Review
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 2, 201 - 219, 31.12.2022
https://doi.org/10.38088/jise.960553

Abstract

Supporting Institution

ERMETAL OTOMOTİV VE EŞYA SANAYİ TİC. A.Ş.

References

  • [1] “Greenhouse gas emissions: drivers and impacts - Canada.ca.” https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions- drivers-impacts.html (accessed Aug. 16, 2021).
  • [2] “Sera gazı emisyonlarının azaltımı — Avrupa Çevre Ajansı.” https://www.eea.europa.eu/tr/themes/climate/intro (accessed Aug. 16, 2021).
  • [3] “Fuel Quality | Climate Action.” https://ec.europa.eu/clima/policies/transport/fuel_en (accessed Aug. 16, 2021).
  • [4] G. S. Cole and A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, 1995, doi: 10.1016/1044-5803(95)00063-1.
  • [5] C. Soutis, “Fibre reinforced composites in aircraft construction,” Progress in Aerospace Sciences, vol. 41, no. 2. Elsevier Ltd, pp. 143–151, 2005. doi: 10.1016/j.paerosci.2005.02.004.
  • [6] M. Zor, “Kompozit Malzemelerle İlgili Genel Bilgiler”, doi: 10.01.2018.
  • [7] G. Lubin, Handbook of Composites. 1982. doi: 10.1007/978-1-4615-7139-1.
  • [8] Y. di Boon and S. C. Joshi, “A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites,” Materials Today Communications, vol. 22, Mar. 2020, doi: 10.1016/j.mtcomm.2019.100830.
  • [9] S. A. Hayes, F. R. Jones, K. Marshiya, and W. Zhang, “A self-healing thermosetting composite material,” Composites Part A: Applied Science and Manufacturing, 2007, doi: 10.1016/j.compositesa.2006.06.008.
  • [10] R. Luterbacher, T. S. Coope, R. S. Trask, and I. P. Bond, “Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations,” Composites Science and Technology, vol. 136, pp. 67–75, 2016, doi: 10.1016/j.compscitech.2016.10.007.
  • [11] G. J. Williams, “Self-Healing Functionality for Cfrp,” no. April, pp. 1–8, 2007.
  • [12] A. C. Garg, “Delamination-a damage mode in composite structures,” Engineering Fracture Mechanics, 1988, doi: 10.1016/0013-7944(88)90181-6.
  • [13] B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, “Self-healing polymers and composites,” Annual Review of Materials Research, 2010, doi: 10.1146/annurev- matsci-070909-104532.
  • [14] D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: A review of recent developments,” Progress in Polymer Science (Oxford). 2008. doi: 10.1016/j.progpolymsci.2008.02.001.
  • [15] Y. Chen, A. M. Kushner, G. A. Williams, and Z. Guan, “Multiphase design of autonomic self-healing thermoplastic elastomers,” Nature Chemistry, 2012, doi: 10.1038/nchem.1314.
  • [16] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Self-healing of delamination fatigue cracks in carbon fibre-epoxy laminate using mendable thermoplastic,” Journal of Materials Science, vol. 47, no. 10, pp. 4449–4456, 2012, doi: 10.1007/s10853-012-6303-8.
  • [17] “Kendi Kendini İyileştiren Kompozitler Pazarı – Küresel Endüstri Eğilimleri ve 2028’e Kadar Tahmin | Veri Köprüsü Pazar Araştırması.” https://www.databridgemarketresearch.com/reports/global- self-healing-composites-market (accessed Aug. 16, 2021). [18] S. K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications. 2009. doi: 10.1002/9783527625376.
  • [19] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 36, no. 11, pp. 1525–1535, Nov. 2005, doi: 10.1016/j.compositesa.2005.02.007.
  • [20] D. G Bekas, K. Tsirka, D. Baltzis, and A. S. Paipetis, “Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques,” Composites Part B: Engineering, vol. 87, pp. 92–119, 2016, doi: 10.1016/j.compositesb.2015.09.057.
  • [21] N. J. Kanu, E. Gupta, U. K. Vates, and G. K. Singh, “Self-healing composites: A state-of-the-art review,” Composites Part A: Applied Science and Manufacturing. 2019. doi: 10.1016/j.compositesa.2019.04.012.
  • [22] E. N. Brown, S. R. White, and N. R. Sottos, “Microcapsule induced toughening in a self-healing polymer composite,” Journal of Materials Science, 2004, doi: 10.1023/B:JMSC.0000016173.73733.dc.
  • [23] M. R. Kessler, N. R. Sottos, and S. R. White, “Self-healing structural composite materials,” Composites Part A: Applied Science and Manufacturing, vol. 34, no. 8, pp. 743–753, 2003, doi: 10.1016/S1359- 835X(03)00138-6.
  • [24] S. R. White et al., “Autonomic healing of polymer composites,” Nature. 2001. doi: 10.1038/35057232.
  • [25] J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Composites Science and Technology, 2005, doi: 10.1016/j.compscitech.2005.03.008.
  • [26] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, “Self-healing materials with microvascular networks,” Nature Materials, 2007, doi: 10.1038/nmat1934.
  • [27] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, “Self-healing materials with microvascular networks,” Nature Materials, 2007, doi: 10.1038/nmat1934.
  • [28] A. Ebrahiminiya, M. Khorram, S. Hassanajili, and M. Javidi, “Modeling and optimization of the parameters affecting the in-situ microencapsulation process for producing epoxy-based self- healing anti-corrosion coatings,” Particuology, 2018, doi: 10.1016/j.partic.2017.01.010.
  • [29] H. Li, Y. Cui, Z. Li, Y. Zhu, and H. Wang, “Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings,” Progress in Organic Coatings, 2018, doi: 10.1016/j.porgcoat.2017.11.019.
  • [30] X. M. Tong, T. Zhang, M. Z. Yang, and Q. Zhang, “Preparation and characterization of novel melamine modified poly(urea-formaldehyde) self-repairing microcapsules,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, doi: 10.1016/j.colsurfa.2010.09.009.
  • [31] E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, “In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene,” Journal of Microencapsulation, 2003, doi: 10.1080/0265204031000154160.
  • [32] S. K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications. 2009. doi: 10.1002/9783527625376. [33] D. Y. Zhu, M. Z. Rong, and M. Q. Zhang, “Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation,” Progress in Polymer Science. 2015. doi: 10.1016/j.progpolymsci.2015.07.002.
  • [34] T. C. Mauldin and M. R. Kessler, “Self-healing polymers and composites,” International Materials Reviews, 2010, doi: 10.1179/095066010X12646898728408.
  • [35] L. Zhai, A. Narkar, and K. Ahn, “Self-healing polymers with nanomaterials and nanostructures,” Nano Today, vol. 30. Elsevier B.V., p. 100826, Feb. 01, 2019. doi: 10.1016/j.nantod.2019.100826.
