Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties
Year 2020,
, 56 - 68, 14.12.2020
Fatma Nur Parın
,
Kenan Yıldırım
,
Pınar Terzioğlu
Abstract
The chitosan/gelatin/biochar biocomposite beads were prepared via the use of the emulsion crosslinking method in the presence of poly(ethylene) glycol as a cross-linker. The effects of different ratios of biochar (1 and 5%) on the characteristics of the beads were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and swelling studies. The FT-IR results showed the interactions of biochar and polymer matrix. The prepared beads showed good swelling properties and different morphologies. The average diameter of neat chitosan/gelatin beads was almost 725 µm, while the average diameter of 1% and 5% biochar incorporated beads were 726 µm and 597 µm, respectively. The swelling capacity of the beads was decreased from 4671% to 2092% when the biochar incorporation ratio increased from 1% to 5%. This indicated that the preparation of beads with varying properties can be achieved by controlling the biochar amount. The beads may be evaluated in various applications as polymeric carrier systems and adsorbents.
Supporting Institution
Bursa Technical University
Project Number
This study did not receive any specific grant from funding or project.
Thanks
The authors of this study would like to express their appreciations to Murat EROĞLU and İbrahim ŞEN (Central Research Laboratory, Bursa Technical University) for their help in SEM and TGA analysis.
References
- [1] Mohammad J. Zohuriaan-Mehr, Kourosh Kabiri (2008). Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal, 17(6):451-477.
- [2] Cheng, B., Pei, B., Wang Z. and Hu, Q. (2017). Advances in chitosan-based superabsorbent hydrogels, Royal Society of Chemistry Advances, 7:42036–42046.
- [3] Behera, S. and Mahanwar, P. A. (2019). Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials, 59(4):1-16.
- [4] Ahmed, E. M. (2015) Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6:105-121.
- [5] Qu, B. and Luo, Y. (2020). Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. International Journal of Biological Macromolecules, 152:437-448.
- [6] Pradeep-Kumar, S., Gowda D. V. and Vikas, J. (2020). Recent Development in Sustained Release Beads. International Journal of Research Pharmaceutical Science, 11(1):891-898.
- [7] Bahram, M., Mohseni, N. and Moghtader, M. (2016). Emerging Concepts in Analysis and Applications of Hydrogels, Edited by Sutapa Biswas Majee, IntechOpen, London, UK. pp. 9-38. ISBN: 978-953-51-2510-5.
- [8] Trikkaliotis, D. G. Christoforidis, A. K. Mitropoulos, A. C. and Kyzas, G. Z. (2020). Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbonhydrate Polymers, 234:115890.
- [9] Ngah, W. S. W., Kamari, A., Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II)on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34:155–161.
- [10] Yuvaraja, G., Pathak, J. L., Weijiang, Z., Yaping, Z. and Jiao, X. (2017). Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). International Journal of Biological Macromolecules, 103, 234-241.
- [11] Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y. and Feng, M. (2004). Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters, 26:879–883. [12] ArcGIS. https://www.arcgis.com/index.html, Accessed: 02/04/2020.
- [12] Wu, M., Chen, W., Mao, Q., Bai, Y. and Ma, H. (2019). Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chemical Engineering Research and Design, 144:35–46.
- [13] Zeinali, A., Sirousazar, M., Hosseini, Z., Kheir, D. and Kheir, F. (2020). Gelatin/Montmorillonite and Gelatin/Polyvinyl Alcohol/Montmorillonite Bionanocomposite Hydrogels: Microstructural, Swelling and Drying Properties. Journal of Macromolecular Science, Part B, https://doi.org/10.1080/00222348.2019.1709714.
- [14] Saber-Samandari, S., Saber-Samandari, S., Yekta, H. and Mohseni, M. (2016). Adsorption of anionic and cationic dyes from aqueous solution using gelatinbased magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chemical Engineering Journal, 308:1133-1144.
- [15] Zhang, H., Chang, Q., Han, J., Gao, S., Wu, Z., Hu, J., Yang, Y., Wei, Z., Zhang, De. and Peng, Z. (2019). A facile syntheses of two engineered poly(vinyl alcohol) macroporous hydrogel beads for the application of Cu(II) and Pb(II) removal: batch and fixed bed column. Materials Research Express, 6(9):095315.
- [16] Terzioğlu, P., Parın, F. N. (2020). Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 24(1):35-42.
- [17] Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D. and Mlsna, T. (2018). Lead (Pb2+) sorptive removal using chitosan modified biochar: batch and fixed-bed studies. RSC Adv., 8, 25368.
- [18] Smidt, E., and Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag., 27(2), 268-276.
- [19] Wu, M., Feng Q., Sun X., Wang H., Gielen G. (2015). Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports., 5:10001, 1-10.
