Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 1 - 17, 07.06.2024
https://doi.org/10.38088/jise.1344860

Abstract

References

  • [1] Babak, P., Lauren, A.M., Danuta, M.S., Mel, K., David, M.P. and Robert, C.B. (2005). Modeling Control Strategies of Respiratory Pathogens. Emerging Infectious Diseases, 11, 1249-1256.
  • [2] Bhunu, C. P., and Mushayabasa, S. (2011). Modelling the transmission dynamics of pox-like infections. IAENG International Journal, 41(2):1–9.
  • [3] Bhunu, C., Garira, W., and Magombedze, G. (2009). Mathematical analysis of a two strain hiv/aids model with antiretroviral treatment. Acta Biotheoretica, 57(3):361–381.
  • [4] Center for Disease Control (2022) Interim clinical guidance for the treatment of monkeypox. https:// www.cdc.gov/poxvirus/monkeypox/ index.html. Accessed 15 April 2023.
  • [5] Daniel, D. O. (2020). Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria. Journal of Infectious Diseases and Epidemiology, 6(5):158.
  • [6] Durski, K. N. , McCollum, A. M., Nakazawa, Y., Petersen, B. W., Reynolds, M. G., Briand, S., Djingarey, M. H., Olson, V., Damon, I. K., Khalakdina, A. (2018) Emergence of monkeypox-west and central Africa, 1970–2017. Morbidity and Mortality Weekly Report, 67(10):306
  • [7] Emeka, P., Ounorah, M., Eguda, F., Babangida, B. (2018). Mathematical model for monkeypox virus transmission dynamics. Epidemiology: Open Access, 8(3):1000348.
  • [8] Grant, R., Nguyen, L-B. L., and Breban, R. (2020). Modelling human-to-human transmission of monkeypox. Bulletin of the World Health Organization, 98(9):638
  • [9] Jezek, Z., Szczeniowski, M., Paluku, K., Mutombo, M., and Grab, B. (1988). Human monkeypox: confusion with chickenpox. Acta Tropica, 45(4):297–307.
  • [10] Lasisi, N., Akinwande, N., and Oguntolu, F. (2020) Development and exploration of a mathematical model for transmission of monkeypox disease in humans. Mathematical Models in Engineering, 6(1):23–33.
  • [11] Leggiadro, R. J. (2018). Emergence of Monkeypox—West and Central Africa, 1970–2017. Pediatric Infectious Disease Journal, 37(7), 721–721.
  • [12] Odom, M. R., Curtis, H. R, and Lefkowitz, E. J. (2009) Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Resolution, 44:233–249.
  • [13] Onitilo, S. A. and Daniel, D. O. (2022). Mathematical Modelling and Simulation of Coronavirus (COVID-19) in Lagos, Nigeria. Cankaya University Journal of Science and Engineering, 19(2):078-094.
  • [14] Onitilo, S. A., Daniel, D. O. and Haruna, H. A. (2021). Modeling Analysis of Coronavirus Epidemic in Nigeria using Lyapunov functions. FUW trends in Science and Technology Journal, 6(2): 627-632.
  • [15] Onitilo, S. A, Usman, M. A., Daniel, D. O., Odetunde, O. S., Ogunwobi, Z. O., Hammed, F. A., Olubanwo, O. O., Ajani, A. S., Sanusi, A. S., Haruna, A. H. (2022). Mathematical Modelling of the Transmission Mechanism of Plasmodium Falciparum. Natural Sciences and Advanced Technology Education, 31(5): 435-457.
  • [16] Onitilo, S. A, Usman, M. A., Daniel, D. O., Odule, T. J., and Sanusi, A. S., (2023). Modelling the Transmission Dynamics of Cholera Disease with the Impact of Control Strategies in Nigeria. Cankaya University Journal of Science and Engineering, 20(1):035-052.
  • [17] Onitilo, S. A., Usman, M. A., Odetunde, S. O., Hammed, F. A., Ogunwobi, Z. O., Haruna, H. A. and Daniel, D. O. (2020a). Mathematical Modeling of 2019 Novel Coronavirus (2019 - nCoV) Pandemic and Reinfection in Nigeria using SEIAHQR model. Bulgarian Journal of Science Education, 29(3):398-413.
  • [18] Onitilo, S. A., Usman, M. A., Taiwo, A. I. Dehinsilu, O. A., Adekola, M. A. and Daniel, D. O. (2020b). Mathematical modeling, prediction and control of COVID-19 in Nigeria as one of the Epicentre in Africa. Africa Journal of Science and Nature, 11:169-182. P-ISSN:2536-6904, E-ISSN: 2705-2761.
  • [19] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., and Musa, R. (2021a) Transmission dynamics of monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 1–12
  • [20] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., & Musa, R. (2021b). transmission dynamics of Monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 8(3), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2
  • [21] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., and Musa, R. (2022). Transmission dynamics of Monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 8:3423–3434.
  • [22] Rezza, G. (2019). Emergence of human monkeypox in west Africa. The Lancet Infectious Diseases, 19(8), 797–799. https://doi.org/10.1016/s1473-3099(19)30281-6
  • [23] Somma, S., Akinwande, N., Chado, U. (2019) A mathematical model of monkey pox virus transmission dynamics. Ife Journal of Science, 21(1):195–204.

Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria

Year 2024, Volume: 8 Issue: 1, 1 - 17, 07.06.2024
https://doi.org/10.38088/jise.1344860

Abstract

Monkeypox remains a public health concern in Nigeria, with periodic outbreaks reported. Despite efforts to control the disease, the number of reported cases continues to rise. Understanding the transmission dynamics of monkeypox and predicting its future spread can inform public health decision-making and guide the allocation of resources for control efforts. Hence, in this study, a deterministic model for the transmission dynamics of Monkeypox in the presence of quarantine and public enlightenment is presented. The model analysis involving the Disease Free Equilibrium (DFE) is established. Numerical simulations were used to better investigate the impact of quarantine and public enlightenment on human population. The results revealed that the effectiveness of the combined form of public awareness and quarantine produced more results followed by the effectiveness of public awareness alone, and then the result achieved when infected individuals are quarantined. If the measures were implemented with a greater degree of integration, there would be a significant reduction in the viral peak, thereby preventing its persistence within the human population.

References

  • [1] Babak, P., Lauren, A.M., Danuta, M.S., Mel, K., David, M.P. and Robert, C.B. (2005). Modeling Control Strategies of Respiratory Pathogens. Emerging Infectious Diseases, 11, 1249-1256.
  • [2] Bhunu, C. P., and Mushayabasa, S. (2011). Modelling the transmission dynamics of pox-like infections. IAENG International Journal, 41(2):1–9.
  • [3] Bhunu, C., Garira, W., and Magombedze, G. (2009). Mathematical analysis of a two strain hiv/aids model with antiretroviral treatment. Acta Biotheoretica, 57(3):361–381.
  • [4] Center for Disease Control (2022) Interim clinical guidance for the treatment of monkeypox. https:// www.cdc.gov/poxvirus/monkeypox/ index.html. Accessed 15 April 2023.
  • [5] Daniel, D. O. (2020). Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria. Journal of Infectious Diseases and Epidemiology, 6(5):158.
  • [6] Durski, K. N. , McCollum, A. M., Nakazawa, Y., Petersen, B. W., Reynolds, M. G., Briand, S., Djingarey, M. H., Olson, V., Damon, I. K., Khalakdina, A. (2018) Emergence of monkeypox-west and central Africa, 1970–2017. Morbidity and Mortality Weekly Report, 67(10):306
  • [7] Emeka, P., Ounorah, M., Eguda, F., Babangida, B. (2018). Mathematical model for monkeypox virus transmission dynamics. Epidemiology: Open Access, 8(3):1000348.
  • [8] Grant, R., Nguyen, L-B. L., and Breban, R. (2020). Modelling human-to-human transmission of monkeypox. Bulletin of the World Health Organization, 98(9):638
  • [9] Jezek, Z., Szczeniowski, M., Paluku, K., Mutombo, M., and Grab, B. (1988). Human monkeypox: confusion with chickenpox. Acta Tropica, 45(4):297–307.
  • [10] Lasisi, N., Akinwande, N., and Oguntolu, F. (2020) Development and exploration of a mathematical model for transmission of monkeypox disease in humans. Mathematical Models in Engineering, 6(1):23–33.
  • [11] Leggiadro, R. J. (2018). Emergence of Monkeypox—West and Central Africa, 1970–2017. Pediatric Infectious Disease Journal, 37(7), 721–721.
  • [12] Odom, M. R., Curtis, H. R, and Lefkowitz, E. J. (2009) Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Resolution, 44:233–249.
  • [13] Onitilo, S. A. and Daniel, D. O. (2022). Mathematical Modelling and Simulation of Coronavirus (COVID-19) in Lagos, Nigeria. Cankaya University Journal of Science and Engineering, 19(2):078-094.
  • [14] Onitilo, S. A., Daniel, D. O. and Haruna, H. A. (2021). Modeling Analysis of Coronavirus Epidemic in Nigeria using Lyapunov functions. FUW trends in Science and Technology Journal, 6(2): 627-632.
  • [15] Onitilo, S. A, Usman, M. A., Daniel, D. O., Odetunde, O. S., Ogunwobi, Z. O., Hammed, F. A., Olubanwo, O. O., Ajani, A. S., Sanusi, A. S., Haruna, A. H. (2022). Mathematical Modelling of the Transmission Mechanism of Plasmodium Falciparum. Natural Sciences and Advanced Technology Education, 31(5): 435-457.
  • [16] Onitilo, S. A, Usman, M. A., Daniel, D. O., Odule, T. J., and Sanusi, A. S., (2023). Modelling the Transmission Dynamics of Cholera Disease with the Impact of Control Strategies in Nigeria. Cankaya University Journal of Science and Engineering, 20(1):035-052.
  • [17] Onitilo, S. A., Usman, M. A., Odetunde, S. O., Hammed, F. A., Ogunwobi, Z. O., Haruna, H. A. and Daniel, D. O. (2020a). Mathematical Modeling of 2019 Novel Coronavirus (2019 - nCoV) Pandemic and Reinfection in Nigeria using SEIAHQR model. Bulgarian Journal of Science Education, 29(3):398-413.
  • [18] Onitilo, S. A., Usman, M. A., Taiwo, A. I. Dehinsilu, O. A., Adekola, M. A. and Daniel, D. O. (2020b). Mathematical modeling, prediction and control of COVID-19 in Nigeria as one of the Epicentre in Africa. Africa Journal of Science and Nature, 11:169-182. P-ISSN:2536-6904, E-ISSN: 2705-2761.
  • [19] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., and Musa, R. (2021a) Transmission dynamics of monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 1–12
  • [20] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., & Musa, R. (2021b). transmission dynamics of Monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 8(3), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2
  • [21] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., and Musa, R. (2022). Transmission dynamics of Monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 8:3423–3434.
  • [22] Rezza, G. (2019). Emergence of human monkeypox in west Africa. The Lancet Infectious Diseases, 19(8), 797–799. https://doi.org/10.1016/s1473-3099(19)30281-6
  • [23] Somma, S., Akinwande, N., Chado, U. (2019) A mathematical model of monkey pox virus transmission dynamics. Ife Journal of Science, 21(1):195–204.
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Articles
Authors