  • [36] G. Postiglione, S. Turri, and M. Levi, “Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels-Alder reaction,” Progress in Organic Coatings, vol. 78, pp. 526–531, 2015, doi: 10.1016/j.porgcoat.2014.05.022.
  • [37] X. Chen et al., “A thermally re-mendable cross-linked polymeric material,” Science, 2002, doi: 10.1126/science.1065879.
  • [38] S. J. Kalista and T. C. Ward, “Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 405–411, 2007, doi: 10.1098/rsif.2006.0169.
  • [39] R. J. Varley and S. van der Zwaag, “Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration,” Acta Materialia, 2008, doi: 10.1016/j.actamat.2008.08.008.
  • [40] R. P. Sijbesma et al., “Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding,” Science, 1997, doi: 10.1126/science.278.5343.1601.
  • [41] Chan-Moon Chung, † Young-Suk Roh, † and Sung-Youl Cho, and J.-G. Kim‡, “Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition,” 2004, doi: 10.1021/CM049394.
  • [42] N. Oya, P. Sukarsaatmadja, K. Ishida, and N. Yoshie, “Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups,” Polymer Journal, 2012, doi: 10.1038/pj.2012.18.
  • [43] J. Ling, M. Z. Rong, and M. Q. Zhang, “Coumarin imparts repeated photochemical remendability to polyurethane,” Journal of Materials Chemistry, 2011, doi: 10.1039/c1jm13467a.
  • [44] M. C. Li and A. C. Loos, “The Effects of Processing on Interply Bond Strength of Thermoplastic Composites,” Journal of Reinforced Plastics and Composites, 1992, doi: 10.1177/073168449201101006.
  • [45] S. A. Hayes, W. Zhang, M. Branthwaite, and F. R. Jones, “Self-healing of damage in fibre-reinforced polymer-matrix composites,” Journal of the Royal Society Interface, 2007, doi: 10.1098/rsif.2006.0209.
  • [46] D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: A review of recent developments,” Progress in Polymer Science (Oxford). 2008. doi: 10.1016/j.progpolymsci.2008.02.001.
  • [47] G. Rivero, L. T. T. Nguyen, X. K. D. Hillewaere, and F. E. du Prez, “One-pot thermo-remendable shape memory polyurethanes,” Macromolecules, 2014, doi: 10.1021/ma402471c.
  • [48] P. C. JE et al., “Manufacturing challenges in self-healing technology for polymer composites — a review,” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 7370–7379, Jul. 2020, doi: 10.1016/j.jmrt.2020.04.082.
  • [49] N. Zhong and W. Post, “Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review,” Composites Part A: Applied Science and Manufacturing. 2015. doi: 10.1016/j.compositesa.2014.11.028.
  • [50] G. Rivero, L. T. T. Nguyen, X. K. D. Hillewaere, and F. E. Du Prez, “One-pot thermo-remendable shape memory polyurethanes,” Macromolecules, 2014, doi: 10.1021/ma402471c.
  • [51] S. Meure, D. Y. Wu, and S. Furman, “Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins,” Acta Materialia, vol. 57, no. 14, pp. 4312–4320, Aug. 2009, doi: 10.1016/j.actamat.2009.05.032.
  • [52] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Self-healing of delamination cracks in mendable epoxy matrix laminates using poly[ethylene-co-(methacrylic acid)] thermoplastic,” Composites Part A: Applied Science and Manufacturing, 2012, doi: 10.1016/j.compositesa.2012.03.010.
  • [53] C. L. Nogueira, J. M. F. de Paiva, and M. C. Rezende, “Effect of the interfacial adhesion on the tensile and impact properties of carbon fiber reinforced polypropylene matrices,” Materials Research, 2005, doi: 10.1590/S1516-14392005000100015.
  • [54] G. Li and H. Meng, Recent advances in smart self-healing polymers and composites. 2015. doi: 10.1016/C2013-0-16515-4.
  • [55] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Mechanical properties of mendable composites containing self-healing thermoplastic agents,” Composites Part A: Applied Science and Manufacturing, 2014, doi: 10.1016/j.compositesa.2014.05.015.
  • [56] I. L. Hia, V. Vahedi, and P. Pasbakhsh, “Self-Healing Polymer Composites: Prospects, Challenges, and Applications,” Polymer Reviews. 2016. doi: 10.1080/15583724.2015.1106555.
  • [57] K. Pingkarawat and A. P. Mouritz, “Stitched mendable composites: Balancing healing performance against mechanical performance,” Composite Structures, 2015, doi: 10.1016/j.compstruct.2014.12.034.
  • [58] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Composites Part A: Applied Science and Manufacturing, 2013, doi: 10.1016/j.compositesa.2013.02.014.
  • [59] M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, “The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates,” Materials and Design, 2016, doi: 10.1016/j.matdes.2016.07.093.
  • [60] Khomkrit Pingkarawat, “THERMOPLASTIC FIBRE STITCHING: A NEW SELF-HEALING METHOD FOR CARBON-EPOXY COMPOSITES,” 2013.
  • [61] R. J. Varley, D. A. Craze, A. P. Mouritz, and C. H. Wang, “Thermoplastic healing in epoxy networks: Exploring performance and mechanism of alternative healing agents,” Macromolecular Materials and Engineering, 2013, doi: 10.1002/mame.201200394.
  • [62] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Healing of fatigue delamination cracks in carbon-epoxy composite using mendable polymer stitching,” Journal of Intelligent Material Systems and Structures, vol. 25, no. 1, pp. 75–86, 2014, doi: 10.1177/1045389X13505005.
  • [63] S. Meure, S. Furman, and S. Khor, “Poly[ethylene-co-(methacrylic acid)] healing agents for mendable carbon fiber laminates,” Macromolecular Materials and Engineering, vol. 295, no. 5, pp. 420–424, 2010, doi: 10.1002/mame.200900345.
  • [64] F. Dau, M. L. Dano, and Y. Duplessis-Kergomard, “Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading,” Composite Structures, 2016, doi: 10.1016/j.compstruct.2016.06.034.
  • [65] H. Ahn and W. R. Yu, “Mechanical analysis of 3D braided and woven composites using fiber-based continuum analysis,” Composite Structures, 2017, doi: 10.1016/j.compstruct.2016.11.003.
  • [66] A. Saboktakin, “3D textile preforms and composites for aircraft strcutures: A review,” International Journal of Aviation, Aeronautics, and Aerospace, 2019, doi: 10.15394/ijaaa.2019.1299.
  • [67] A. R. Horrocks and S. C. Anand, Handbook of technical textiles. 2000. doi: 10.1533/9781855738966.
