Review
BibTex RIS Cite

Review of Batteries Thermal Problems and Thermal Management Systems

Year 2017, Volume: 1 Issue: 1, 35 - 55, 26.12.2017

Abstract

 Electric vehicles, lithium-based batteries that are used in solar energy storage are known from these products. Especially, in electric (EV), hybrid (HEV) and fuel cell vehicles (FCEV), battery technology has been an important contributor to reducing toxic gas emissions and using energy efficiently. In this study, we have examined some of the problems with associated solutions for battery heat management and what information is needed for proper design of battery heat management. Later we have examined the types of batteries which are used in electric vehicles and the characteristics of these batteries. We have mentioned about battery thermal management varieties such as air cooling, liquid cooling, phase change material (PCM), thermoelectric module and heat pipe. Finally, we have provided information on the shape of the battery pack and the thermal management effect of the battery packing.   

References

  • [1] Z.X. Jia S, Peng H, Liu S. (2009). Review of transportation and energy consumption related search, J. Transp. Syst. Eng. Inf. Technol. 9(3): 6–16.
  • [2] Dhameja, S. (2002). Electric Vehicle Battery Systems (Book), Newnes.
  • [3] Zhao, J., Rao, Z., Huo, Y., Liu, X., Li, Y. (2015). Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles, Appl. Therm. Eng. 85:33-43. doi:10.1016/j.applthermaleng.
  • [4] Li, J., Zhu, Z. (2014). Battery Thermal Management Systems of Electric Vehicles. Division of Vehicle Engineering & Autonomous Systems. Master’s Thesis. 42
  • [5] Maggetto, G., Van Mierlo, J. (2001). 3.Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles : state of the art and perspectives, Ann. Chim. Sci. Des Matériaux. 26: 9–26.
  • [6] Skerlos, S.J., Winebrake, J.J. (2010). Targeting plug-in hybrid electric vehicle policies to increase social benefits, Energy Policy. 38:705-708. doi:10.1016/j.enpol.11.014.
  • [7] Amjad, S., Neelakrishnan, S., Rudramoorthy, R. (2010). Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles, Renewable & Sustainable Energy Reviews. 14:1104-1110. doi:10.1016/j.rser.
  • [8] Cooper, A. 2003. Development of a lead-acid battery for a hybrid electric vehicle, Journal of Power Sources. 133:116-125. doi:10.1016/j.jpowsour.
  • [9] Masayoshi, W. (2009). Research and development of electric vehicles for clean transportation, J. Environ. Sci. 21:745–749. doi:10.1016/S1001.
  • [10] Nishihara, M. (2010). Hybrid or electric vehicles ? A real options perspective, Oper. Res. Lett. 38:87–93. doi:10.1016/j.orl.
  • [11] Silva, C., Baptista, P. (2010). Plug-in hybrid fuel cell vehicles market penetration scenarios, International Journal of Hydrogen Energy, 35:10024–10030. doi:10.1016/j.ijhydene. [12] Avadikyan, A., Llerena, P. (2010). Technological Forecasting & Social Change A real options reasoning approach to hybrid vehicle investments, Technol. Forecast. Soc. Chang. 77:649-661. doi:10.1016/j.techfore.
  • [13] Choi, H., Oh, I. (2010). Analysis of product efficiency of hybrid vehicles and promotion policies $, Energy Policy. 38:2262-2271. doi:10.1016/j.enpol.
  • [14] Ogden, J.W. Ã, J., Sperling, D., Burke, A. (2008). The future of electric two-wheelers and electric vehicles in China, Energy Policy. 36:2544-2555. doi:10.1016/j.enpol.
  • [15] Poursamad, A., Montazeri, M. (2008). Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles, Control Engineering Practice. 16:861–873. doi:10.1016/j.conengprac.
  • [16] Kawatsu, S. (1998). Advanced PEFC development for fuel cell powered vehicles, Journal of Power Sources. 71:150-155.
  • [17] Schell, A., Peng, H., Tran, D., Stamos, E., Lin, C., Joong, M. (2005). Modelling and control strategy development for fuel cell electric vehicles, Annual Reviews in Control. 29:159-168. doi:10.1016/j.arcontrol.
  • [18] Eaves, S., Eaves, J. (2004). Short communication A cost comparison of fuel-cell and battery electric vehicles, Journal of Power Sources. 130:208–212. doi:10.1016/j.jpowsour.
  • [19] Bradley, T.H., Quinn, C.W. (2010). Analysis of plug-in hybrid electric vehicle utility factors, J. Power Sources. 195:5399–5408. doi:10.1016/j.jpowsour.
  • [20] Goldman, J. (2014). Comparing Electric Vehicles: Hybrid vs. BEV vs. PHEV vs. FCEV - The Equation. [Blog] Union of Concerned Scientists.
  • [21] Khateeb, S.A., Farid, M.M., Selman, J.R., Al-hallaj, S. (2004). Design and simulation of a lithiumion battery with a phase change material thermal management system for an electric scooter, Journal of Power Sources. 128:292–307. doi:10.1016/j.jpowsour.
