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Abstract 
 
Monkeypox remains a public health concern in Nigeria, with periodic outbreaks reported. 

Despite efforts to control the disease, the number of reported cases continues to rise. 

Understanding the transmission dynamics of monkeypox and predicting its future spread can 

inform public health decision-making and guide the allocation of resources for control efforts.  

Hence, in this study, a deterministic model for the transmission dynamics of Monkeypox in the 

presence of quarantine and public enlightenment is presented. The model analysis involving the 

Disease Free Equilibrium (DFE) is established. Numerical simulations were used to better 

investigate the impact of quarantine and public enlightenment on human population. The results 

revealed that the effectiveness of the combined form of public awareness and quarantine 

produced more results followed by the effectiveness of public awareness alone, and then the 

result achieved when infected individuals were quarantined. If the measures were implemented 

with a greater degree of integration, there would be a significant reduction in the viral peak, 

thereby preventing its persistence within the human population. 
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1. Introduction 

Monkeypox is an infectious illness caused by the monkeypox virus, which may affect both people and animals. 

The virus was first detected in Simians in the Democratic Republic of the Congo in 1958; however, it was not until 

1970 that the first instance of human infection was officially documented. Subsequent to the aforementioned period, 

intermittent instances of outbreaks have transpired in many African nations, encompassing Cameroon, the Central 

African Republic, Ivory Coast, Liberia, Nigeria, Sierra Leone, and Sudan, along with some regions within the 

Americas and Europe. The virus exhibits endemicity in nations located in Central and West Africa, hence 

warranting attention as a significant public health issue, given its propensity to incite epidemics. The etiological 

agent of monkeypox is classified under the genus Orthopoxvirus, which encompasses other viruses such as those 

accountable for smallpox and vaccinia [6, 8, 9, 11, 22]. Although monkeypox is often less severe than smallpox, it 

may pose a significant risk to those with compromised immune systems, potentially leading to life-threatening 

outcomes. Monkeypox is classified as a zoonotic ailment, denoting its potential for inter-species transmission from 

animals to humans. The transmission of the virus mostly occurs through wild animals, including rodents, monkeys, 

squirrels, and primates, either via direct contact with these animals or by contact with their bodily fluids or infected 

animal products. Monkeypox has a variety of clinical presentations, including symptoms such as fever, headache, 

muscular pains, backache, enlarged lymph nodes, chills, and exhaustion. The appearance of a dermatological 

eruption becomes evident, often commencing in the face area and then spreading to diverse anatomical places. 

The comprehensive comprehension of the natural history of the monkeypox virus remains enigmatic, requiring 

more inquiry to determine the specific reservoir(s) and the processes by which viral circulation is maintained in its 

natural habitat. One potential risk factor that has been identified in research is the consumption of undercooked 

meat and other animal-derived products acquired from animals that are infected [4]. In nations where the illness is 

non-endemic and instances have been detected, more endeavours are being undertaken within the realm of public 

health. These efforts include comprehensive investigations aimed at identifying patients, tracking contacts, doing 

laboratory analysis, managing clinical issues, and implementing isolation measures with adequate support. 

Genomic sequencing has been used to determine the particular viral clade(s) of monkeypox in the ongoing 

epidemic, if possible. Moreover, as stated in the reference [1], control techniques for respiratory illnesses include 

a variety of policies, such as quarantine protocols, infection control measures, identification and isolation of cases, 

and vaccination interventions. 

The use of mathematical modeling presents a feasible methodology for examining the intricacies of infectious 

diseases, such as monkeypox. Mathematical models have the capacity to forecast the propagation of diseases, assess 

the efficacy of various intervention approaches, and provide valuable insights into the fundamental principles of 

disease transmission. Numerous scholars have used mathematical models to investigate the aetiology of diseases 

in diverse populations, and these models have shown their efficacy and utility (Malaria [15], HIV [3], Cholera [16], 

COVID-19 [5, 13–14, 17–18], Monkeypox [2, 6–11, 19–23]). Gaining insight into the transmission mechanisms 

of monkeypox and developing projections about its future dissemination might provide valuable information for 

public health decision-making and facilitate the effective allocation of resources towards control measures. A 

variety of models using different methodologies have been developed and analysed to improve comprehension of 

the transmission dynamics and control tactics of monkeypox.  
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The authors of [7] have created a deterministic mathematical model to describe the transmission dynamics of the 

monkeypox virus. The model includes a component representing the imperfect vaccination efficacy within the 

human subpopulation. The stability of the equilibrium states of the model equation was examined and obtained. A 

numerical simulation was conducted to emphasise the impact of several levels of immune system strength (weak, 

medium, and strong) on different epidemiological states. Additionally, the simulation examined the influence of 

