Year 2020, Volume 4 , Issue 2, Pages 69 - 83 2020-12-14

Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors

Yasin ALTIN [1] , Ayşe BEDELOĞLU [2]


Polyacrylonitrile (PAN) nanofibers are one of the primary precursors in the production of carbon nanofibers. The nanofiber morphology is significantly affected by the process parameters such as polymer concentration, distance, applied voltage and feed rate during the production of PAN nanofibers obtained by the solution-based electrospinning method, and these parameters should be optimized properly. In this study, firstly PAN nanofiber production parameters were optimized, and then homogeneous and thin PAN nanofibers produced in optimum conditions were used as the precursor in the production of carbon nanofibers. PAN nanofibers with a diameter of 233 nm were obtained at 7.5% PAN concentration in N,N-dimethylformamide (DMF), 28 kV applied voltage, 17.5 cm nozzle to collector distance, 2 ml/h feed rate and 500 rpm rotation speed of the aluminum drum. The carbon nanofiber diameters produced after the stabilization and carbonization processes were measured as 200 and 140 nm, respectively. The morphological, chemical and thermal properties of the produced nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR), thermogravimetric analyzer (TGA). Carbon nanofibers, which are made from optimized electrospun PAN nanofibers, can be used to construct supercapacitors in future studies.
Carbonization, Carbon Nanofiber, Electrospinning, PAN Nanofiber, Supercapacitor
  • [1] Jadhav, S.A., S.B. Dhavale, A.H. Patil and P.S. Patil, (2019). Brief overview of electrospun polyacrylonitrile carbon nanofibers: Preparation process with applications and recent trends. Material Design & Processing Communications, 1(5): https://doi.org/10.1002/mdp2.83
  • [2] Gu, S.Y., J. Ren and Q.L. Wu, (2005). Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals, 155(1): 157–161
  • [3] Inagaki, M., Y. Yang and F. Kang, (2012). Carbon nanofibers prepared via electrospinning. Advanced Materials, 24(19): 2547–2566
  • [4] Kim, C. and K.S. Yang, (2003). Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied Physics Letters, 83(6): 1216–1218
  • [5] Kim, C., K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim and M. Endo, (2006). Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Advanced Functional Materials, 16(18): 2393–2397
  • [6] Wang, Z., S. Wu, J. Wang, A. Yu and G. Wei, (2019). Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials, 9(7): 1045
  • [7] Lu, W., T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasem and M. Fan, (2017). Progress in catalytic synthesis of advanced carbon nanofibers. Journal of Materials Chemistry A, 5(27): 13863–13881
  • [8] Thamer, B.M., H. El-Hamshary, S.S. Al-Deyab and M.H. El-Newehy, (2019). Functionalized electrospun carbon nanofibers for removal of cationic dye. Arabian Journal of Chemistry, 12(6): 747–759
  • [9] Ismar, E. and A.S. Sarac, (2016). Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. Polymers for Advanced Technologies, 27(10): 1383–1388
  • [10] Ma, C., X. Wang, Y. Ma, J. Sheng, Y. Li, S. Li and J. Shi, (2015). Carbon nanofiber/graphene composite paper for flexible supercapacitors with high volumetric capacitance. Materials Letters, 145: 197–200
  • [11] Ünsal, Ö.F., Y. Altın and A. Çelik Bedeloğlu, Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. Journal of Applied Polymer Science, 0(0): 48517
  • [12] Can, M.F., L. Avdan and A.C. Bedeloglu, (2015). Properties of biodegradable PVA/sepiolite-based nanocomposite fiber mats. Polymer Composites, 36(12): 2334–2342
  • [13] Bedeloglu, A.C. and Z.I. Cin, (2019). Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers. Journal of Polymer Engineering, 39(8): 752–761
  • [14] Bhullar, S.K., D. Rana, H. Lekesiz, A.C. Bedeloglu, J. Ko, Y. Cho, Z. Aytac, T. Uyar, M. Jun and M. Ramalingam, (2017). Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Materials Science and Engineering C, 81: 334–340
  • [15] Tas, M., H. Memon, F. Xu, I. Ahmed and X. Hou, (2020). Electrospun nanofibre membrane based transparent slippery liquid-infused porous surfaces with icephobic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585: 124177
  • [16] Tas, M., F. Xu, I. Ahmed and X. Hou, (2020). One-step fabrication of superhydrophobic P(VDF-co-HFP) nanofibre membranes using electrospinning technique. Journal of Applied Polymer Science, 137(24): 48817
  • [17] Wu, M., Q. Wang, K. Li, Y. Wu and H. Liu, (2012). Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97(8): 1511–1519
  • [18] Al-Hazeem, N.Z.A., (2018). Nanofibers and Electrospinning Method, In Nov. Nanomater. - Synth. Appl., George Kyzas, ed., InTechOpen, pp: 191–210
  • [19] Dasdemir, M., M. Topalbekiroglu and A. Demir, (2013). Electrospinning of thermoplastic polyurethane microfibers and nanofibers from polymer solution and melt. Journal of Applied Polymer Science, 127(3): 1901–1908
  • [20] Beachley, V. and X. Wen, (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering C, 29(3): 663–668
  • [21] Bakar, S.S.S., K.C. Fong, A. Eleyas and M.F.M. Nazeri, (2018). Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers, In IOP Conf. Ser. Mater. Sci. Eng., , p: 012076