  • [22] Pesaran, A.A., Renewable, N. (2016). Battery Thermal Management in EVs and HEVs : Issues and Solutions Battery Thermal Management in EVs and HEVs : Issues and Solutions. National Renewable Energy Laboratory. http://www.ctts.nrel.gov/BTM
  • [23] Pesaran, A. (2001). Battery Thermal Management in EVs and HEVs : Issues and Solutions. Adv. Automot. Batter. Conf.10.
  • [24] Selman, J.R., Al, S., Uchida, I., Hirano, Y. (2001). Cooperative research on safety fundamentals of lithium batteries, Journal of Power Sources. 98:726-732.
  • [25] Williford, R.E., Viswanathan, V., Zhang, J. (2009). Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries, Journal of Power Sources. 189:101-107. doi:10.1016/j.jpowsour.
  • [26] Lin, Q., Yixiong, T., Ruizhen, Q., Zuomin, Z., Youliang, D., Jigiang, W. (1995). General safety considerations for high power Li/SOC12 batteries, Journal of Power Sources. 54:127-133.
  • [27] Nelson, R.F. (2000). Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources. 91:2–26.
  • [28] Saito, Y. (2005). Thermal behaviors of lithium-ion batteries during high-rate pulse cycling, Journal of Power Sources. 146:770-774. doi:10.1016/j.jpowsour.
  • [29] Maleki, H., Selman, J.R., Dinwiddie, R.B., Wang, H. (2001). High thermal conductivity negative electrode material for lithium-ion batteries, Journal of Power Sources. 94:26–35.
  • [30] Pesaran, A.A. (2002). Battery thermal models for hybrid vehicle simulations, Journal of Power Sources. 110:377–382.
  • [31] Pesaran, A.A., Burch, S.D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium; Orlando, Florida
  • [32] Sabbah, R., Kizilel, R., Selman, J.R. (2008). Active ( air-cooled ) vs . passive ( phase change material) thermal management of high power lithium-ion packs : Limitation of temperature rise and uniformity of temperature distribution. Journal of Power Sources.182:630–638. doi:10.1016/j.jpowsour.
  • [33] Rao, Z., Wang, S. (2011). A review of power battery thermal energy management, Renew. Sustain. Energy Rev. 15:4554-4571. doi:10.1016/j.rser.
  • [34] Offer, G.J., Howey, D., Contestabile, M., Clague, R., Brandon, N.P. (2010). Comparative analysis of battery electric , hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy. 38:24-29. doi:10.1016/j.enpol.
  • [35] Pesaran, A.A., Keyser, M. (2001). Thermal Characteristics of Selected EV and HEV Batteries. Sixteenth Annual Battery Conference on Applications and Advances. Pages: 219-225
  • [36] Pesaran, A.A., Burch, S., Keyser, M. (1999). An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs Preprint. Fourth Vehicle Thermal Management Systems Conference and Exhibition London, UK
  • [37] Pesaran, A., Burch, S., Rehn, R., Olson, J., Skellenger, G., Olson, J. (1998). Thermal Analysis and Performance of a Battery Pack for a Hybrid Electric Vehicle.15th Electric Vehicle Symposium Brussels, Belgium
  • [38] Keyser, M., Pesaran, A. (1999). Thermal Evaluation and Performance of High-Power Lithium-Ion Cells Reprint. 16th Electric Vehicle Conference.
  • [39] Sovani, S., Hu, X., Stanton, S. (2014). A Total Li-Ion Battery Simulation Solution. ANSYS: A Total Li-Ion Battery Simulation Solution. [40] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources. 208:210–224. doi:10.1016/j.jpowsour.
  • [41] Ku, J., Ullrich, M., Ko, U. (2002). High performance nickel-metal hydride and lithium-ion batteries, Journal of Power Sources.105:139-144.
  • [42] Majima, M., Ujiie, S., Yagasaki, E. (2001). Development of long life lithium ion battery for power storage. Journal of Power Sources. 101:0-6.
  • [43] Terada, N., Yanagi, T., Arai, S.,Yoshikawa, M., Ohta, K., Nakajima, N., Yanai, A., Arai, N. (2001). Development of lithium batteries for energy storage and EV applications. Journal of Power Sources. 100:80–92. [44] Baker, E., Chon, H., Keisler, J. (2010). Technological Forecasting & Social Change Battery technology for electric and hybrid vehicles : Expert views about prospects for advancement, Technol. Forecast. Soc. Chang. 77:1139–1146. doi:10.1016/j.techfore.
  • [45] Delucchi, M.A., Lipman, T.E. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D-Transport and Environment. 6:371–404.
  • [46] Kromer, M.A., Heywood, J. (2007). Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. The Engineering Systems Division on May 11, 2007 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy.
  • [47] Cooper, A., Moseley, P. (2009). Advanced Lead-Acid Batteries – the Way forward for Low-Cost Micro and Mild Hybrid Vehicles. World Electric Vehicle Journal. 3:61–68.
  • [48] Mcallister, S.D., Patankar, S.N., Cheng, I.F., Edwards, D.B. (2009). Lead dioxide coated hollow glass microspheres as conductive additives for lead acid batteries, Scr. Mater. 61:375–378. doi:10.1016/j.scriptamat.