- [20] Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., and Gerzabek, M. H. (2007). FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 170(4), 522-529.
- [21] Schwanninger, M., Rodrigues, J. C., Pereira, H., and Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23-40.
- [22] Zheng, X. F., Lian Q., Yang, H. and Wang X. (2016). Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release. Scientific Reports, 6:21409.
- [23] Kumar, S. and Koh, J. (2012). Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. International Journal of Molecular Science, 13:6102-6116.
- [24] Yasmeen, S., Kabiraz, M. K., Saha, B., Qadir, R., Gafur, A. and Masum, S. (2016). Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. International Research Journal of Pure & Applied Chemistry, 10(4):1-14.
- [25] Cui, L., Xiong, Z., Guo, Y., Liu, Y., Zhao, J., Zhang, C. and Zhu, P. (2015). Fabrication of interpenetrating polymer network chitosan/gelatinporous materials and study on dye adsorption properties. Carbohydrate Polymers, 132:330–337.
- [26] Nady, N. and Kandil, S. H. (2018). Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications. Membranes, 8:2-18.
- [27] Mohamed, R.R., Seoudi, R.S. Sabaa, M.W. (2015). Synthesis and Characterization of Crosslinked Polyethylene Glycol/Carboxymethyl Chitosan Hydrogels. Advances in Polymer Technology, 34(1), 21479.
- [28] El-Hefıan, E. A., Nasef, M. M. and Yahaya, A. H. (2012). Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties. E-Journal of Chemistry, 9(2):510-516.
- [29] Wu, Z. C., Wang, Z. Z., Liu, J., Yin, J. H. and Kuang, S. P. (2016). Removal of Cu(II) ions from aqueous water by l-arginine modifying magnetic chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499:141-149.
- [30] Chen, I. H., Chien, C. M., Wang, C. T., Huang, C. L., Wang, C. K. and Kuo, Y. R. (2018). Development for Wound Dressing Based on Blended Chitosan and Gelatin Hydrogels. Key Engineering Materials, 765:119-123.
- [31] Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W., Goworek, J. (2017). Swelling effects in cross-linked polymers by thermogravimetry. J Therm Anal Calorim, 130:85–93. [20] Senturk, I.F.(2017). A prescient recovery approach for disjoint msns. In 2017 IEEE International Conference on Communications (ICC).
- [32] Carbinatto, F. M., Castro, A. D., Evangelista, R. C., Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices, Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
- [33] Yu, O. Y., Raichle, B. and Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil, International Journal of Energy and Environmental Engineering, 4:44.
- [34] Wan, Y. Z., Wang, Y. L., Yao, K. D. and Cheng, G. X. (2000). Carbon fiber‐reinforced gelatin composites. II. Swelling behaviour. Journal of Applied Polymer Science, 75:994–998.
- [35] Sharma, C., Dinda, A. K., Potdar, P. D. Chou, C. F. and Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 64:416–427.
Year 2020,
, 56 - 68, 14.12.2020
Fatma Nur Parın
,
Kenan Yıldırım
,
Pınar Terzioğlu
Project Number
This study did not receive any specific grant from funding or project.
References
- [1] Mohammad J. Zohuriaan-Mehr, Kourosh Kabiri (2008). Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal, 17(6):451-477.
- [2] Cheng, B., Pei, B., Wang Z. and Hu, Q. (2017). Advances in chitosan-based superabsorbent hydrogels, Royal Society of Chemistry Advances, 7:42036–42046.
- [3] Behera, S. and Mahanwar, P. A. (2019). Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials, 59(4):1-16.
- [4] Ahmed, E. M. (2015) Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6:105-121.
- [5] Qu, B. and Luo, Y. (2020). Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. International Journal of Biological Macromolecules, 152:437-448.
- [6] Pradeep-Kumar, S., Gowda D. V. and Vikas, J. (2020). Recent Development in Sustained Release Beads. International Journal of Research Pharmaceutical Science, 11(1):891-898.
- [7] Bahram, M., Mohseni, N. and Moghtader, M. (2016). Emerging Concepts in Analysis and Applications of Hydrogels, Edited by Sutapa Biswas Majee, IntechOpen, London, UK. pp. 9-38. ISBN: 978-953-51-2510-5.
- [8] Trikkaliotis, D. G. Christoforidis, A. K. Mitropoulos, A. C. and Kyzas, G. Z. (2020). Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbonhydrate Polymers, 234:115890.
- [9] Ngah, W. S. W., Kamari, A., Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II)on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34:155–161.
- [10] Yuvaraja, G., Pathak, J. L., Weijiang, Z., Yaping, Z. and Jiao, X. (2017). Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). International Journal of Biological Macromolecules, 103, 234-241.
