Research Article
BibTex RIS Cite

N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate

Year 2023, Volume: 7 Issue: 2, 160 - 166, 20.12.2023
https://doi.org/10.38088/jise.1333127

Abstract

The organocatalyzed Morita-Baylis Hillman (MBH) reaction of α-keto esters is a challenging carbon-carbon bond-forming reaction. We developed a catalytic system for the MBH reaction of methylphenyl glyoxylate with methyl vinyl ketone in a polar aprotic solvent. We used N-Boc-L-pipecolinic acid as a proton transfer mediator and 4-dimethylaminopyridine as the tertiary amine catalyst. We obtained the MBH adduct with a 66% yield in 48h. We proposed a detailed reaction mechanism involving a transition state that includes the hydrogen transfer by the acid functional group of N-Boc-L-pipecolinic acid.

Supporting Institution

Bursa Technical University, Scientific Research Fund

Project Number

182N02

Thanks

G. K. thanks TUBITAK for the fellowship (TUBITAK-2218). Bursa Technical University, Scientific Research Fund is gratefully acknowledged for financial support (Project No: 182N02).

References

  • Shi, M. and Liu, Y.-H. (2006). Traditional Morita–Baylis–Hillman reaction of aldehydes with methyl vinyl ketone co-catalyzed by triphenylphosphine and nitrophenol. Org.Biomol.Chem., 4: 1468-1470.
  • Basavaiah, D., Rao, A. J., Satyanarayana, T. (2003). Recent Advances in the Baylis−Hillman Reaction and Applications. Chem.Rev., 103(3); 811- 892.
  • Basavaiah, D. and Naganaboina, R. T. (2018). The Baylis–Hillman reaction: a new continent in organic chemistry-our philosophy, vision and over three decades of research. New J. Chem., 42; 14036-1406.
  • Shukla, P., Asati, A., Patel, D., Singh, M., Rai, V. K., Rai, A. (2023). Novel Synergistic Catalysis by Ethylcarbodiimide Hydrochloride Salt and CuI Towards Morita-Baylis-Hillman Reaction. ChemistrySelect, 8; 571-574.
  • Wang, C.-C. and Wu, X.-Y. (2011). Catalytic asymmetric synthesis of 3-hydroxyl-2-oxindoles via enantioselective Morita–Baylis–Hillman reaction of isatins. Tetrahedron, 67; 2974-2978.
  • Crawshaw, R., Crossley, A. E., Johannissen, L., Burke, A. J., Hay , S., Levy, C., Baker, D., Lovelock, S. L., Green, A. P. (2022). Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Nature Chemistry, 14; 313-320.
  • Maity, S. and Szpilman, A. M. (2023). 2-Fluoroenones via an Umpolung Morita–Baylis–Hillman Reaction of Enones. Org. Lett., 25(7); 1218-1222.
  • Reddy, T. N., and Rao, V. J. (2018). Importance of Baylis-Hillman adducts in modern drug discovery. Tetrahedron Letters, 59; 2859-2875.
  • Basavaiah, D., Sreenivasulu, B., Reddy, R. M., Muthukumaran, K. (2001). The Baylis-Hillman Reaction: TiCl4 Mediated Coupling of Alkyl Vinyl Ketones with α-Keto Esters and Aldehydes. Synthetic Communications, 31(19); 2987-2995.
  • Basavaiah, D., Sreenivasulu, B., Rao, A. J. (2003). Steric Factors Direct Baylis-Hillman and Aldol Reactions in Titanium Tetrachloride Mediated Coupling between α-Keto Esters and Cyclohex-2-enone Derivatives. J. Org. Chem. 68; 5983-5991.
  • Shi, M. and Zhang, W. (2005). Organocatalysts of tertiary-phosphines and amines catalyzed reactions of α-keto esters with cyclopent-2-enone. Tetrahedron, 61; 11887-11894.
  • Wei, Y. and Shi, M. (2013). Recent Advances in Organocatalytic Asymmetric Morita−Baylis− Hillman/aza-Morita−Baylis−Hillman Reactions. Chem. Rev., 113(8); 6659-6690.
  • Price, K. E., Broadwater, S. J., Jung, H. M., McQuade, D. T. (2005). Baylis-Hillman mechanism: a new interpretation in aprotic solvents. Org. Lett., 7; 147-150.
  • Liu, Z, Patel, C., Harvey, J. N., Sunoj, R. B. (2017). Mechanism and reactivity in the Morita-Baylis-Hillman reaction: the challenge of accurate computations. Phys. Chem. Chem. Phys., 19; 30647-30657.
  • Seumer, J., Hansen, J. K. S., Nielsen, M. B., Jensen, J. H. (2023). Computational Evolution of New Catalysts for the Morita–Baylis– Hillman Reaction. Angew. Chem. Int. Ed., 62; e202218565.
  • Robiette, R., Aggarwal, V. K., Harvey, J. N. (2007). Mechanism of the Morita-Baylis-Hillman Reaction: A Computational Investigation. J. Am. Chem. Soc., 129; 15513-15525.
  • Tang, H., Zhao, G., Zhou, Z., Tang, Q. Z. C. (2006). Synthesis of some new tertiary amines and their application as co-catalysts in combination with L-proline in enantioselective Baylis-Hillman reaction between o-Nitrobenzaldehyde and methylvinylketone. Tetrahedron Lett., 47; 5717-5721.
  • Chen, S.-H., Hong, B.-C., Su, C.-F., Sarshar, S. (2005). An unexpected inversion of enantioselectivity in the proline catalyzed intramolecular Baylis-Hillman reaction. Tetrahedron Lett., 46; 8899-8903.
  • Shi, M., Jiang, J.-K., Li, C.-Q. (2002). Lewis base and L-proline co-catalyzed Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett., 43(1); 127-130.
  • Aroyan, C. E., Vasbinder, M. M., Miller, S. J. (2005). Dual Catalyst Control in the Enantioselective Intramolecular Morita-Baylis-Hillman Reaction. Org. Lett. 7(18); 3849-3851.
Year 2023, Volume: 7 Issue: 2, 160 - 166, 20.12.2023
https://doi.org/10.38088/jise.1333127