  • [68] L. K. Jain, K. A. Dransfield, and Y. W. Mai, “On the effects of stitching in CFRPs - II. Mode II delamination toughness,” Composites Science and Technology, 1998, doi: 10.1016/S0266-3538(97)00186-3.
  • [69] C. Sickinger and A. Herrmann, “Structural Stitching as a Method to design High-Performance Composites in Future.”
  • [70] Y. Tada and T. Ishikawa, “Experimental evaluation of the effects of stitching on CFRP laminate specimens with various shapes and loadings,” Mechanical and corrosion properties. Series A, Key engineering materials, 1989, doi: 10.4028/www.scientific.net/kem.37.305.
  • [71] T. J. Kang and S. ho Lee, “Effect of Stitching on the Mechanical and Impact Properties of Woven Laminate Composite,” Journal of Composite Materials, 1994, doi: 10.1177/002199839402801604.
  • [72] W. C. Chung, B. Z. Jang, T. C. Chang, L. R. Hwang, and R. C. Wilcox, “Fracture behavior in stitched multidirectional composites,” Materials Science and Engineering A, 1989, doi: 10.1016/0921- 5093(89)90355-9.
  • [73] K. Dransfield, C. Baillie, and Y. W. Mai, “Improving the delamination resistance of CFRP by stitching-a review,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)90019-1.
  • [74] L. K. Jain and Y. W. Mai, “On the effect of stitching on mode I delamination toughness of laminated composites,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)90103-1
  • [75] A. P. Mouritz, “The damage to stitched GRP laminates by underwater explosion shock loading,” Composites Science and Technology, 1995, doi: 10.1016/0266-3538(95)00122-0.
  • [76] K. Pingkarawat and A. P. Mouritz, “Stitched mendable composites: Balancing healing performance against mechanical performance,” Composite Structures, 2015, doi: 10.1016/j.compstruct.2014.12.034.
  • [77] K. Dransfield, C. Baillie, and Y. W. Mai, “On stitching as a method for improving the delamination resistance of CFRPs,” 1993.
  • [78] H. B. Dexter and J. G. Funk, “Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy,” Jan. 1986, Accessed: Jun. 24, 2020. [Online]. Available: http://ntrs.nasa.gov/search.jsp?R=19860054139
  • [79] “5th Australian Aeronautical Conference: Preprints of Papers - Tensile Properties of Thin Stitched Carbon/Epoxy Composites (Engineering Collection) - Inform https://search.informit.com.au/documentSummary;dn=559510268154395;res=IELENG (accessed Dec. 14, 2019).
  • [80] K. W. Furrow, A. C. Loos, and R. J. Cano, “Environmental effects on stitched RTM textile composites,” Journal of Reinforced Plastics and Composites, 1996, doi: 10.1177/073168449601500403.
  • [81] Y. Yang and M. W. Urban, “Self-healing polymeric materials,” Chemical Society Reviews, 2013, doi: 10.1039/c3cs60109a.
  • [82] V. Kostopoulos, A. Kotrotsos, S. Tsantzalis, P. Tsokanas, T. Loutas, and A. W. Bosman, “Toughening and healing of continuous fibre reinforced composites by supramolecular polymers,” Composites Science and Technology, vol. 128, pp. 84–93, 2016, doi: 10.1016/j.compscitech.2016.03.021.
  • [83] L. W. McKeen, “Styrenic Plastics,” Fatigue and Tribological Properties of Plastics and Elastomers, pp. 51–71, Jan. 2010, doi: 10.1016/B978-0-08-096450-8.00004-1.
  • [84] A. Emblem, “Plastics properties for packaging materials,” Packaging Technology, pp. 287–309, Jan. 2012, doi: 10.1533/9780857095701.2.287.
  • [85] J. Izdebska, “Corona Treatment,” Printing on Polymers: Fundamentals and Applications, pp. 123–142, Jan. 2016, doi: 10.1016/B978-0-323-37468-2.00008-7.
  • [86] S. Meure, R. J. Varley, D. Y. Wu, S. Mayo, K. Nairn, and S. Furman, “Confirmation of the healing mechanism in a mendable EMAA-epoxy resin,” European Polymer Journal, 2012, doi: 10.1016/j.eurpolymj.2011.11.021.
  • [87] C. Mariano Domingues da Silva, A. L. A. Silva, R. Pacheco, and A. M. Rocco, “Conductivity and Thermal Behaviour of Sulfonated ABS Membranes for Fuel Cell Applications,” ECS Transactions, 2019, doi: 10.1149/1.3210642.
  • [88] S. Rashtchi, P. D. Ruiz, R. Wildman, and I. Ashcroft, “Measurement of moisture content in photovoltaic panel encapsulants using spectroscopic optical coherence tomography: a feasibility study,” 2012. doi: 10.1117/12.928959.
  • [89] N. K. James, U. Lafont, S. van der Zwaag, and W. A. Groen, “Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites,” Smart Materials and Structures, 2014, doi: 10.1088/0964-1726/23/5/055001.
  • [90] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Composites Part A: Applied Science and Manufacturing, 2013, doi: 10.1016/j.compositesa.2013.02.014.
  • [91] “Thermoplastic fibre stitching: a new self-healing method for carbon-epoxy composites.” https://www.researchgate.net/publication/257836051_Thermoplastic_fibre_stitching_a_new_self- healing_method_for_carbon-epoxy_composites (accessed Feb. 18, 2020).
  • [92] T. Yang, C. H. Wang, J. Zhang, S. He, and A. P. Mouritz, “Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2012.05.012.
  • [93] T. Yang, C. H. Wang, J. Zhang, S. He, and A. P. Mouritz, “Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2012.05.012.
  • [94] T. Yang, J. Zhang, A. P. Mouritz, and C. H. Wang, “Healing of carbon fibre-epoxy composite T-joints using mendable polymer fibre stitching,” Composites Part B: Engineering, 2013, doi: 10.1016/j.compositesb.2012.08.022.
  • [95] A. M. Peterson, H. Kotthapalli, M. A. M. Rahmathullah, and G. R. Palmese, “Investigation of interpenetrating polymer networks for self-healing applications,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2011.11.022.
  • [96] S. Feih and A. P. Mouritz, “Tensile properties of carbon fibres and carbon fibre-polymer composites in fire,” Composites Part A: Applied Science and Manufacturing, 2012, doi: 10.1016/j.compositesa.2011.06.016.
  • [97] ASTM D3039, “ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials -D3039 2008, Annual Book of ASTM Standards”, doi: 10.1520/D3039_D3039M-17.
  • [98] “ASTM D5528 - 01 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.” https://www.astm.org/DATABASE.CART/HISTORICAL/D5528-01.htm (accessed Dec. 14, 2019).
  • [99] L. K. Jain and Y. W. Mai, “On the effect of stitching on mode I delamination toughness of laminated composites,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)901031.
  • [100] “ASTM D7264 / D7264M - 07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials.” https://www.astm.org/DATABASE.CART/HISTORICAL/D7264D7264M-07.htm (accessed Dec. 14, 2019).