  • [22] Homayoni, H., S.A.H. Ravandi and M. Valizadeh, (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3): 656–661
  • [23] Huan, S., G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu and Q. Wang, (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5): 2718–2734
  • [24] Ojha, S., (2017). Structure-property relationship of electrospun fibers, In Electrospun Nanofibers, Mehdi Afshari, ed., Woodhead Publishing, pp: 239–253
  • [25] Salas, C., (2017). Solution electrospinning of nanofibers, In Electrospun Nanofibers, M. Afshari, ed., Woodhead Publishing, pp: 73–108
  • [26] McKee, M.G., G.L. Wilkes, R.H. Colby and T.E. Long, (2004). Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 37(5): 1760–1767
  • [27] Korycka, P., A. Mirek, K. Kramek-Romanowska, M. Grzeczkowicz and D. Lewinska, (2018). Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design. Beilstein Journal of Nanotechnology, 9(1): 2466–2478
  • [28] Yuan, X.Y., Y.Y. Zhang, C. Dong and J. Sheng, (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11): 1704–1710
  • [29] İkiz, Y., (2009). Elektro Çekim Yöntemi İşlem Parametrelerinin PVA Nanolif Morfolojisine Etkileri Effect of Process Parameters on Morphology of Electrospun PVA Nanofibers. Pamukkale University Journal of Engineering Sciences, 15(3): 363–369
  • [30] Tang, X.P., N. Si, L. Xu and H.Y. Liu, (2014). Effect of flow rate on diameter of electrospun nanoporous fibers. Thermal Science, 18(5): 1447–1449
  • [31] Megelski, S., J.S. Stephens, D. Bruce Chase and J.F. Rabolt, (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22): 8456–8466
  • [32] Mujica-Garcia, A., I. Navarro-Baena, J.M. Kenny and L. Peponi, (2014). Influence of the processing parameters on the electrospinning of biopolymeric fibers. Journal of Renewable Materials, 2(1): 23–34
  • [33] Chen, Y.P., H.Y. Liu, Y.W. Liu, T.Y. Lee and S.J. Liu, (2019). Determination of electrospinning parameters’ strength in Poly(D,L)-lactide-co-glycolide micro/nanofiber diameter tailoring. Journal of Nanomaterials, 2019:
  • [34] Khajavi, R. and M. Abbasipour, (2017). Controlling nanofiber morphology by the electrospinning process, In Electrospun Nanofibers, , pp: 109–123
  • [35] SalehHudin, H.S., E.N. Mohamad, W.N.L. Mahadi and A. Muhammad Afifi, (2018). Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 33(5): 479–498
  • [36] Sener, A.G., A.S. Altay and F. Altay, (2011). Effect of voltage on morphology of electrospun nanofibers, In ELECO 2011 - 7th Int. Conf. Electr. Electron. Eng., , pp: 324-I-328
  • [37] Lee, J.S., K.H. Choi, H. Do Ghim, S.S. Kim, D.H. Chun, H.Y. Kim and W.S. Lyoo, (2004). Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 93(4): 1338–1346
  • [38] Wu, Y.K., L. Wang, J. Fan, W. Shou, B.M. Zhou and Y. Liu, (2018). Multi-jet electrospinning with auxiliary electrode: The influence of solution properties. Polymers, 10(6): 572
  • [39] Liu, Z., K. Ju, Z. Wang, W. Li, H. Ke and J. He, (2019). Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. Nanoscale Research Letters, 14(1): 310
  • [40] Li, J., S. Su, L. Zhou, V. Kundrát, A.M. Abbot, F. Mushtaq, D. Ouyang, D. James, D. Roberts and H. Ye, (2013). Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. Journal of Applied Physics, 113(2): 024313
  • [41] Abeykoon, N.C., J.S. Bonso and J.P. Ferraris, (2015). Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Advances, 5(26): 19865–19873
  • [42] Xu, W., B. Xin and X. Yang, (2020). Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose, 27: 3789–3804
  • [43] Duan, Q., B. Wang and H. Wang, (2012). Effects of stabilization temperature on structures and properties of polyacrylonitrile (PAN)-based stabilized electrospun nanofiber mats. Journal of Macromolecular Science, Part B: Physics, 51(12): 2428–2437
  • [44] Gergin, I., E. Ismar and A.S. Sarac, (2017). Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): A spectroscopic and electrochemical study. Beilstein Journal of Nanotechnology, 8(1): 1616–1628
  • [45] Sabantina, L., R. Böttjer, D. Wehlage, T. Grothe, M. Klöcker, F.J. García-Mateos, J. Rodríguez-Mirasol, T. Cordero and A. Ehrmann, (2019). Morphological study of stabilization and carbonization of polyacrylonitrile/TiO2 nanofiber mats. Journal of Engineered Fibers and Fabrics, https://doi.org/10.1177/1558925019862242
  • [46] Sabantina, L., D. Wehlage, M. Klöcker, A. Mamun, T. Grothe, F.J. García-Mateos, J. Rodríguez-Mirasol, T. Cordero, K. Finsterbusch and A. Ehrmann, (2018). Stabilization of electrospun PAN/gelatin nanofiber mats for carbonization. Journal of Nanomaterials, Advanced Hybrid Functional Materials for Energy Applications Special Issue, https://doi.org/10.1155/2018/6131085
  • [47] Sabantina, L., M. Klöcker, M. Wortmann, J.R. Mirasol, T. Cordero, E. Moritzer, K. Finsterbusch and A. Ehrmann, (2019). Stabilization of polyacrylonitrile nanofiber mats obtained by needleless electrospinning using dimethyl sulfoxide as solvent. Journal of Industrial Textiles, DOI: 1528083718825315
  • [48] Aksoy, O.E., B. Ates and I. Cerkez, (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52: 10013–10022
Primary Language en
Subjects Engineering
Journal Section Research Articles
Authors