Abstract

Project Number

182N02

References

  • Shi, M. and Liu, Y.-H. (2006). Traditional Morita–Baylis–Hillman reaction of aldehydes with methyl vinyl ketone co-catalyzed by triphenylphosphine and nitrophenol. Org.Biomol.Chem., 4: 1468-1470.
  • Basavaiah, D., Rao, A. J., Satyanarayana, T. (2003). Recent Advances in the Baylis−Hillman Reaction and Applications. Chem.Rev., 103(3); 811- 892.
  • Basavaiah, D. and Naganaboina, R. T. (2018). The Baylis–Hillman reaction: a new continent in organic chemistry-our philosophy, vision and over three decades of research. New J. Chem., 42; 14036-1406.
  • Shukla, P., Asati, A., Patel, D., Singh, M., Rai, V. K., Rai, A. (2023). Novel Synergistic Catalysis by Ethylcarbodiimide Hydrochloride Salt and CuI Towards Morita-Baylis-Hillman Reaction. ChemistrySelect, 8; 571-574.
  • Wang, C.-C. and Wu, X.-Y. (2011). Catalytic asymmetric synthesis of 3-hydroxyl-2-oxindoles via enantioselective Morita–Baylis–Hillman reaction of isatins. Tetrahedron, 67; 2974-2978.
  • Crawshaw, R., Crossley, A. E., Johannissen, L., Burke, A. J., Hay , S., Levy, C., Baker, D., Lovelock, S. L., Green, A. P. (2022). Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Nature Chemistry, 14; 313-320.
  • Maity, S. and Szpilman, A. M. (2023). 2-Fluoroenones via an Umpolung Morita–Baylis–Hillman Reaction of Enones. Org. Lett., 25(7); 1218-1222.
  • Reddy, T. N., and Rao, V. J. (2018). Importance of Baylis-Hillman adducts in modern drug discovery. Tetrahedron Letters, 59; 2859-2875.
  • Basavaiah, D., Sreenivasulu, B., Reddy, R. M., Muthukumaran, K. (2001). The Baylis-Hillman Reaction: TiCl4 Mediated Coupling of Alkyl Vinyl Ketones with α-Keto Esters and Aldehydes. Synthetic Communications, 31(19); 2987-2995.
  • Basavaiah, D., Sreenivasulu, B., Rao, A. J. (2003). Steric Factors Direct Baylis-Hillman and Aldol Reactions in Titanium Tetrachloride Mediated Coupling between α-Keto Esters and Cyclohex-2-enone Derivatives. J. Org. Chem. 68; 5983-5991.
  • Shi, M. and Zhang, W. (2005). Organocatalysts of tertiary-phosphines and amines catalyzed reactions of α-keto esters with cyclopent-2-enone. Tetrahedron, 61; 11887-11894.
  • Wei, Y. and Shi, M. (2013). Recent Advances in Organocatalytic Asymmetric Morita−Baylis− Hillman/aza-Morita−Baylis−Hillman Reactions. Chem. Rev., 113(8); 6659-6690.
  • Price, K. E., Broadwater, S. J., Jung, H. M., McQuade, D. T. (2005). Baylis-Hillman mechanism: a new interpretation in aprotic solvents. Org. Lett., 7; 147-150.
  • Liu, Z, Patel, C., Harvey, J. N., Sunoj, R. B. (2017). Mechanism and reactivity in the Morita-Baylis-Hillman reaction: the challenge of accurate computations. Phys. Chem. Chem. Phys., 19; 30647-30657.
  • Seumer, J., Hansen, J. K. S., Nielsen, M. B., Jensen, J. H. (2023). Computational Evolution of New Catalysts for the Morita–Baylis– Hillman Reaction. Angew. Chem. Int. Ed., 62; e202218565.
  • Robiette, R., Aggarwal, V. K., Harvey, J. N. (2007). Mechanism of the Morita-Baylis-Hillman Reaction: A Computational Investigation. J. Am. Chem. Soc., 129; 15513-15525.
  • Tang, H., Zhao, G., Zhou, Z., Tang, Q. Z. C. (2006). Synthesis of some new tertiary amines and their application as co-catalysts in combination with L-proline in enantioselective Baylis-Hillman reaction between o-Nitrobenzaldehyde and methylvinylketone. Tetrahedron Lett., 47; 5717-5721.
  • Chen, S.-H., Hong, B.-C., Su, C.-F., Sarshar, S. (2005). An unexpected inversion of enantioselectivity in the proline catalyzed intramolecular Baylis-Hillman reaction. Tetrahedron Lett., 46; 8899-8903.
  • Shi, M., Jiang, J.-K., Li, C.-Q. (2002). Lewis base and L-proline co-catalyzed Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett., 43(1); 127-130.
  • Aroyan, C. E., Vasbinder, M. M., Miller, S. J. (2005). Dual Catalyst Control in the Enantioselective Intramolecular Morita-Baylis-Hillman Reaction. Org. Lett. 7(18); 3849-3851.
There are 20 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis
Journal Section Research Articles
Authors