  • [49] Moseley, P.T., Cooper, A. (1999). Progress towards an advanced lead-acid battery for use in electric vehicles, J. Power Sources. 78:244–250.
  • [50] Horiba, T., Hironaka, V., Matsumura, T., Kai, T., Koseki, M., Muranaka, Y. (2001). Manganese type lithium ion battery for pure and hybrid electric vehicles. Journal of Power Sources. 98:719– 721.
  • [51] Kise M., Yoshioka S., Hamano K., Takemura D., Nishimura T., Urushibata H., Yoshiyasu H. (2005). Development of new safe electrode for lithium rechargeable battery. Journal of Power Sources. 146:775–778. doi:10.1016/j.jpowsour.
  • [52] Sarre G, Blanchard P, Broussely M. (2004). Aging of lithium-ion batteries. Journal of Power Sources. 127:65–71. doi:10.1016/j.jpowsour.
  • [53] Vetter J., Novák P., Wagner M.R., Veit C., Möller K.C., Besenhard J.O., Winter M., WohlfahrtMehrens M., Vogler C., Hammouche A. (2005). Ageing mechanisms in lithium-ion batteries. J. Power Sources. 147:269–281. doi:10.1016/j.jpowsour.
  • [54] Will F.G. (1996). Impact of lithium abundance and cost on electric vehicle battery applications. Journal of Power Sources. 63:23–26.
  • [55] Kizilel R., Lateef A., Sabbah R., Farid M.M., Selman J.R., Al-hallaj S. (2008). Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources. 183:370–375. doi:10.1016/j.jpowsour.
  • [56] Jayaraman S., Anderson G., Kaushik S., Klaus P. (2011). Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle. SAE International in United States. in: doi:10.4271.
  • [57] Lin Q., Yixiong T., Ruizhen Q., Zuomin Z., Youliang D., Jigiang W. (1995). General safety considerations for high power Li/SOCl2 batteries. J. Power Sources. 54:127–133. doi:10.1016.
  • [58] R.F. Nelson, (2000), Power requirements for batteries in hybrid electric vehicles. J. Power Sources. 91:2–26. doi:10.1016/S0378-7753(00)00483-3.
  • [59] Chen S.C., Wan C.C., Wang Y.Y. (2005). Thermal analysis of lithium-ion batteries. Journal of Power Sources. 140:111–124. doi:10.1016/j.jpowsour.
  • [60] Balakrishnan P.G., Ramesh R., Kumar T.P. (2006). Safety mechanisms in lithium-ion batteries. Journal of Power Sources. 155:401–414. doi:10.1016/j.jpowsour.
  • [61] Wu M.S., Liu K.H., Wang Y.Y., Wan C.C. (2002). Heat dissipation design for lithium-ion batteries. J. Power Sources. 109:160–166. doi:10.1016/S0378-7753(02)00048-4.
  • [62] Wicks F. and Doane E. (1993). Temperature Dependent Performance of a Lead Acid Electric Vehicle Battery. in: Proc. 28th Lntersoczety Energy Convers. Eng. Conf.
  • [63] Schweiger H.G., Multerer M., Schweizer-Berberich M., Gores H.J. (2008). Optimization of cycling behavior of lithium ion cells at 60°C by additives for electrolytes based on lithium bis[1,2oxalato(2-)-O,O’] borate. International Journal of Electrochemical Science. 3:427–443.
  • [64] Adair D., Ismailov K., Bakenov Z. (2014). Thermal Management of Li-ion Battery Packs. Comsol Conference.
  • [65] Kizilel R., Sabbah R., Selman J.R., Al-hallaj S. (2009). An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources. 194:1105–1112. doi:10.1016/j.jpowsour.
  • [66] Pesaran A.A., Keyser M. (2001). Thermal characteristics of selected EV and HEV batteries. Sixt. Annu. Batter. Conf. 219–225. doi:10.1109/BCAA.
  • [67] Keyser M., Pesaran M., Mihalic A.A., Zolot M.D. (2000). Thermal Characterization of Advanced Battery Technologies for EV and HEV Aplications. NREL Rep.
  • [68] Sharpe T.F., Conell R.S. (1987). Low-temperature charging behaviour of lead-acid cells. J. Appl. Electrochem. 17:789–799. doi:10.1007/BF01007816.
  • [69] Smart M.C., Ratnakumar B. V., Surampudi S. (1999). Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. Journal of the Electrochemical Society. 146:486–492.
  • [70] Huang C., Sakamoto J.S., Wolfenstine J., Surampudi S. (2000). The Limits of Low-Temperature Performance of Li-Ion Cells. Journal of the Electrochemical Society. 147:2893–2896.
  • [71] Jin L.W., Lee P.S., Kong X.X., Fan Y., Chou S.K. (2014). Ultra-thin minichannel LCP for EV battery thermal management. Appl. Energy. 113:1786–1794. doi:10.1016/j.apenergy.
  • [72] Venkatachalapathy R., Lee C.W., Lu W., Prakash J. (2000). Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochemistry Communications. 2:104–107.