infection and vaccination rates on the prevalence of the disease and the number of vulnerable individuals, 

respectively. The mathematical model of monkey-pox transmission was investigated by [10] using ordinary 

differential equations. The validity of the model's feasible area was confirmed, demonstrating the presence of 

positive solutions. The mathematical model of monkeypox viral transmission dynamics, including two interacting 

host populations, namely humans and rats, was investigated by [23]. The implementation of quarantine measures 

and public awareness campaigns serves as a mechanism for managing the transmission of the illness among the 

human population. The authors in reference [19] put out a deterministic mathematical model with the aim of 

examining the dynamics of the monkeypox virus among the human population. The results indicate that 

implementing measures to separate individuals who are infected from the broader community may effectively 

mitigate the spread of diseases. The researchers in this work [20] developed and analysed a deterministic 

mathematical model in order to investigate the dynamics of the monkeypox virus. This study establishes the 

conditions for determining the asymptotic stability of both disease-free and endemic equilibria, both at the local 

and global levels. The findings indicate that the use of strategies to separate individuals who are infected from the 

wider community may be an effective approach to reducing the transmission of illnesses. 

Nevertheless, a dearth of comprehension persists about the determinants that propel the transmission and 

dissemination of the ailment within the Nigerian context. Nigeria, being the most populous nation in Africa, has a 

diversified population and varied topography, both of which may have a significant influence on the transmission 

patterns of infectious illnesses. The existence of this information gap hinders policymakers' capacity to formulate 

and implement effective control and preventive initiatives. Hence, it is essential to develop a mathematical model 

that may provide valuable insights into the transmission dynamics of monkeypox in Nigeria and facilitate informed 

decision-making on disease management strategies. Therefore, this study considered the rodent-human 

transmission route named SIQR-SEI model. This model enhances the classic SEIR and SIR framework by 

incorporating vaccination, transmission through rodents, quarantine phases, and unique interaction dynamics 

among different population groups. The process includes vaccination of individuals, a transmission route that 

involves interaction with infected rodents resulting in human illness, and a quarantine phase for observed 

individuals before recovery.  

2. Material and Methods 

2.1. Mathematical Formulation 

The model takes into account two distinct populations, one consisting of humans and the other consisting of rodents. 

The human population may be classified into four distinct categories: susceptible, infected, quarantined, and 

recovered. The population of rodents is classified into three distinct categories, namely, susceptible, exposed, and 

infected. 
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Table 1. State Variable of the Model and their descriptions. 

Variables Description 

𝑆𝐻(𝑡) Susceptible human population at time (𝑡) 

𝐼𝐻(𝑡) Infected human population at time (𝑡) 

𝑄𝐻(𝑡) Quarantined human population at time (𝑡) 

𝑅𝐻(𝑡) Recovered human population at time (𝑡) 

𝑆𝑅(𝑡) Susceptible rodent population at time (𝑡) 

𝐸𝑅(𝑡) Exposed rodent population at time (𝑡) 

𝐼𝑅(𝑡) Infected rodent population at time (𝑡) 

 

Table 2. Model parameters with their descriptions. 

Parameters Description 

𝜇𝐻 Recruitment rate of human population 

𝜇𝑅 Recruitment rate of rodent population 

𝜎1 Contact rate of rodent population 

𝜎2 Contact rate of human population 

𝜎3 Contact rate of rodent population 

Φ𝐻 Natural death rate of human population 

ɤ𝐻 Disease induced death rate of human population 

ρ𝐻 Recovery rate of human population 

ɳ Progression rate from infected to quarantine 

Φ𝑅 Natural death rate of rodents population 

ɤ𝑅 Disease induced death rate of rodent population 

𝜉 Effectiveness of quarantine and treatment 

𝛼 Effectiveness of public enlightenment and campaign 

 

2.2. Model Assumptions 

The model's derivation is based on the following assumptions: there is an absence of emigration from the overall 

population, and likewise, there is a lack of immigration into the population. During a certain period, a minute 

fraction of people experienced migration into or out of the population and subsequently received vaccination; 

maturation, also known as maturity, is defined as the interval between the time of infection and the onset of 

observable symptoms, often occurring within a timeframe of 14 to 21 days; the susceptible population is first 

exposed to a type of rodent that carries the infectious agent, resulting in their subsequent infection; and certain 

persons who have contracted the infection are sent to a designated facility where they undergo quarantine to conduct 

observational procedures. The process of recruiting individuals from the 𝑆𝐻 class to the 𝐼𝐻 class occurs via 

interactions with individuals from the 𝐼𝑅 class within the rodent population.The process of recruiting individuals 

from the 𝐼𝐻 class to the 𝑄𝐻 class occurs at a pace denoted by the symbol ɳ.The recruitment of individuals from the 

𝑄𝐻 class into the 𝑅𝐻 class is contingent upon the efficacy of the quarantine and observation protocol, denoted by 

the rate 𝜌; the occurrence of death is inherent in the model and it transpires uniformly across all classes at a constant 
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rate µ. However, it is worth noting that there is an increased mortality rate seen in the 𝐼𝐻 and 𝑄𝐻 classes as a result 

of infection. 