Self-Healing Carbon Fiber Composites with Thermoplastic Polymers

Year 2022, Volume: 6 Issue: 2, 201 - 219, 31.12.2022
https://doi.org/10.38088/jise.960553

Abstract

The utilization areas of composite materials are increasing day by day. However, these materials are difficult and expensive to manufacture. In addition, since they are thermoset structures, their recycling is very limited in case of damage. Self-healing materials are the ones that automatically and independently heal or repair the damage caused by any factors, without external intervention. Self-healing polymeric materials are in the range of smart materials. Research on self-healing polymers and polymer composites using this effect has increased rapidly in recent years due to the advantages such as cost reduction and less labour requirement that the current topic provides. In this review, first of all, brief information about self-healing mechanisms used in composites will be given in the light of the studies in literature, then the use of stitch method in composites and self-healing composites will be mentioned and finally, the test methods of self-healing composites will be addressed.

References

  • [1] “Greenhouse gas emissions: drivers and impacts - Canada.ca.” https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions- drivers-impacts.html (accessed Aug. 16, 2021).
  • [2] “Sera gazı emisyonlarının azaltımı — Avrupa Çevre Ajansı.” https://www.eea.europa.eu/tr/themes/climate/intro (accessed Aug. 16, 2021).
  • [3] “Fuel Quality | Climate Action.” https://ec.europa.eu/clima/policies/transport/fuel_en (accessed Aug. 16, 2021).
  • [4] G. S. Cole and A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, 1995, doi: 10.1016/1044-5803(95)00063-1.
  • [5] C. Soutis, “Fibre reinforced composites in aircraft construction,” Progress in Aerospace Sciences, vol. 41, no. 2. Elsevier Ltd, pp. 143–151, 2005. doi: 10.1016/j.paerosci.2005.02.004.
  • [6] M. Zor, “Kompozit Malzemelerle İlgili Genel Bilgiler”, doi: 10.01.2018.
  • [7] G. Lubin, Handbook of Composites. 1982. doi: 10.1007/978-1-4615-7139-1.
  • [8] Y. di Boon and S. C. Joshi, “A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites,” Materials Today Communications, vol. 22, Mar. 2020, doi: 10.1016/j.mtcomm.2019.100830.
  • [9] S. A. Hayes, F. R. Jones, K. Marshiya, and W. Zhang, “A self-healing thermosetting composite material,” Composites Part A: Applied Science and Manufacturing, 2007, doi: 10.1016/j.compositesa.2006.06.008.
  • [10] R. Luterbacher, T. S. Coope, R. S. Trask, and I. P. Bond, “Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations,” Composites Science and Technology, vol. 136, pp. 67–75, 2016, doi: 10.1016/j.compscitech.2016.10.007.
  • [11] G. J. Williams, “Self-Healing Functionality for Cfrp,” no. April, pp. 1–8, 2007.
  • [12] A. C. Garg, “Delamination-a damage mode in composite structures,” Engineering Fracture Mechanics, 1988, doi: 10.1016/0013-7944(88)90181-6.
  • [13] B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, “Self-healing polymers and composites,” Annual Review of Materials Research, 2010, doi: 10.1146/annurev- matsci-070909-104532.
  • [14] D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: A review of recent developments,” Progress in Polymer Science (Oxford). 2008. doi: 10.1016/j.progpolymsci.2008.02.001.
  • [15] Y. Chen, A. M. Kushner, G. A. Williams, and Z. Guan, “Multiphase design of autonomic self-healing thermoplastic elastomers,” Nature Chemistry, 2012, doi: 10.1038/nchem.1314.
  • [16] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Self-healing of delamination fatigue cracks in carbon fibre-epoxy laminate using mendable thermoplastic,” Journal of Materials Science, vol. 47, no. 10, pp. 4449–4456, 2012, doi: 10.1007/s10853-012-6303-8.
  • [17] “Kendi Kendini İyileştiren Kompozitler Pazarı – Küresel Endüstri Eğilimleri ve 2028’e Kadar Tahmin | Veri Köprüsü Pazar Araştırması.” https://www.databridgemarketresearch.com/reports/global- self-healing-composites-market (accessed Aug. 16, 2021). [18] S. K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications. 2009. doi: 10.1002/9783527625376.
  • [19] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 36, no. 11, pp. 1525–1535, Nov. 2005, doi: 10.1016/j.compositesa.2005.02.007.
  • [20] D. G Bekas, K. Tsirka, D. Baltzis, and A. S. Paipetis, “Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques,” Composites Part B: Engineering, vol. 87, pp. 92–119, 2016, doi: 10.1016/j.compositesb.2015.09.057.
  • [21] N. J. Kanu, E. Gupta, U. K. Vates, and G. K. Singh, “Self-healing composites: A state-of-the-art review,” Composites Part A: Applied Science and Manufacturing. 2019. doi: 10.1016/j.compositesa.2019.04.012.
  • [22] E. N. Brown, S. R. White, and N. R. Sottos, “Microcapsule induced toughening in a self-healing polymer composite,” Journal of Materials Science, 2004, doi: 10.1023/B:JMSC.0000016173.73733.dc.