  • [73] Smart M.C., Ratnakumar B. V., Whitcanack L., Chin K., Rodriguez M., Surampudi S. (2002). Performance Characteristics of Lithium Ion Cells at Low Temperatures. IEEE Aerospace and Electronic Systems Magazine. 16–20.
  • [74] Nagasubramanian G. (2001). Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31:99–104. doi:10.1023/A:1004113825283.
  • [75] Nagasubramanian G., Laboratories S.N. (2001). Electrical characteristics of 18650 Li-ion cells at low temperatures. Journal of Applied Electrochemistry. 99–104.
  • [76] Wang C., Appleby A.J., Little F.E. (2002). Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement. Journal of the Electrochemical Society. 754– 760. doi:10.1149/1.1474427.
  • [77] Zhang S.S., Xu K., Jow T.R. (2002). A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications. 4:928–932.
  • [78] Zhang S.S., Xu K., Jow T.R. (2004). Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta. 49:1057–1061. doi:10.1016/j.electacta.
  • [79] Zhang P., Hu Y., Song L., Ni J., Xing W., Wang J. (2010). Solar Energy Materials & Solar Cells Effect of expanded graphite on properties of high-density polyethylene / paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol. Energy Mater. Sol. Cells. 94:360–365. doi:10.1016/j.solmat.
  • [80] Jansen A.N., Dees D.W., Abraham D.P., Amine K., Henriksen G.L. (2007). Low-temperature study of lithium-ion cells using a Li y Sn micro-reference electrode. Journal of Power Sources. 174:373–379. doi:10.1016/j.jpowsour.
  • [81] Zhang S.S., Xu K., Jow T.R. (2003). The low temperature performance of Li-ion batteries. Journal of Power Sources.115 :137–140.
  • [82] Lin H., Chua D., Salomon M., Shiao H., Hendrickson M. (2001). Low-Temperature Behavior of LiIon Cells. Electrochemical and Solid State Letters. 4:71–73. doi:10.1149/1.1368736.
  • [83] Nissan LEAF® Electric Car Range. https://www.nissanusa.com/electric-cars/leaf/features/
  • [84] Matthe R., Turner L., Mettlach H. (2011). VOLTEC Battery System for Electric Vehicle with Extended Range. SAE Int. J. Engines. 4(1):1944-1962.
  • [85] Lithium Battery Failures. (2016). http://www.mpoweruk.com/lithium_failures.htm.
  • [86] Zhang S.S., Xu K., Jow T.R. (2002). Low temperature performance of graphite electrode in Li-ioncells. Electrochimica Acta. 48:241–246. doi:10.1016/S0013-4686(02)00620-5.
  • [87] Ji Y., Yang C. (2013). Electrochimica Acta Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochimica Acta. 107:664–674. doi:10.1016/j.electacta.
  • [88] Burch, S.D., Parish, R.C,. Keyser, M.A. (1995). Thermal Management of Batteries Using a Variable-Conductance Insulation (VCI) Enclosure.Proceedings of the 30 th. Intersociety Energy Conversion Engineering Conference. Vols 1-3:343-348
  • [89] Pesaran A., Burch S.D., Keyser M. (1999). An approach for designing thermal management systems for electric and hybrid vehicle battery packs. Fourth Veh. Therm. Manag. Syst. Conf. Exhib.
  • [90] Pesaran A.A., D. Ph, Vlahinos A., D. Ph, Burch S.D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium. Orlando, Florida
  • [91] Zolot M.D., Kelly K., Keyser M., Mihalic M., Pesaran A., Hieronymus A. (2001). Thermal Evaluation of the Honda Insight Battery Pack Preprint. The 36th Intersociety Energy Conversion Engineering Conference (IECECí01) Savannah, Georgia. Pages:1-9.
  • [92] Pesaran A., Vlahinos A., Stuart T. (2003). TED-AJ03-633 Cooling and Preheating of Batteries in Hybrid Electric Vehicles. 6th ASME -JSME Thermal Engineering Conference. Hawaii. Pages: 1-31.
  • [93] Ji Y., Zhang Y., Wang C. (2013). Li-Ion Cell Operation at Low Temperatures. Journal of the Electrochemical Society.160: 636–649. doi:10.1149/2.047304jes.
  • [94] VALEO. (2010). Battery Thermal Management for HEV and EV. http://www.valeo.com/en/batterythermal-management-2/
  • [95] Huo Y., Rao Z., Liu X., Zhao J. (2015). Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 89:387–395. doi:10.1016/j.enconman.
  • [96] Xu X.M., He R. (2014). Review on the heat dissipation performance of battery pack with different structures and operation conditions. Renew. Sustain. Energy Rev. 29:301–315. doi:10.1016/j.rser.
  • [97] Nelson P., Dees D., Amine K., Henriksen G. (2002). Modeling thermal management of lithium-ion PNGV batteries. Journal of Power Sources.110:349–356.
  • [98] Saums D.L. (2009). Vaporizable Dielectric Fluid Cooling of IGBT Power Semiconductors for Vehicle Powertrains. Fifth IEEE Vehicle Power and Propulsion Conference (VPPC'09), Dearborn MI USA. Pages : 1-13.