 

Figure 1. The flow diagram of the model. 

2.3. The Model Equations 

𝑑𝑆𝐻 

𝑑𝑡
= 𝜇𝐻 − [(1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑅 − Φ𝐻]𝑆𝐻  (1) 

𝑑𝐼𝐻 

𝑑𝑡
= (1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑅𝑆𝐻 − [(Φ𝐻 + ɤ𝐻) + ɳ]𝐼𝐻  (2) 

𝑑𝑄𝐻  

𝑑𝑡
= ɳ𝐼𝐻 − [Φ𝐻 + (1 − 𝜉)ɤ𝐻 + ρ]𝑄𝐻  (3) 

𝑑𝑅𝐻 

𝑑𝑡
= ρ𝑄𝐻 − Φ𝐻R𝐻 (4) 

𝑑𝑆𝑅  

𝑑𝑡
= 𝜇𝑅 − [Φ𝑅 + 𝜎3]𝑆𝑅 (5) 

𝑑𝐸𝑅  

𝑑𝑡
= 𝜎3𝑆𝑅 − [(Φ𝑅 + ɤ𝑅) + 𝜎3]𝐸𝑅 (6) 

𝑑𝐼𝑅  

𝑑𝑡
= 𝜎3𝐸𝑅 − (Φ𝑅 + ɤ𝑅)𝐼𝑅 (7) 

Such that 

𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑄𝐻(𝑡) + 𝑅𝐻(𝑡) (8) 

𝑁𝑅(𝑡) = 𝑆𝑅(𝑡) + 𝐸𝑅(𝑡) + 𝐼𝑅(𝑡) (9) 

𝑑𝑁𝐻(t) 

𝑑𝑡
=

𝑑𝑆𝐻(t) 

𝑑𝑡
+

𝑑𝐼𝐻(t) 

𝑑𝑡
+

𝑑𝑄𝐻(t) 

𝑑𝑡
+

𝑑𝑅𝐻(t) 

𝑑𝑡
 (10) 

𝑑𝑁𝑅(t) 

𝑑𝑡
=

𝑑𝑆𝑅(t) 

𝑑𝑡
+

𝑑𝐸𝑅(t) 

𝑑𝑡
+

𝑑𝐼𝑅(t) 

𝑑𝑡
 (11) 

Such that 

𝑑𝑁𝐻(t) 

𝑑𝑡
= 𝜇𝐻 − [(1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑅 + Φ𝐻]𝑆𝐻 + (1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑅𝑆𝐻 − [(Φ𝐻 + ɤ𝐻) + ɳ]𝐼𝐻 + ɳ𝐼𝐻 − (12) 
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[Φ𝐻 + (1 − 𝜉)ɤ𝐻 + ρ]𝑄𝐻 + ρ𝑄𝐻 − Φ𝐻R𝐻 

𝑑𝑁𝑅(t)

𝑑𝑡
= 𝜇𝑅 − [Φ𝑅 + 𝜎3]𝑆𝑅 + 𝜎3𝑆𝑅 − [(Φ𝑅 + ɤ𝑅) + 𝜎3]𝐸𝑅 + 𝜎3𝐸𝑅 − (Φ𝑅 + ɤ𝑅)𝐼𝑅 (13) 

Let       𝑆ℎ =
𝑆𝐻

𝑁𝐻
                  𝐼ℎ =

𝐼𝐻

𝑁𝐻
  𝑄ℎ =

𝑄𝐻

𝑁𝐻
           𝑅ℎ =

𝑅𝐻

𝑁𝐻
  (14) 

Also,     𝑆𝑟 =
𝑆𝑅

𝑁𝑅
  𝐸𝑟 =

𝐸𝑅

𝑁𝑅
   𝐼𝑟 =

𝐼𝑅

𝑁𝑅
 (15) 

Then the normalized system is as follows; 

  
𝑑𝑆ℎ

𝑑𝑡
=

1

𝑁𝐻
[
𝑑𝑆𝐻(t)

𝑑𝑡
− 𝑆ℎ

𝑑𝑁𝐻(t)

𝑑𝑡
]  

Substituting (1) and (10) using (14) 

𝑑𝑆ℎ

𝑑𝑡
=

𝜇𝐻(1−𝑆ℎ)