  • [23] M. R. Kessler, N. R. Sottos, and S. R. White, “Self-healing structural composite materials,” Composites Part A: Applied Science and Manufacturing, vol. 34, no. 8, pp. 743–753, 2003, doi: 10.1016/S1359- 835X(03)00138-6.
  • [24] S. R. White et al., “Autonomic healing of polymer composites,” Nature. 2001. doi: 10.1038/35057232.
  • [25] J. W. C. Pang and I. P. Bond, “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility,” Composites Science and Technology, 2005, doi: 10.1016/j.compscitech.2005.03.008.
  • [26] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, “Self-healing materials with microvascular networks,” Nature Materials, 2007, doi: 10.1038/nmat1934.
  • [27] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, “Self-healing materials with microvascular networks,” Nature Materials, 2007, doi: 10.1038/nmat1934.
  • [28] A. Ebrahiminiya, M. Khorram, S. Hassanajili, and M. Javidi, “Modeling and optimization of the parameters affecting the in-situ microencapsulation process for producing epoxy-based self- healing anti-corrosion coatings,” Particuology, 2018, doi: 10.1016/j.partic.2017.01.010.
  • [29] H. Li, Y. Cui, Z. Li, Y. Zhu, and H. Wang, “Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings,” Progress in Organic Coatings, 2018, doi: 10.1016/j.porgcoat.2017.11.019.
  • [30] X. M. Tong, T. Zhang, M. Z. Yang, and Q. Zhang, “Preparation and characterization of novel melamine modified poly(urea-formaldehyde) self-repairing microcapsules,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, doi: 10.1016/j.colsurfa.2010.09.009.
  • [31] E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, “In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene,” Journal of Microencapsulation, 2003, doi: 10.1080/0265204031000154160.
  • [32] S. K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications. 2009. doi: 10.1002/9783527625376. [33] D. Y. Zhu, M. Z. Rong, and M. Q. Zhang, “Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation,” Progress in Polymer Science. 2015. doi: 10.1016/j.progpolymsci.2015.07.002.
  • [34] T. C. Mauldin and M. R. Kessler, “Self-healing polymers and composites,” International Materials Reviews, 2010, doi: 10.1179/095066010X12646898728408.
  • [35] L. Zhai, A. Narkar, and K. Ahn, “Self-healing polymers with nanomaterials and nanostructures,” Nano Today, vol. 30. Elsevier B.V., p. 100826, Feb. 01, 2019. doi: 10.1016/j.nantod.2019.100826.
  • [36] G. Postiglione, S. Turri, and M. Levi, “Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels-Alder reaction,” Progress in Organic Coatings, vol. 78, pp. 526–531, 2015, doi: 10.1016/j.porgcoat.2014.05.022.
  • [37] X. Chen et al., “A thermally re-mendable cross-linked polymeric material,” Science, 2002, doi: 10.1126/science.1065879.
  • [38] S. J. Kalista and T. C. Ward, “Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 405–411, 2007, doi: 10.1098/rsif.2006.0169.
  • [39] R. J. Varley and S. van der Zwaag, “Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration,” Acta Materialia, 2008, doi: 10.1016/j.actamat.2008.08.008.
  • [40] R. P. Sijbesma et al., “Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding,” Science, 1997, doi: 10.1126/science.278.5343.1601.
  • [41] Chan-Moon Chung, † Young-Suk Roh, † and Sung-Youl Cho, and J.-G. Kim‡, “Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition,” 2004, doi: 10.1021/CM049394.
  • [42] N. Oya, P. Sukarsaatmadja, K. Ishida, and N. Yoshie, “Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups,” Polymer Journal, 2012, doi: 10.1038/pj.2012.18.
  • [43] J. Ling, M. Z. Rong, and M. Q. Zhang, “Coumarin imparts repeated photochemical remendability to polyurethane,” Journal of Materials Chemistry, 2011, doi: 10.1039/c1jm13467a.
  • [44] M. C. Li and A. C. Loos, “The Effects of Processing on Interply Bond Strength of Thermoplastic Composites,” Journal of Reinforced Plastics and Composites, 1992, doi: 10.1177/073168449201101006.
  • [45] S. A. Hayes, W. Zhang, M. Branthwaite, and F. R. Jones, “Self-healing of damage in fibre-reinforced polymer-matrix composites,” Journal of the Royal Society Interface, 2007, doi: 10.1098/rsif.2006.0209.
  • [46] D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: A review of recent developments,” Progress in Polymer Science (Oxford). 2008. doi: 10.1016/j.progpolymsci.2008.02.001.
  • [47] G. Rivero, L. T. T. Nguyen, X. K. D. Hillewaere, and F. E. du Prez, “One-pot thermo-remendable shape memory polyurethanes,” Macromolecules, 2014, doi: 10.1021/ma402471c.
  • [48] P. C. JE et al., “Manufacturing challenges in self-healing technology for polymer composites — a review,” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 7370–7379, Jul. 2020, doi: 10.1016/j.jmrt.2020.04.082.
  • [49] N. Zhong and W. Post, “Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review,” Composites Part A: Applied Science and Manufacturing. 2015. doi: 10.1016/j.compositesa.2014.11.028.
  • [50] G. Rivero, L. T. T. Nguyen, X. K. D. Hillewaere, and F. E. Du Prez, “One-pot thermo-remendable shape memory polyurethanes,” Macromolecules, 2014, doi: 10.1021/ma402471c.