  • [99] Rao Z., Zhang Y., Wang S. (2012). Energy saving of power battery by liquid single-phase convective heat transfer. Energy Education Science and Technology Part A-Energy Science and Research. 30:103–112.
  • [100] The Chevrolet Volt Cooling/Heating Systems Explained. (2010). - GM-VOLT : Chevy Volt Electric Car Site GM-VOLT : Chevy Volt Electric Car Site. Popular Science.
  • [101] Khateeb S.A., Amiruddin S., Farid M., Selman J.R., Al-hallaj S. (2005). Thermal management of Li-ion battery with phase change material for electric scooters : experimental validation. Journal of Power Sources.142:345–353. doi:10.1016/j.jpowsour.
  • [102] Konuklu Y., Paksoy H.O. (2011). Energy Efficiency in Buildings with Phase-Changing Materials. UlusalTesi ̇ sMühendi ̇ sli ̇ ği ̇ Kongresi ̇ . 919–930.
  • [103] Ghoneim A.A., Klein S.A., Duffie J.A. (1991). Analysis of collector-storage building walls using phase-change materials. Sol. Energy. 47:237–242. doi:10.1016/0038-092X(91)90084-A.
  • [104] Rao Z.H., Zhang G.Q. (2011). Thermal Properties of Paraffin Wax-based Composites Containing Graphite. Energy Sources. Part A Recover. Util. Environ. Eff. 33:587–593. doi:10.1080/15567030903117679.
  • [105] Phase Change Materials: Thermal Management Solutions. http://www.pcmproducts.net
  • [106] Al Hallaj S., Selman J.R. (2000). A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. Journal of the Electrochemical Society. 147:3231–3236.
  • [107] Charged EVs, (2013), | Can phase change material mitigate thermal runaway in Li-ion packs?. Charged Electric Vehicles Magazine.
  • [108] Agyenim F., Hewitt N., Eames P., Smyth M. (2010). A review of materials , heat transfer and phase change problem formulation for latent heat thermal energy storage systems ( LHTESS ). Renew. Sustain. Energy Rev.14:615–628.
  • [109] Bal L.M., Satya S., Naik S.N. (2010). Solar dryer with thermal energy storage systems for drying agricultural food products : A review. Renew. Sustain. Energy Rev. 14:2298–2314. doi:10.1016/j.rser.
  • [110] Sharma A., V. Tyagi V, Chen C.R., Buddhi D. (2009). Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev.13:318–345. doi:10.1016/j.rser. [111] Alrashdan A., Turki A., Al-hallaj S. (2010). Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. Journal of Materials Processing Technology. 210:174–179. doi:10.1016/j.jmatprotec.
  • [112] Sabbah R., Kizilel R., Selman J.R., Al-Hallaj S. (2008). Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J. Power Sources. 182:630–638. doi:10.1016/j.jpowsour.
  • [113] Kandasamy R., Wang X., Mujumdar A.S. (2007). Application of phase change materials in thermal management of electronics. Applied Thermal Engineering. 27:2822–2832. doi:10.1016/j.applthermaleng.
  • [114] Mills A., Al-hallaj S. (2005). Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources. 141:307–315. doi:10.1016/j.jpowsour.
  • [115] Mills A. (2006). Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering. 26:1652–1661. doi:10.1016/j.applthermaleng.
  • [116] Bulut D.D.H. (2005). Thermoelectric Cooling Systems. Journal of Cooling World. 31:9–16.
  • [117] Yang X., Yan Y.Y., Mullen D. (2012). Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 33–34: 1–14. doi:10.1016/j.applthermaleng.
  • [118] ARSLAN G. (2007). Experimental Study And Mathematical Modelling On The Oscillating Loop Heat Heat Pipe Consisting Of Three Interconnected Columns. Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology 88.
  • [119] Tran T.H., Harmand S., Desmet B., Filangi S. (2014). Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl. Therm. Eng. 63:551–558. doi:10.1016/j.applthermaleng.
  • [120] Zhang S.S., Xu K., Jow T.R. (2006). Charge and discharge characteristics of a commercial LiCoO 2 -based 18650 Li-ion battery. Journal of Power Sources. 160:1403–1409. doi:10.1016/j.jpowsour.
  • [121] Stuart T.A., Hande A. (2004). HEV battery heating using AC currents. Journal of Power Sources. 129:368–378. doi:10.1016/j.jpowsour.
  • [122] Ein-eli Y. (1999). A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells. Electrochemical and Solid Letters. 2:212–214.
  • [123] Ue M., Mori S. (1995). Mobility and Ionic Association of Lithium Salts in a Propylene CarbonateEthyl Methyl Carbonate Mixed Solvent. Journal of Electrochemical Society. 142: 5–9.
  • [124] Eineli Y., Thomas S.R., Koch V. (1996). Ethylmethylcarbonate, a Promising Solvent for Li-Ion Rechargeable Batteries. Journal of Electrochemical Society. 143:1–5.
  • [125] Al-hallaj S., Selman J.R. (2002). Thermal modeling of secondary lithium batteries for electric vehicle / hybrid electric vehicle applications. Journal of Power Sources. 110:341–348.