- [11] Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y. and Feng, M. (2004). Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters, 26:879–883. [12] ArcGIS. https://www.arcgis.com/index.html, Accessed: 02/04/2020.
- [12] Wu, M., Chen, W., Mao, Q., Bai, Y. and Ma, H. (2019). Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chemical Engineering Research and Design, 144:35–46.
- [13] Zeinali, A., Sirousazar, M., Hosseini, Z., Kheir, D. and Kheir, F. (2020). Gelatin/Montmorillonite and Gelatin/Polyvinyl Alcohol/Montmorillonite Bionanocomposite Hydrogels: Microstructural, Swelling and Drying Properties. Journal of Macromolecular Science, Part B, https://doi.org/10.1080/00222348.2019.1709714.
- [14] Saber-Samandari, S., Saber-Samandari, S., Yekta, H. and Mohseni, M. (2016). Adsorption of anionic and cationic dyes from aqueous solution using gelatinbased magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chemical Engineering Journal, 308:1133-1144.
- [15] Zhang, H., Chang, Q., Han, J., Gao, S., Wu, Z., Hu, J., Yang, Y., Wei, Z., Zhang, De. and Peng, Z. (2019). A facile syntheses of two engineered poly(vinyl alcohol) macroporous hydrogel beads for the application of Cu(II) and Pb(II) removal: batch and fixed bed column. Materials Research Express, 6(9):095315.
- [16] Terzioğlu, P., Parın, F. N. (2020). Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 24(1):35-42.
- [17] Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D. and Mlsna, T. (2018). Lead (Pb2+) sorptive removal using chitosan modified biochar: batch and fixed-bed studies. RSC Adv., 8, 25368.
- [18] Smidt, E., and Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag., 27(2), 268-276.
- [19] Wu, M., Feng Q., Sun X., Wang H., Gielen G. (2015). Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports., 5:10001, 1-10.
- [20] Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., and Gerzabek, M. H. (2007). FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 170(4), 522-529.
- [21] Schwanninger, M., Rodrigues, J. C., Pereira, H., and Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23-40.
- [22] Zheng, X. F., Lian Q., Yang, H. and Wang X. (2016). Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release. Scientific Reports, 6:21409.
- [23] Kumar, S. and Koh, J. (2012). Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. International Journal of Molecular Science, 13:6102-6116.
- [24] Yasmeen, S., Kabiraz, M. K., Saha, B., Qadir, R., Gafur, A. and Masum, S. (2016). Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. International Research Journal of Pure & Applied Chemistry, 10(4):1-14.
- [25] Cui, L., Xiong, Z., Guo, Y., Liu, Y., Zhao, J., Zhang, C. and Zhu, P. (2015). Fabrication of interpenetrating polymer network chitosan/gelatinporous materials and study on dye adsorption properties. Carbohydrate Polymers, 132:330–337.
- [26] Nady, N. and Kandil, S. H. (2018). Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications. Membranes, 8:2-18.
- [27] Mohamed, R.R., Seoudi, R.S. Sabaa, M.W. (2015). Synthesis and Characterization of Crosslinked Polyethylene Glycol/Carboxymethyl Chitosan Hydrogels. Advances in Polymer Technology, 34(1), 21479.
- [28] El-Hefıan, E. A., Nasef, M. M. and Yahaya, A. H. (2012). Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties. E-Journal of Chemistry, 9(2):510-516.
- [29] Wu, Z. C., Wang, Z. Z., Liu, J., Yin, J. H. and Kuang, S. P. (2016). Removal of Cu(II) ions from aqueous water by l-arginine modifying magnetic chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499:141-149.
- [30] Chen, I. H., Chien, C. M., Wang, C. T., Huang, C. L., Wang, C. K. and Kuo, Y. R. (2018). Development for Wound Dressing Based on Blended Chitosan and Gelatin Hydrogels. Key Engineering Materials, 765:119-123.
- [31] Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W., Goworek, J. (2017). Swelling effects in cross-linked polymers by thermogravimetry. J Therm Anal Calorim, 130:85–93. [20] Senturk, I.F.(2017). A prescient recovery approach for disjoint msns. In 2017 IEEE International Conference on Communications (ICC).
- [32] Carbinatto, F. M., Castro, A. D., Evangelista, R. C., Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices, Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
- [33] Yu, O. Y., Raichle, B. and Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil, International Journal of Energy and Environmental Engineering, 4:44.
- [34] Wan, Y. Z., Wang, Y. L., Yao, K. D. and Cheng, G. X. (2000). Carbon fiber‐reinforced gelatin composites. II. Swelling behaviour. Journal of Applied Polymer Science, 75:994–998.
- [35] Sharma, C., Dinda, A. K., Potdar, P. D. Chou, C. F. and Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 64:416–427.