  • [51] S. Meure, D. Y. Wu, and S. Furman, “Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins,” Acta Materialia, vol. 57, no. 14, pp. 4312–4320, Aug. 2009, doi: 10.1016/j.actamat.2009.05.032.
  • [52] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Self-healing of delamination cracks in mendable epoxy matrix laminates using poly[ethylene-co-(methacrylic acid)] thermoplastic,” Composites Part A: Applied Science and Manufacturing, 2012, doi: 10.1016/j.compositesa.2012.03.010.
  • [53] C. L. Nogueira, J. M. F. de Paiva, and M. C. Rezende, “Effect of the interfacial adhesion on the tensile and impact properties of carbon fiber reinforced polypropylene matrices,” Materials Research, 2005, doi: 10.1590/S1516-14392005000100015.
  • [54] G. Li and H. Meng, Recent advances in smart self-healing polymers and composites. 2015. doi: 10.1016/C2013-0-16515-4.
  • [55] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Mechanical properties of mendable composites containing self-healing thermoplastic agents,” Composites Part A: Applied Science and Manufacturing, 2014, doi: 10.1016/j.compositesa.2014.05.015.
  • [56] I. L. Hia, V. Vahedi, and P. Pasbakhsh, “Self-Healing Polymer Composites: Prospects, Challenges, and Applications,” Polymer Reviews. 2016. doi: 10.1080/15583724.2015.1106555.
  • [57] K. Pingkarawat and A. P. Mouritz, “Stitched mendable composites: Balancing healing performance against mechanical performance,” Composite Structures, 2015, doi: 10.1016/j.compstruct.2014.12.034.
  • [58] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Composites Part A: Applied Science and Manufacturing, 2013, doi: 10.1016/j.compositesa.2013.02.014.
  • [59] M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, “The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates,” Materials and Design, 2016, doi: 10.1016/j.matdes.2016.07.093.
  • [60] Khomkrit Pingkarawat, “THERMOPLASTIC FIBRE STITCHING: A NEW SELF-HEALING METHOD FOR CARBON-EPOXY COMPOSITES,” 2013.
  • [61] R. J. Varley, D. A. Craze, A. P. Mouritz, and C. H. Wang, “Thermoplastic healing in epoxy networks: Exploring performance and mechanism of alternative healing agents,” Macromolecular Materials and Engineering, 2013, doi: 10.1002/mame.201200394.
  • [62] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Healing of fatigue delamination cracks in carbon-epoxy composite using mendable polymer stitching,” Journal of Intelligent Material Systems and Structures, vol. 25, no. 1, pp. 75–86, 2014, doi: 10.1177/1045389X13505005.
  • [63] S. Meure, S. Furman, and S. Khor, “Poly[ethylene-co-(methacrylic acid)] healing agents for mendable carbon fiber laminates,” Macromolecular Materials and Engineering, vol. 295, no. 5, pp. 420–424, 2010, doi: 10.1002/mame.200900345.
  • [64] F. Dau, M. L. Dano, and Y. Duplessis-Kergomard, “Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading,” Composite Structures, 2016, doi: 10.1016/j.compstruct.2016.06.034.
  • [65] H. Ahn and W. R. Yu, “Mechanical analysis of 3D braided and woven composites using fiber-based continuum analysis,” Composite Structures, 2017, doi: 10.1016/j.compstruct.2016.11.003.
  • [66] A. Saboktakin, “3D textile preforms and composites for aircraft strcutures: A review,” International Journal of Aviation, Aeronautics, and Aerospace, 2019, doi: 10.15394/ijaaa.2019.1299.
  • [67] A. R. Horrocks and S. C. Anand, Handbook of technical textiles. 2000. doi: 10.1533/9781855738966.
  • [68] L. K. Jain, K. A. Dransfield, and Y. W. Mai, “On the effects of stitching in CFRPs - II. Mode II delamination toughness,” Composites Science and Technology, 1998, doi: 10.1016/S0266-3538(97)00186-3.
  • [69] C. Sickinger and A. Herrmann, “Structural Stitching as a Method to design High-Performance Composites in Future.”
  • [70] Y. Tada and T. Ishikawa, “Experimental evaluation of the effects of stitching on CFRP laminate specimens with various shapes and loadings,” Mechanical and corrosion properties. Series A, Key engineering materials, 1989, doi: 10.4028/www.scientific.net/kem.37.305.
  • [71] T. J. Kang and S. ho Lee, “Effect of Stitching on the Mechanical and Impact Properties of Woven Laminate Composite,” Journal of Composite Materials, 1994, doi: 10.1177/002199839402801604.
  • [72] W. C. Chung, B. Z. Jang, T. C. Chang, L. R. Hwang, and R. C. Wilcox, “Fracture behavior in stitched multidirectional composites,” Materials Science and Engineering A, 1989, doi: 10.1016/0921- 5093(89)90355-9.
  • [73] K. Dransfield, C. Baillie, and Y. W. Mai, “Improving the delamination resistance of CFRP by stitching-a review,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)90019-1.
  • [74] L. K. Jain and Y. W. Mai, “On the effect of stitching on mode I delamination toughness of laminated composites,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)90103-1
  • [75] A. P. Mouritz, “The damage to stitched GRP laminates by underwater explosion shock loading,” Composites Science and Technology, 1995, doi: 10.1016/0266-3538(95)00122-0.