  • [126] Lou Y. (2007). Nickel-metal hydride battery cooling system research for hybrid electric vehicle. Shanghai Jiao Tong University. Shanghai. [in Chinese]
  • [127] Dickinson B.E., Swan D.H. (1995). EV Battery Pack Life: Pack Degradation and Solutions. Future Transportation Technology Conference & Exposition. SAE Technical Paper 951949.in: doi:10.4271/951949.
  • [128] Yi J., Koo B., Shin C. (2014). Three-Dimensional Modeling of the Thermal Behavior of a LithiumIon Battery Module for Hybrid Electric Vehicle Applications. Energies. 7:7586–7601. doi:10.3390/en7117586.
  • [129] McKinney B.L., Wierschem G.L., Mrotek E.N. (1983). Thermal Management of Lead-Acid Batteries for Electric Vehicles. SAE International Congress and Exposition. SAE Technical Paper 830229. in: doi:10.4271/830229.
  • [130] Park Y., Jun S., Kim S., Lee D.-H. (2010). Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft. J. Mech. Sci. Technol. 24:609–618. doi:10.1007/s12206-009-1214-6.
  • [131] Cosley, M.R.; Garcia, M.P. (2004). Battery thermal management system. In Proceedings of the INTELEC 26th Annual International Telecommunications Energy Conference, Chicago, IL, USA,; pp. 38–45.
  • [132] Pesaran M., Mihalic A.A., Zolot M.D. (2002), Thermal evaluation of Toyota Prius battery pack. Future Car Congress. SAE Technical Paper 01-1962.
  • [133] Plichta E.J., Hendrickson M., Thompson R., Au G., Behl W.K. (2001). Development of low temperature Li-ion electrolytes for NASA and DoD applications. Journal of Power Sources. 94:160-162.
  • [134] Smart M.C., Ratnakumar B. V., Whitcanack L.D., Chin K.B. (2003). Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources. 119:349-358.
  • [135] Nobili F., Mancini M., Dsoke S., Tossici R., Marassi R. (2010). Low-temperature behavior of graphite – tin composite anodes for Li-ion batteries. J. Power Sources. 195, 7090–7097. doi:10.1016/j.jpowsour.
  • [136] Mancini M., Nobili F., Dsoke S., Amico F.D., Tossici R., Croce F., Marassi R. (2009). Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. Journal of Power Sources. 190:141-148.
  • [137] Chen S., Yuan R., Chai Y., Hu F. (2013). Electrochemical sensing of hydrogen peroxide using metal nanoparticles : a review. Microchimica Acta. 180:15-32.
  • [138] Yuan T., Yu X., Cai R., Zhou Y., Shao Z. (2010). Synthesis of pristine and carbon-coated Li 4 Ti 5 O 12 and their low-temperature electrochemical performance. J. Power Sources. 195:4997–5004. doi:10.1016/j.jpowsour.
  • [139] Abraham D.P., Heaton J.R., Kang S., Dees D.W., Jansen A.N. (2008). Investigating the LowTemperature Impedance Increase of Lithium-Ion Cells. Journal of Electochemical Society. 155: 41–47. doi:10.1149/1.2801366.
  • [140] Ho C.J., Gao J.Y. (2009). Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transf. 36:467–470. doi:10.1016/j.icheatmasstransfer.
  • [141] Jung D.Y., Lee B.H., Kim S.W. (2002). Development of battery management system for nickelmetal hydride batteries in electric vehicle applications. J. Power Sources. 109:1–10. doi:10.1016/S0378-7753(02)00020-4.
Year 2017, Volume: 1 Issue: 1, 35 - 55, 26.12.2017

Abstract

References

  • [1] Z.X. Jia S, Peng H, Liu S. (2009). Review of transportation and energy consumption related search, J. Transp. Syst. Eng. Inf. Technol. 9(3): 6–16.
  • [2] Dhameja, S. (2002). Electric Vehicle Battery Systems (Book), Newnes.
  • [3] Zhao, J., Rao, Z., Huo, Y., Liu, X., Li, Y. (2015). Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles, Appl. Therm. Eng. 85:33-43. doi:10.1016/j.applthermaleng.
  • [4] Li, J., Zhu, Z. (2014). Battery Thermal Management Systems of Electric Vehicles. Division of Vehicle Engineering & Autonomous Systems. Master’s Thesis. 42
  • [5] Maggetto, G., Van Mierlo, J. (2001). 3.Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles : state of the art and perspectives, Ann. Chim. Sci. Des Matériaux. 26: 9–26.
  • [6] Skerlos, S.J., Winebrake, J.J. (2010). Targeting plug-in hybrid electric vehicle policies to increase social benefits, Energy Policy. 38:705-708. doi:10.1016/j.enpol.11.014.
  • [7] Amjad, S., Neelakrishnan, S., Rudramoorthy, R. (2010). Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles, Renewable & Sustainable Energy Reviews. 14:1104-1110. doi:10.1016/j.rser.