Sefiu Onitilo 0000-0002-4418-197X

Abiodun Ajanı 0000-0001-8639-1142

Deborah Danıel 0000-0003-4025-1448

Ayobami Haruna 0000-0002-8496-1305

Early Pub Date April 18, 2024
Publication Date June 7, 2024
Published in Issue Year 2024Volume: 8 Issue: 1

Cite

APA Onitilo, S., Ajanı, A., Danıel, D., Haruna, A. (2024). Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria. Journal of Innovative Science and Engineering, 8(1), 1-17. https://doi.org/10.38088/jise.1344860
AMA Onitilo S, Ajanı A, Danıel D, Haruna A. Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria. JISE. June 2024;8(1):1-17. doi:10.38088/jise.1344860
Chicago Onitilo, Sefiu, Abiodun Ajanı, Deborah Danıel, and Ayobami Haruna. “Mathematical Modeling of The Transmission Dynamics of Monkeypox With the Impact of Quarantine and Public Enlightenment in Nigeria”. Journal of Innovative Science and Engineering 8, no. 1 (June 2024): 1-17. https://doi.org/10.38088/jise.1344860.
EndNote Onitilo S, Ajanı A, Danıel D, Haruna A (June 1, 2024) Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria. Journal of Innovative Science and Engineering 8 1 1–17.
IEEE S. Onitilo, A. Ajanı, D. Danıel, and A. Haruna, “Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria”, JISE, vol. 8, no. 1, pp. 1–17, 2024, doi: 10.38088/jise.1344860.
ISNAD Onitilo, Sefiu et al. “Mathematical Modeling of The Transmission Dynamics of Monkeypox With the Impact of Quarantine and Public Enlightenment in Nigeria”. Journal of Innovative Science and Engineering 8/1 (June 2024), 1-17. https://doi.org/10.38088/jise.1344860.
JAMA Onitilo S, Ajanı A, Danıel D, Haruna A. Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria. JISE. 2024;8:1–17.
MLA Onitilo, Sefiu et al. “Mathematical Modeling of The Transmission Dynamics of Monkeypox With the Impact of Quarantine and Public Enlightenment in Nigeria”. Journal of Innovative Science and Engineering, vol. 8, no. 1, 2024, pp. 1-17, doi:10.38088/jise.1344860.
Vancouver Onitilo S, Ajanı A, Danıel D, Haruna A. Mathematical Modeling of The Transmission Dynamics of Monkeypox with the Impact of Quarantine and Public Enlightenment in Nigeria. JISE. 2024;8(1):1-17.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.