  • [76] K. Pingkarawat and A. P. Mouritz, “Stitched mendable composites: Balancing healing performance against mechanical performance,” Composite Structures, 2015, doi: 10.1016/j.compstruct.2014.12.034.
  • [77] K. Dransfield, C. Baillie, and Y. W. Mai, “On stitching as a method for improving the delamination resistance of CFRPs,” 1993.
  • [78] H. B. Dexter and J. G. Funk, “Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy,” Jan. 1986, Accessed: Jun. 24, 2020. [Online]. Available: http://ntrs.nasa.gov/search.jsp?R=19860054139
  • [79] “5th Australian Aeronautical Conference: Preprints of Papers - Tensile Properties of Thin Stitched Carbon/Epoxy Composites (Engineering Collection) - Inform https://search.informit.com.au/documentSummary;dn=559510268154395;res=IELENG (accessed Dec. 14, 2019).
  • [80] K. W. Furrow, A. C. Loos, and R. J. Cano, “Environmental effects on stitched RTM textile composites,” Journal of Reinforced Plastics and Composites, 1996, doi: 10.1177/073168449601500403.
  • [81] Y. Yang and M. W. Urban, “Self-healing polymeric materials,” Chemical Society Reviews, 2013, doi: 10.1039/c3cs60109a.
  • [82] V. Kostopoulos, A. Kotrotsos, S. Tsantzalis, P. Tsokanas, T. Loutas, and A. W. Bosman, “Toughening and healing of continuous fibre reinforced composites by supramolecular polymers,” Composites Science and Technology, vol. 128, pp. 84–93, 2016, doi: 10.1016/j.compscitech.2016.03.021.
  • [83] L. W. McKeen, “Styrenic Plastics,” Fatigue and Tribological Properties of Plastics and Elastomers, pp. 51–71, Jan. 2010, doi: 10.1016/B978-0-08-096450-8.00004-1.
  • [84] A. Emblem, “Plastics properties for packaging materials,” Packaging Technology, pp. 287–309, Jan. 2012, doi: 10.1533/9780857095701.2.287.
  • [85] J. Izdebska, “Corona Treatment,” Printing on Polymers: Fundamentals and Applications, pp. 123–142, Jan. 2016, doi: 10.1016/B978-0-323-37468-2.00008-7.
  • [86] S. Meure, R. J. Varley, D. Y. Wu, S. Mayo, K. Nairn, and S. Furman, “Confirmation of the healing mechanism in a mendable EMAA-epoxy resin,” European Polymer Journal, 2012, doi: 10.1016/j.eurpolymj.2011.11.021.
  • [87] C. Mariano Domingues da Silva, A. L. A. Silva, R. Pacheco, and A. M. Rocco, “Conductivity and Thermal Behaviour of Sulfonated ABS Membranes for Fuel Cell Applications,” ECS Transactions, 2019, doi: 10.1149/1.3210642.
  • [88] S. Rashtchi, P. D. Ruiz, R. Wildman, and I. Ashcroft, “Measurement of moisture content in photovoltaic panel encapsulants using spectroscopic optical coherence tomography: a feasibility study,” 2012. doi: 10.1117/12.928959.
  • [89] N. K. James, U. Lafont, S. van der Zwaag, and W. A. Groen, “Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites,” Smart Materials and Structures, 2014, doi: 10.1088/0964-1726/23/5/055001.
  • [90] K. Pingkarawat, C. H. Wang, R. J. Varley, and A. P. Mouritz, “Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Composites Part A: Applied Science and Manufacturing, 2013, doi: 10.1016/j.compositesa.2013.02.014.
  • [91] “Thermoplastic fibre stitching: a new self-healing method for carbon-epoxy composites.” https://www.researchgate.net/publication/257836051_Thermoplastic_fibre_stitching_a_new_self- healing_method_for_carbon-epoxy_composites (accessed Feb. 18, 2020).
  • [92] T. Yang, C. H. Wang, J. Zhang, S. He, and A. P. Mouritz, “Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2012.05.012.
  • [93] T. Yang, C. H. Wang, J. Zhang, S. He, and A. P. Mouritz, “Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2012.05.012.
  • [94] T. Yang, J. Zhang, A. P. Mouritz, and C. H. Wang, “Healing of carbon fibre-epoxy composite T-joints using mendable polymer fibre stitching,” Composites Part B: Engineering, 2013, doi: 10.1016/j.compositesb.2012.08.022.
  • [95] A. M. Peterson, H. Kotthapalli, M. A. M. Rahmathullah, and G. R. Palmese, “Investigation of interpenetrating polymer networks for self-healing applications,” Composites Science and Technology, 2012, doi: 10.1016/j.compscitech.2011.11.022.
  • [96] S. Feih and A. P. Mouritz, “Tensile properties of carbon fibres and carbon fibre-polymer composites in fire,” Composites Part A: Applied Science and Manufacturing, 2012, doi: 10.1016/j.compositesa.2011.06.016.
  • [97] ASTM D3039, “ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials -D3039 2008, Annual Book of ASTM Standards”, doi: 10.1520/D3039_D3039M-17.
  • [98] “ASTM D5528 - 01 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.” https://www.astm.org/DATABASE.CART/HISTORICAL/D5528-01.htm (accessed Dec. 14, 2019).
  • [99] L. K. Jain and Y. W. Mai, “On the effect of stitching on mode I delamination toughness of laminated composites,” Composites Science and Technology, 1994, doi: 10.1016/0266-3538(94)901031.
  • [100] “ASTM D7264 / D7264M - 07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials.” https://www.astm.org/DATABASE.CART/HISTORICAL/D7264D7264M-07.htm (accessed Dec. 14, 2019).
There are 98 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Articles
Authors

