019.122857.
  • H. Wang, J. Wang, S. Li, G. Ding, K. Wang, T. Zhuang, X. Huang, X. Wang, Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking, Water Res., 185, 2020. doi:10.1016/j.watres.2020.116290.
  • H. Yin, X. Chen, G. Li, Y. Chen, W. Wang, T. An, P.K. Wong, H. Zhao, Sub-lethal photocatalysis bactericidal technology cause longer persistence of antibiotic-resistance mutant and plasmid through the mechanism of reduced fitness cost, Appl. Catal. B Environ., 245, 698–705, 2019. doi.org/10.1016/j.apcatb.2019.01.041
  • Venieri, D.; Fraggedaki, A.; Kostadima, M.; Chatzisymeon, E.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl Catal B 2014, 154, 93–101, doi:10.1016/j.apcatb.2014.02.007.
  • Alrousan, D.M.A.; Dunlop, P.S.M.; McMurray, T.A.; Byrne, J.A. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 2009, 43, 47–54. doi.org/10. 1016/j.watres.2008.10.015
  • Mehrotra, K.; Yablonsky, G.S.; Ray, A.K. Kinetic Studies of photocatalytic degradation in a TiO2 slurry system: Distinguishing working regimes and determining rate dependences. Ind Eng Chem Res 2003, 42, 2273–2281. doi.org/10.1021/ie0209881
  • P. Fernández-Ibáñez, C. Sichel, M.I. Polo-López, M. de Cara-García, J.C. Tello, Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors, Catal. Today., 144, 62–68, 2009. doi.org/10.1016/j.cattod. 2009.01.039
  • T. Tsai, H. Chang, K. Chang, Y. Liu, A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive, J. áChem. Technol. Biotechnol., 85.12, 1642–1653, 2010. doi:10.1002/jctb.2476.
  • V.M. Sousa, C.M. Manaia, A. Mendes, O.C. Nunes, Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat, J. Photochem. Photobiol. A Chem., 251, 148–153, 2013. doi:10.101 6/j.jphotochem.2012.10.027.
  • M. Karbasi, F. Karimzadeh, K. Raeissi, S. Rtimi, J. Kiwi, S. Giannakis, C. Pulgarin, Insights into the photocatalytic bacterial inactivation by flower-like Bi2WO6 under solar or visible light, through in situ monitoring and determination of reactive oxygen species (ROS), Water, 12, 2020. doi:10.3390/W1204 1099.
  • V. Palmieri, F. Bugli, M.C. Lauriola, M. Cacaci, R. Torelli, G. Ciasca, C. Conti, M. Sanguinetti, M. Papi, M. De Spirito, Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy, ACS Biomater. Sci. Eng., 3, 619–627, 2017. doi.org/10.1021/acsbiomaterials.6b00812
  • T. Pulingam, K.L. Thong, M.E. Ali, J.N. Appaturi, I.J. Dinshaw, Z.Y. Ong, B.F. Leo, Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria, Colloids Surfaces B Biointerfaces., 181, 6–15, 2019. doi.org/10.1016/j. colsurfb.2019.05.023
  • P. Chen, X. Guo, S. Li, F. Li, A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes, Environ. Int., 156, 106689, 2021. doi.org/10.1016 /j.envint.2021.106689
There are 59 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Can Burak Özkal 0000-0001-9576-2582

Project Number NKUBAP.06.GA.21.343
Early Pub Date October 7, 2023
Publication Date October 15, 2023
Submission Date April 19, 2023
Acceptance Date September 7, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Özkal, C. B. (2023). Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1219-1231. https://doi.org/10.28948/ngumuh.1285885
AMA Özkal CB. Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system. NOHU J. Eng. Sci. October 2023;12(4):1219-1231. doi:10.28948/ngumuh.1285885
Chicago Özkal, Can Burak. “Assessment of UV-Vis Driven CFT-GO Based Photocatalysis on the Conjugative Gene Transfer Mechanism in a Pilot Plant System”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1219-31. https://doi.org/10.28948/ngumuh.1285885.
EndNote Özkal CB (October 1, 2023) Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1219–1231.
IEEE C. B. Özkal, “Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system”, NOHU J. Eng. Sci., vol. 12, no. 4, pp. 1219–1231, 2023, doi: 10.28948/ngumuh.1285885.
ISNAD Özkal, Can Burak. “Assessment of UV-Vis Driven CFT-GO Based Photocatalysis on the Conjugative Gene Transfer Mechanism in a Pilot Plant System”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1219-1231. https://doi.org/10.28948/ngumuh.1285885.
JAMA Özkal CB. Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system. NOHU J. Eng. Sci. 2023;12:1219–1231.
MLA Özkal, Can Burak. “Assessment of UV-Vis Driven CFT-GO Based Photocatalysis on the Conjugative Gene Transfer Mechanism in a Pilot Plant System”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1219-31, doi:10.28948/ngumuh.1285885.
Vancouver Özkal CB. Assessment of UV-vis driven CFT-GO based photocatalysis on the conjugative gene transfer mechanism in a pilot plant system. NOHU J. Eng. Sci. 2023;12(4):1219-31.

download