Orcid: 0000-0002-8554-3025
Author: Yasin ALTIN
Institution: BURSA TECHNICAL UNIVERSITY
Country: Turkey


Orcid: 0000-0003-2960-5188
Author: Ayşe BEDELOĞLU (Primary Author)
Institution: BURSA TEKNİK ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Bursa Technical University Scientific Research Project (BAP)
Project Number 172D32
Thanks This work was supported as a PhD research project by Bursa Technical University Scientific Research Project (BAP) Unit, Project Number: 172D32. We owe special thanks to Prof. Dr. Ali Demir and ITU-TEMAG lab for their help on tube furnace usage.
Dates

Publication Date : December 14, 2020

Bibtex @research article { jise726792, journal = {Journal of Innovative Science and Engineering}, issn = {}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Technical University}, year = {2020}, volume = {4}, pages = {69 - 83}, doi = {10.38088/jise.726792}, title = {Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors}, key = {cite}, author = {Altın, Yasin and Bedeloğlu, Ayşe} }
APA Altın, Y , Bedeloğlu, A . (2020). Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors . Journal of Innovative Science and Engineering , 4 (2) , 69-83 . DOI: 10.38088/jise.726792
MLA Altın, Y , Bedeloğlu, A . "Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors" . Journal of Innovative Science and Engineering 4 (2020 ): 69-83 <http://jise.btu.edu.tr/en/pub/issue/56253/726792>
Chicago Altın, Y , Bedeloğlu, A . "Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors". Journal of Innovative Science and Engineering 4 (2020 ): 69-83
RIS TY - JOUR T1 - Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors AU - Yasin Altın , Ayşe Bedeloğlu Y1 - 2020 PY - 2020 N1 - doi: 10.38088/jise.726792 DO - 10.38088/jise.726792 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 69 EP - 83 VL - 4 IS - 2 SN - -2602-4217 M3 - doi: 10.38088/jise.726792 UR - https://doi.org/10.38088/jise.726792 Y2 - 2020 ER -
EndNote %0 Journal of Innovative Science and Engineering Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors %A Yasin Altın , Ayşe Bedeloğlu %T Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors %D 2020 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 4 %N 2 %R doi: 10.38088/jise.726792 %U 10.38088/jise.726792
ISNAD Altın, Yasin , Bedeloğlu, Ayşe . "Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors". Journal of Innovative Science and Engineering 4 / 2 (December 2020): 69-83 . https://doi.org/10.38088/jise.726792
AMA Altın Y , Bedeloğlu A . Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors. JISE. 2020; 4(2): 69-83.
Vancouver Altın Y , Bedeloğlu A . Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors. Journal of Innovative Science and Engineering. 2020; 4(2): 69-83.
IEEE Y. Altın and A. Bedeloğlu , "Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors", Journal of Innovative Science and Engineering, vol. 4, no. 2, pp. 69-83, Dec. 2020, doi:10.38088/jise.726792