  • [8] Cooper, A. 2003. Development of a lead-acid battery for a hybrid electric vehicle, Journal of Power Sources. 133:116-125. doi:10.1016/j.jpowsour.
  • [9] Masayoshi, W. (2009). Research and development of electric vehicles for clean transportation, J. Environ. Sci. 21:745–749. doi:10.1016/S1001.
  • [10] Nishihara, M. (2010). Hybrid or electric vehicles ? A real options perspective, Oper. Res. Lett. 38:87–93. doi:10.1016/j.orl.
  • [11] Silva, C., Baptista, P. (2010). Plug-in hybrid fuel cell vehicles market penetration scenarios, International Journal of Hydrogen Energy, 35:10024–10030. doi:10.1016/j.ijhydene. [12] Avadikyan, A., Llerena, P. (2010). Technological Forecasting & Social Change A real options reasoning approach to hybrid vehicle investments, Technol. Forecast. Soc. Chang. 77:649-661. doi:10.1016/j.techfore.
  • [13] Choi, H., Oh, I. (2010). Analysis of product efficiency of hybrid vehicles and promotion policies $, Energy Policy. 38:2262-2271. doi:10.1016/j.enpol.
  • [14] Ogden, J.W. Ã, J., Sperling, D., Burke, A. (2008). The future of electric two-wheelers and electric vehicles in China, Energy Policy. 36:2544-2555. doi:10.1016/j.enpol.
  • [15] Poursamad, A., Montazeri, M. (2008). Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles, Control Engineering Practice. 16:861–873. doi:10.1016/j.conengprac.
  • [16] Kawatsu, S. (1998). Advanced PEFC development for fuel cell powered vehicles, Journal of Power Sources. 71:150-155.
  • [17] Schell, A., Peng, H., Tran, D., Stamos, E., Lin, C., Joong, M. (2005). Modelling and control strategy development for fuel cell electric vehicles, Annual Reviews in Control. 29:159-168. doi:10.1016/j.arcontrol.
  • [18] Eaves, S., Eaves, J. (2004). Short communication A cost comparison of fuel-cell and battery electric vehicles, Journal of Power Sources. 130:208–212. doi:10.1016/j.jpowsour.
  • [19] Bradley, T.H., Quinn, C.W. (2010). Analysis of plug-in hybrid electric vehicle utility factors, J. Power Sources. 195:5399–5408. doi:10.1016/j.jpowsour.
  • [20] Goldman, J. (2014). Comparing Electric Vehicles: Hybrid vs. BEV vs. PHEV vs. FCEV - The Equation. [Blog] Union of Concerned Scientists.
  • [21] Khateeb, S.A., Farid, M.M., Selman, J.R., Al-hallaj, S. (2004). Design and simulation of a lithiumion battery with a phase change material thermal management system for an electric scooter, Journal of Power Sources. 128:292–307. doi:10.1016/j.jpowsour.
  • [22] Pesaran, A.A., Renewable, N. (2016). Battery Thermal Management in EVs and HEVs : Issues and Solutions Battery Thermal Management in EVs and HEVs : Issues and Solutions. National Renewable Energy Laboratory. http://www.ctts.nrel.gov/BTM
  • [23] Pesaran, A. (2001). Battery Thermal Management in EVs and HEVs : Issues and Solutions. Adv. Automot. Batter. Conf.10.
  • [24] Selman, J.R., Al, S., Uchida, I., Hirano, Y. (2001). Cooperative research on safety fundamentals of lithium batteries, Journal of Power Sources. 98:726-732.
  • [25] Williford, R.E., Viswanathan, V., Zhang, J. (2009). Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries, Journal of Power Sources. 189:101-107. doi:10.1016/j.jpowsour.
  • [26] Lin, Q., Yixiong, T., Ruizhen, Q., Zuomin, Z., Youliang, D., Jigiang, W. (1995). General safety considerations for high power Li/SOC12 batteries, Journal of Power Sources. 54:127-133.
  • [27] Nelson, R.F. (2000). Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources. 91:2–26.
  • [28] Saito, Y. (2005). Thermal behaviors of lithium-ion batteries during high-rate pulse cycling, Journal of Power Sources. 146:770-774. doi:10.1016/j.jpowsour.
  • [29] Maleki, H., Selman, J.R., Dinwiddie, R.B., Wang, H. (2001). High thermal conductivity negative electrode material for lithium-ion batteries, Journal of Power Sources. 94:26–35.
  • [30] Pesaran, A.A. (2002). Battery thermal models for hybrid vehicle simulations, Journal of Power Sources. 110:377–382.
  • [31] Pesaran, A.A., Burch, S.D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium; Orlando, Florida
  • [32] Sabbah, R., Kizilel, R., Selman, J.R. (2008). Active ( air-cooled ) vs . passive ( phase change material) thermal management of high power lithium-ion packs : Limitation of temperature rise and uniformity of temperature distribution. Journal of Power Sources.182:630–638. doi:10.1016/j.jpowsour.
  • [33] Rao, Z., Wang, S. (2011). A review of power battery thermal energy management, Renew. Sustain. Energy Rev. 15:4554-4571. doi:10.1016/j.rser.