𝑁𝐻
− (1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑟𝑆ℎ − Φ𝐻𝑆ℎ + (1 − 𝜉)ɤ𝐻𝑆ℎ𝑞ℎ − 𝐼𝑅𝑆ℎ𝑆ℎ + Φ𝐻𝑆ℎ𝑆ℎ + Φ𝐻𝑆ℎ𝐼ℎ + ɤ𝐻𝑆ℎ𝐼ℎ +

Φ𝐻𝑆ℎ𝑄ℎ + Φ𝐻𝑆ℎ𝑅ℎ   

(16) 

𝑑𝐼𝐻(𝑡)

𝑑𝑡
=

1

𝑁𝐻

[
𝑑𝐼𝐻(t)

𝑑𝑡
− 𝐼ℎ

𝑑𝑁𝐻(t)

𝑑𝑡
]  

𝑑𝐼𝐻(𝑡)

𝑑𝑡
= (1 − 𝛼)(𝜎1 + 𝜎2)𝐼𝑟𝑆ℎ − (Φ𝐻 + ɤ𝐻)𝐼ℎ − ɳ𝐼ℎ −

𝜇𝐻𝐼ℎ
𝑁𝐻

+ Φ𝐻𝐼ℎ𝑆ℎ + Φ𝐻Iℎ𝐼ℎ + ɤ𝐻𝐼ℎ𝐼ℎ − Φ𝐻𝐼ℎ𝑄ℎ + 

(1 − 𝜉)ɤ𝐻𝐼ℎ𝑄ℎ − Φ𝐻𝐼ℎ𝑅ℎ 

(17) 

𝑑𝑄𝐻(𝑡)

𝑑𝑡
=

1

𝑁𝐻

[
𝑑𝑄𝐻(t)

𝑑𝑡
− 𝑄ℎ

𝑑𝑁𝐻(t)

𝑑𝑡
]  

𝑑𝑄𝐻(𝑡)

𝑑𝑡
= ɳ𝐼ℎ − Φ𝐻𝑄ℎ − (1 − 𝜉)ɤ𝐻𝑄ℎ − ρ𝑄ℎ −

𝜇𝐻𝑄ℎ

𝑁𝐻

− 𝐼𝑅𝑆ℎ𝑄ℎ + Φ𝐻𝑄ℎ𝑆ℎ + Φ𝐻𝑄ℎ𝐼ℎ + ɤ𝐻𝑄ℎ𝐼ℎ + Φ𝐻𝑄ℎ + 

(1 − 𝜉)ɤ𝐻𝑄ℎ𝑄ℎ + ρ𝑄ℎ𝑄ℎ − ρ𝑄ℎ𝑄ℎ + Φ𝐻𝑄ℎ𝑅ℎ 

(18) 

𝑑𝑅𝐻(𝑡)

𝑑𝑡
=

1

𝑁𝑅

[
𝑑𝑅𝐻(t)

𝑑𝑡
− 𝑅ℎ

𝑑𝑁𝐻(t)

𝑑𝑡
]  

𝑑𝑅𝐻(𝑡)

𝑑𝑡
= ρ𝑞ℎ − Φ𝐻𝑅ℎ −

𝜇𝐻𝑅ℎ

𝑁𝐻

− 𝐼𝑅𝑅ℎ𝑆ℎ + Φ𝐻𝑅ℎ𝑆ℎ + Φ𝐻𝑅ℎ𝑅ℎ (19) 

𝑑𝑆𝑅(𝑡)

𝑑𝑡
=

1

𝑁𝑅

[
𝑑𝑆𝑅(t)

𝑑𝑡
− 𝑆𝑟

𝑑𝑁𝑅(t)

𝑑𝑡
]  

𝑑𝑆𝑅(𝑡)

𝑑𝑡
=

𝜇𝑅(1 − 𝑆𝑟)

𝑁𝑅

− (Φ𝑅 + 𝜎3)𝑆𝑟 + (Φ𝑅 + 𝜎3)𝑆𝑟𝑆𝑟 − 𝜎3𝑆𝑟𝑆𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝑆𝑟 +
(Φ𝑅 + ɤ𝑅)𝑆𝑟𝐼𝑟

𝑁𝑅

 (20) 

𝑑𝐸𝑅(𝑡)

𝑑𝑡
=

1

𝑁𝑅

[
𝑑𝐸𝑅(t)

𝑑𝑡
− 𝐸𝑟

𝑑𝑁𝑅(t)

𝑑𝑡
]  

𝑑𝐸𝑅(𝑡)

𝑑𝑡
= 𝜎𝑆𝑟 − (Φ𝑅 + ɤ𝑅)𝐸𝑟 − 𝜎3𝐸𝑟 −

𝜇𝑅𝐸𝑟

𝑁𝑅

+ (Φ𝑅 + 𝜎3)𝐸𝑟𝑆𝑟 − 𝜎3𝐸𝑟𝑆𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝐸𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝐼𝑟  (21) 