Gökçenur Sağlam 0000-0003-2267-3751

Ayşe Bedeloğlu 0000-0003-2960-5188

Early Pub Date October 11, 2022
Publication Date December 31, 2022
Published in Issue Year 2022Volume: 6 Issue: 2

Cite

APA Sağlam, G., & Bedeloğlu, A. (2022). Self-Healing Carbon Fiber Composites with Thermoplastic Polymers. Journal of Innovative Science and Engineering, 6(2), 201-219. https://doi.org/10.38088/jise.960553
AMA Sağlam G, Bedeloğlu A. Self-Healing Carbon Fiber Composites with Thermoplastic Polymers. JISE. December 2022;6(2):201-219. doi:10.38088/jise.960553
Chicago Sağlam, Gökçenur, and Ayşe Bedeloğlu. “Self-Healing Carbon Fiber Composites With Thermoplastic Polymers”. Journal of Innovative Science and Engineering 6, no. 2 (December 2022): 201-19. https://doi.org/10.38088/jise.960553.
EndNote Sağlam G, Bedeloğlu A (December 1, 2022) Self-Healing Carbon Fiber Composites with Thermoplastic Polymers. Journal of Innovative Science and Engineering 6 2 201–219.
IEEE G. Sağlam and A. Bedeloğlu, “Self-Healing Carbon Fiber Composites with Thermoplastic Polymers”, JISE, vol. 6, no. 2, pp. 201–219, 2022, doi: 10.38088/jise.960553.
ISNAD Sağlam, Gökçenur - Bedeloğlu, Ayşe. “Self-Healing Carbon Fiber Composites With Thermoplastic Polymers”. Journal of Innovative Science and Engineering 6/2 (December 2022), 201-219. https://doi.org/10.38088/jise.960553.
JAMA Sağlam G, Bedeloğlu A. Self-Healing Carbon Fiber Composites with Thermoplastic Polymers. JISE. 2022;6:201–219.
MLA Sağlam, Gökçenur and Ayşe Bedeloğlu. “Self-Healing Carbon Fiber Composites With Thermoplastic Polymers”. Journal of Innovative Science and Engineering, vol. 6, no. 2, 2022, pp. 201-19, doi:10.38088/jise.960553.
Vancouver Sağlam G, Bedeloğlu A. Self-Healing Carbon Fiber Composites with Thermoplastic Polymers. JISE. 2022;6(2):201-19.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.