Gamze Koz 0000-0003-3276-1413

Nejdet Coşkun 0000-0002-8464-9768

Project Number 182N02
Early Pub Date November 9, 2023
Publication Date December 20, 2023
Published in Issue Year 2023Volume: 7 Issue: 2

Cite

APA Koz, G., & Coşkun, N. (2023). N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate. Journal of Innovative Science and Engineering, 7(2), 160-166. https://doi.org/10.38088/jise.1333127
AMA Koz G, Coşkun N. N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate. JISE. December 2023;7(2):160-166. doi:10.38088/jise.1333127
Chicago Koz, Gamze, and Nejdet Coşkun. “N-Boc-Amino Acid Mediated Morita-Baylis Hillman Reaction of Methylphenyl Glyoxylate”. Journal of Innovative Science and Engineering 7, no. 2 (December 2023): 160-66. https://doi.org/10.38088/jise.1333127.
EndNote Koz G, Coşkun N (December 1, 2023) N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate. Journal of Innovative Science and Engineering 7 2 160–166.
IEEE G. Koz and N. Coşkun, “N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate”, JISE, vol. 7, no. 2, pp. 160–166, 2023, doi: 10.38088/jise.1333127.
ISNAD Koz, Gamze - Coşkun, Nejdet. “N-Boc-Amino Acid Mediated Morita-Baylis Hillman Reaction of Methylphenyl Glyoxylate”. Journal of Innovative Science and Engineering 7/2 (December 2023), 160-166. https://doi.org/10.38088/jise.1333127.
JAMA Koz G, Coşkun N. N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate. JISE. 2023;7:160–166.
MLA Koz, Gamze and Nejdet Coşkun. “N-Boc-Amino Acid Mediated Morita-Baylis Hillman Reaction of Methylphenyl Glyoxylate”. Journal of Innovative Science and Engineering, vol. 7, no. 2, 2023, pp. 160-6, doi:10.38088/jise.1333127.
Vancouver Koz G, Coşkun N. N-Boc-Amino Acid Mediated Morita-Baylis Hillman reaction of methylphenyl glyoxylate. JISE. 2023;7(2):160-6.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.