𝑑𝐼𝑅(𝑡)

𝑑𝑡
=

1

𝑁𝑅
[
𝑑𝐼𝑅(t)

𝑑𝑡
− 𝐼𝑟

𝑑𝑁𝑅(t)

𝑑𝑡
]   

𝑑𝐼𝑅(𝑡)

𝑑𝑡
= 𝜎𝑒𝑟 − (Φ𝑅 + ɤ𝑅)𝐼𝑟 −

𝜇𝑅𝐼𝑟

𝑁𝑅
+ (Φ𝑅 + 𝜎3)𝐼𝑟𝑆𝑟 − 𝜎3𝐼𝑟𝑆𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝐼𝑟 + (Φ𝑅 + ɤ𝑅)𝐼𝑟𝐼𝑟        (22) 

However, 

𝑆ℎ + 𝐼ℎ + 𝑄ℎ + 𝑅ℎ = 1    and also  

𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 = 1 (23) 
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2.4. Existence and Uniqueness of Disease Free Equilibrium State 𝑬𝟎 of the Model 

The disease free equilibrium state is both human and rodent hand side of equation (13) - (22) while setting the 

disease component  𝐼ℎ = 𝑄ℎ = 𝑅ℎ = 0, 𝐸𝑟 = 𝐼𝑟 = 0 

0 = 𝜇𝐻

(1 − 𝑆ℎ)

𝑁𝐻

− 𝑆ℎ[(1 − 𝛼)(𝜎1 + 𝜎2) − 𝐼𝑟 − Φ𝐻 − 𝐼𝑟𝑆ℎ + Φ𝐻Sℎ] (24) 

0 = (1 − 𝛼)(𝜎1 + 𝜎2)𝑆ℎ (25) 

Let 𝛽 = (1 − 𝛼)(𝜎1 + 𝜎2) 

Hence,  

  0 = 𝛽𝑆ℎ  

𝑆ℎ = 0 (26) 

Substituting (26) into (24) 

0 =
𝜇𝐻

𝑁𝐻

 

Hence,  

0 = −𝑆ℎ𝛽 + 𝐼𝑅𝑆ℎ + Φ𝐻𝑆ℎ − 𝐼𝑅𝑆ℎ
2 + Φ𝐻𝑆ℎ

2  

Factorising 𝑆ℎ 

0 = 𝑆ℎ[−𝛽 + 𝐼𝑅 + Φ𝐻] − 𝑆ℎ
2[𝐼𝑅 + Φ𝐻]  

Also,  

0 = 𝜇𝑅

(1 − 𝑆𝑟)

𝑁𝑅

− (Φ𝑅 + 𝜎3)𝑆𝑟 + (Φ𝑅 + 𝜎3)𝑆𝑟
2 − 𝜎3𝑆𝑟

2 (27) 

0 = 𝜎𝑆𝑟 − (Φ𝑅 + ɤ𝑅)𝐸𝑟 − 𝜎3𝐸𝑟 −
𝜇𝑅𝐸𝑟

𝑁𝑅

+ (Φ𝑅 + 𝜎3)𝐸𝑟𝑆𝑟 − 𝜎3𝐸𝑟𝑆𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝐸𝑟 + (Φ𝑅 + ɤ𝑅)𝐸𝑟𝐼𝑟   

0 = 𝜎𝑆𝑟  (28) 

 Then 𝑆𝑟 = 0 (29) 

Substitute (29) into (27), we have  

0 =
𝜇𝑅

𝑁𝑅

 (30) 

2.5. The Disease Free Equilibrium 

Let [𝑆ℎ
ʹ , 𝐼ℎ

ʹ , 𝑄ℎ
ʹ , 𝑅ℎ

ʹ , 𝑆𝑟
ʹ , 𝐸𝑟

ʹ , 𝐼𝑟
ʹ ] = 𝐸0 = [𝑆ℎ

∗, 𝐼ℎ
∗, 𝑄ℎ

∗ , 𝑅ℎ
∗ , 𝑆𝑟

∗, 𝐸𝑟
∗, 𝐼𝑟

∗] (31) 

𝐸0 = [
𝜇𝐻

Φ𝐻

, 0,0,0,
𝜇𝑅

Φ𝑅

, 0,0] (32) 

At the disease free equilibrium           𝑁𝐻
∗ =

𝜇𝐻

Φ𝐻
  𝑁𝑅

∗ =
𝜇𝑅

Φ𝑅
  

2.6. Stability Analysis of Disease Free Equilibrium State 

To study the behavior of the system (16) – (22) around the disease free equilibrium state 
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 𝐸0 = [
𝜇𝐻

Φ𝐻
, 0,0,0,

𝜇𝑅

Φ𝑅
, 0,0], The linearized stability technique proposed in reference [17] is used, resulting in the 

derivation of a Jacobian transformation denoted as 𝐽(𝐸0). 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 
 − [

𝜇𝐻

𝑁𝐻

+ (1 − 𝛼)(𝜎1 + 𝜎2)] 0 0 0 0 0 0

(1 − 𝛼)(𝜎1 + 𝜎2) −((Φ𝐻 + ɤ𝐻) + ɳ) 0 0 0 0 0

0 ɳ −𝜌 0 0 0 0
0 0 𝜌 0 0 0 0

0 0 0 0 −
𝜇𝑅

𝑁𝑅

+ (Φ𝑅 + 𝜎3) 0 0

0 0 0 0 𝜎 −((Φ𝑅 + ɤ𝑅) + 𝜎) 0

0 0 0 0 0 𝜎 −(Φ𝑅 + ɤ𝑅)]
 
 
 
 
 
 
 
 
 

 (33) 

We now proceed to fing the determinant of the Jacobian matrix  𝐽𝐸0. The determinant of a Jacobian matrix is given 

by the recursive definition for a 7 x 7 matrix. 

𝐷𝑒𝑡 [𝐽(𝐸0)] = 𝑎11 det[𝐽(𝐸011
)] − 𝑎12 det[𝐽(𝐸012

)] + 𝑎13 det[𝐽(𝐸013
)] − 𝑎14 det[𝐽(𝐸014

)] + 𝑎15 det[𝐽(𝐸015
)] −

𝑎16 det[𝐽(𝐸016
)] + 𝑎17 det[𝐽(𝐸017

)]  

From equation (33), 𝐷𝑒𝑡 𝐽(𝐸0) > 0. 

Likewise, by examining the trace of the Jacobian matrix 𝐽[𝐸0] as shown in equation (33), it can be seen that 

𝑇𝑟𝑎𝑐𝑒  𝐽(𝐸0) = − [
𝜇𝐻

𝑁𝐻
+ (1 − 𝛼)(𝜎1 + 𝜎2)] − [(Φ𝐻 + ɤ𝐻) + ɳ] − ρ − [

𝜇𝑅

𝑁𝑅
− Φ𝑅 + 𝜎3] − [(Φ𝑅 + ɤ𝑅) + 𝜎] − (Φ𝑅 + ɤ𝑅) (34) 

𝑇𝑟𝑎𝑐𝑒  𝐽(𝐸0) as shown above is < 0. 

Hence, 𝑇𝑟𝑎𝑐𝑒  𝐽(𝐸0) < 0 

Since 𝐷𝑒𝑡 [𝐽(𝐸0)] > 0 𝑎𝑛𝑑 𝑇𝑟𝑎𝑐𝑒  𝐽(𝐸0) < 0  fulfill the predetermined threshold conditions according to Gerald 

(2012), the monkeypox virus disease free equilibrium [𝐸0] also satisfies the requirements for a locally or globally 

asymptotic stability for the recovered population. 

2.7. The Basic Reproductive Number (𝑹𝟎) of the Model 

The basic reproduction number, commonly represented as 𝑅0, is a fundamental measure in the field of 

epidemiology. The basic reproduction number (𝑅0) quantifies the contagiousness of a disease by indicating the 

average number of secondary infections induced by a single sick individual in a community that is entirely 

susceptible to the disease. In order to calculate the basic reproduction number (𝑅0) for the model (16-22), the 

methods outlined in reference [17] will be used, using the next generation matrix (NGM) method. 

𝐹 = [
(1 − 𝛼)𝜎2 (1 − 𝛼)𝜎1

0 𝜎3
] (35) 

𝑉 = [
Φ𝐻 + ɤ𝐻 + ɳ 0

0 Φ𝑅 + ɤ𝑅
] (36) 

𝑉−1 =

[
 
 
 

−1

Φ𝐻 + ɤ𝐻 + ɳ
0

0
−1

Φ𝑅 + ɤ𝑅]
 
 
 

 (37) 

Where F represents the rate at which new infections occur and V represents the movement of persons across 

compartments via various ways. Then the next matrix denoted by 𝐹𝑉−1 is given as  
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𝐹𝑉−1 = [
(1 − 𝛼)𝜎2 (1 − 𝛼)𝜎1

0 𝜎3
]

[
 
 
 

−1

Φ𝐻 + ɤ𝐻 + ɳ
0

0
−1

Φ𝑅 + ɤ𝑅]
 
 
 

 (38) 

𝐹𝑉−1 =

[
 
 
 
−(1 − 𝛼)𝜎2

Φ𝐻 + ɤ𝐻 + ɳ

−(1 − 𝛼)𝜎1

Φ𝑅 + ɤ𝑅

0
−𝜎3

Φ𝑅 + ɤ𝑅 ]
 
 
 

 (39) 

We find the Eigen values of 𝐹𝑉−1 by setting the determinant |𝐹𝑉−1 − 𝜆𝐼| = 0, I is a unit matrix 

||

[
 
 
 
−(1 − 𝛼)𝜎2

Φ𝐻 + ɤ𝑅 + ɳ

−(1 − 𝛼)𝜎1

Φ𝑅 + ɤ𝑅

0
−𝜎3

Φ𝑅 + ɤ𝑅 ]
 
 
 

− [
𝜆 0
0 𝜆

]|| = 0 (40) 

||

[
 
 
 
−(1 − 𝛼)𝜎2

Φ𝐻 + ɤ𝑅 + ɳ
− 𝜆 −(1 − 𝛼)𝜎1

0
−𝜎3

Φ𝑅 + ɤ𝑅

− 𝜆
]
 
 
 

|| = 0 (41) 

[
−𝜎3

Φ𝑅 + ɤ𝑅

− 𝜆] [
−(1 − 𝛼)𝜎2

Φ𝐻 + ɤ𝑅 + ɳ
− 𝜆] − 0 = 0 (42) 

From (42),  
−𝜎

Φ𝑅+ɤ𝑅
= 𝜆1 

 
−(1−𝛼)𝜎2

Φ𝐻+ɤ𝑅+ɳ
= 𝜆2 

Since 𝜆1 < 0 and also 𝜆2 < 0 in which 0 < 1, hence, 𝑅0 < 1 which satisfies the threshold. 

3. Results and Discussion 

In this section, the effectiveness of public awareness and campaigns and the effectiveness of the infected quarantine 

on the spread of the monkeypox virus are examined. The numerical simulation of the monkeypox virus is analysed 

using the baseline values given in Table 3. The numerical simulations were done and plotted against time (months) 

using MATLAB, and the results are shown in Figures 2–13 to illustrate the effect of public awareness and 

campaigns and the effectiveness of getting the infected quarantined.  

Table 3. Model parameters and values used in the simulation. 

Parameters Values Source 

𝜇𝐻 0.029 [3,21] 

𝜇𝑅 0.2 [3,21] 

𝜎1 0.00006 [2,21] 

𝜎2 0.00025 [2,21] 

𝜎3 0.027 [2,21] 

Φ𝐻 0.15 [2,21] 

𝜓𝐻 0.2 [12,21] 

𝜂 0.83 [3,21] 

Φ𝑅 0.002 [2,21] 

𝜓𝑅 0.5 [21] 

𝜌 0.52 [21] 
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𝛼 0 – 1  Control Parameter 

𝜖 0 – 1  Control Parameter 

 

 

Figure 2. Numerical Simulation of the infected and quarantined population. 

 

Figure 3. Numerical Simulation of the infected, quarantined and recovered population. 
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Figure 4. Variation in infected population for measuring the effectiveness of public enlightenment. 

 

Figure 5. Variation in quarantined population for measuring the effectiveness of public enlightenment. 

 

Figure 6. Variation in infected population for measuring the effectiveness of quarantined. 
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Figure 7. Variation in quarantined population for measuring the effectiveness of quarantined. 

 

 

Figure 8. Variation in infected population for measuring the effectiveness of public enlightenment and rate of quarantined. 

 

Figure 9. Variation in quarantined population for measuring the effectiveness of public enlightenment and the rate of 
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quarantined. 

 

Figure 10. Surface plot showing the impact of 𝛼 and 𝜎2 on 𝑅0. 

 

Figure 11. Surface plot showing the impact of 𝛼 and 𝜙𝐻 on 𝑅0. 
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Figure 12. Surface plot showing the impact of 𝛼 and 𝜂 on 𝑅0 enlightenment. 

 

Figure 13. Surface plot showing the impact of 𝛼 and 𝜓𝑅 on 𝑅0. 

Figure 2 describes the numerical simulation of the infected and quarantined populations. The infected population 

is seen to have reached its peak before the quarantined population and then drastically reduced. Furthermore, the 

number of individuals in the infected population is seen to be higher than those in the quarantined population, 

which implies a high rate of infection at the start of the viruses. After a while, individuals then rush into the 

quarantined population owing to the different peak attained by the infected population and quarantined population. 

Figure 3 illustrates the numerical simulation of the infected, quarantined, and recovered populations. It is observed 

that as the number of individuals keeps increasing in the infected compartment and quarantined population, the 

population of the recovery compartment keeps increasing. 

Figure 4 depicts the variation in the infected population for measuring the effectiveness of public enlightenment 

only. The control parameters used are: 𝛼 = 0, 0.25, 0.5, 0.75. With an increase in the parameter measuring the rate 

of effectiveness of public enlightenment and campaigns, the aftermath is a reduction in the infected population. 

This implies that if public awareness could be increased, the rate of infection would be reduced, thereby reducing 

the number of individuals that would be infected with monkeypox. 

Figure 5 displays the variation in quarantined population for measuring the effectiveness of public enlightenment 

only. The control parameters used are: 𝛼 = 0, 0.25, 0.5, 0.75. It is noted that an increase in the parameter measuring 

the rate of effectiveness of public enlightenment and campaigns resulted in a reduction in the quarantined 

population. This implies that if public awareness could be increased, the rate of infection would be reduced, thereby 

reducing the number of individuals that would need to be quarantined with monkeypox. 

Figure 6 shows the variation in the infected population for measuring the effectiveness of quarantining alone. The 

control parameters used are: 𝜖 = 0, 0.25, 0.5, 0.75. As observed, with an increase in the parameter measuring the 

rate of effectiveness of individuals quarantined, the aftermath is a reduction in the infected population. This implies 

that if the number of infected populations could be increased, there would be assurance in the reduction of 

individuals that would be infected. However, the difference might be small, but it counts too. At least it would 

reduce the chances of a secondary infection of monkeypox. 
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Figure 7 demonstrates the variation in quarantined population for measuring the effectiveness of quarantined only. 

The control parameters used are: 𝜖 = 0, 0.25, 0.5, 0.75. It is seen that the population of the quarantined 

compartment reduces with an increase in the rate at which individuals are quarantined. 

The variation in the infected population for measuring the effectiveness of public enlightenment and the rate of 

quarantine is shown in Figure 8. The control parameters used are: 𝛼, 𝜖 = 0, 0.25, 0.5, 0.75. It is observed that the 

combined effort produces more results than the single measure. Increasing the rate of public awareness and the rate 

of quarantining produced greater results. This reduces the number of infections, thereby reducing the population of 

infected people. 

The variation in quarantined population for measuring the effectiveness of public enlightenment and the rate of 

quarantine is described in Figure 9. The control parameters used are: 𝛼, 𝜖 = 0, 0.25, 0.5, 0.75. It is observed that 

the combined effort produces more results than the single measure. Increasing the rate of public awareness and the 

rate of quarantining produced greater results. This reduces the number of infections and, thereby, the population 

quarantined. 

Figure 10 displays the surface plot showing the impact of 𝛼 and 𝜎2 on 𝑅0. It has been found that if the rate of 

contact with the rodent could be reduced and the rate of awareness could be increased, then the virus would be 

wiped out of the human population. An increase in the contact rate of humans with a rodent would result in an 

increase in the reproduction number, which implies the virus would stay and the human population would soon go 

into extinction. 

Figure 11 illustrates the surface plot showing the impact of 𝛼 and 𝜙𝐻 on 𝑅0. Figure 11 illustrates the effectiveness 

of public awareness in the face of natural death. Public awareness plays a key role in reducing the reproduction 

number, which implies that if public awareness could be effectively imbibed, the reproduction number would 

reduce and stabilize. 

The surface plot showing the impact of 𝛼 and 𝜂 on 𝑅0 enlightenment is seen in Figure 12. It is found that if the 

number of infected individuals could be increased and the rate of awareness could be increased, then the virus 

would be wiped out in the human population.  

The surface plot showing the impact of 𝛼 and 𝜓𝑅 on 𝑅0 is displayed in Figure 13. It is found that if the virus death 

rate of rodents could be increased coupled with an increase in public awareness, the basic reproduction number 

would reduce drastically and the virus would be wiped out of the human population. 

4. Conclusion 

In this work, the dynamics of the monkeypox virus's transmission were described using a deterministic model made 

up of systems of ordinary differential equations. The establishment of the area in which the model is 

epidemiologically viable has been confirmed. The model is locally asymptotically stable when the reproduction 

number 𝑅0 < 1, which implies that the monkeypox virus will eventually be eliminated from the population. But, 

unstable when 𝑅0 > 1, which implies that the monkeypox virus would continue to be prevalent among us if control 

measures were neglected. Numerical simulations were conducted to further examine the effectiveness of public 

awareness and the rate at which individuals were quarantined. The study concludes that the effectiveness of the 

combined form of public awareness and quarantine produced more results, followed by the effectiveness of public 

awareness alone, and then the results achieved when infected individuals were quarantined. If the measures could 
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be combined at a higher rate, the virus peak would reduce greatly, and the virus would not persist among humans.  
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