  • [34] Offer, G.J., Howey, D., Contestabile, M., Clague, R., Brandon, N.P. (2010). Comparative analysis of battery electric , hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy. 38:24-29. doi:10.1016/j.enpol.
  • [35] Pesaran, A.A., Keyser, M. (2001). Thermal Characteristics of Selected EV and HEV Batteries. Sixteenth Annual Battery Conference on Applications and Advances. Pages: 219-225
  • [36] Pesaran, A.A., Burch, S., Keyser, M. (1999). An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs Preprint. Fourth Vehicle Thermal Management Systems Conference and Exhibition London, UK
  • [37] Pesaran, A., Burch, S., Rehn, R., Olson, J., Skellenger, G., Olson, J. (1998). Thermal Analysis and Performance of a Battery Pack for a Hybrid Electric Vehicle.15th Electric Vehicle Symposium Brussels, Belgium
  • [38] Keyser, M., Pesaran, A. (1999). Thermal Evaluation and Performance of High-Power Lithium-Ion Cells Reprint. 16th Electric Vehicle Conference.
  • [39] Sovani, S., Hu, X., Stanton, S. (2014). A Total Li-Ion Battery Simulation Solution. ANSYS: A Total Li-Ion Battery Simulation Solution. [40] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources. 208:210–224. doi:10.1016/j.jpowsour.
  • [41] Ku, J., Ullrich, M., Ko, U. (2002). High performance nickel-metal hydride and lithium-ion batteries, Journal of Power Sources.105:139-144.
  • [42] Majima, M., Ujiie, S., Yagasaki, E. (2001). Development of long life lithium ion battery for power storage. Journal of Power Sources. 101:0-6.
  • [43] Terada, N., Yanagi, T., Arai, S.,Yoshikawa, M., Ohta, K., Nakajima, N., Yanai, A., Arai, N. (2001). Development of lithium batteries for energy storage and EV applications. Journal of Power Sources. 100:80–92. [44] Baker, E., Chon, H., Keisler, J. (2010). Technological Forecasting & Social Change Battery technology for electric and hybrid vehicles : Expert views about prospects for advancement, Technol. Forecast. Soc. Chang. 77:1139–1146. doi:10.1016/j.techfore.
  • [45] Delucchi, M.A., Lipman, T.E. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D-Transport and Environment. 6:371–404.
  • [46] Kromer, M.A., Heywood, J. (2007). Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. The Engineering Systems Division on May 11, 2007 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy.
  • [47] Cooper, A., Moseley, P. (2009). Advanced Lead-Acid Batteries – the Way forward for Low-Cost Micro and Mild Hybrid Vehicles. World Electric Vehicle Journal. 3:61–68.
  • [48] Mcallister, S.D., Patankar, S.N., Cheng, I.F., Edwards, D.B. (2009). Lead dioxide coated hollow glass microspheres as conductive additives for lead acid batteries, Scr. Mater. 61:375–378. doi:10.1016/j.scriptamat.
  • [49] Moseley, P.T., Cooper, A. (1999). Progress towards an advanced lead-acid battery for use in electric vehicles, J. Power Sources. 78:244–250.
  • [50] Horiba, T., Hironaka, V., Matsumura, T., Kai, T., Koseki, M., Muranaka, Y. (2001). Manganese type lithium ion battery for pure and hybrid electric vehicles. Journal of Power Sources. 98:719– 721.
  • [51] Kise M., Yoshioka S., Hamano K., Takemura D., Nishimura T., Urushibata H., Yoshiyasu H. (2005). Development of new safe electrode for lithium rechargeable battery. Journal of Power Sources. 146:775–778. doi:10.1016/j.jpowsour.
  • [52] Sarre G, Blanchard P, Broussely M. (2004). Aging of lithium-ion batteries. Journal of Power Sources. 127:65–71. doi:10.1016/j.jpowsour.
  • [53] Vetter J., Novák P., Wagner M.R., Veit C., Möller K.C., Besenhard J.O., Winter M., WohlfahrtMehrens M., Vogler C., Hammouche A. (2005). Ageing mechanisms in lithium-ion batteries. J. Power Sources. 147:269–281. doi:10.1016/j.jpowsour.
  • [54] Will F.G. (1996). Impact of lithium abundance and cost on electric vehicle battery applications. Journal of Power Sources. 63:23–26.
  • [55] Kizilel R., Lateef A., Sabbah R., Farid M.M., Selman J.R., Al-hallaj S. (2008). Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources. 183:370–375. doi:10.1016/j.jpowsour.
  • [56] Jayaraman S., Anderson G., Kaushik S., Klaus P. (2011). Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle. SAE International in United States. in: doi:10.4271.
  • [57] Lin Q., Yixiong T., Ruizhen Q., Zuomin Z., Youliang D., Jigiang W. (1995). General safety considerations for high power Li/SOCl2 batteries. J. Power Sources. 54:127–133. doi:10.1016.
  • [58] R.F. Nelson, (2000), Power requirements for batteries in hybrid electric vehicles. J. Power Sources. 91:2–26. doi:10.1016/S0378-7753(00)00483-3.
  • [59] Chen S.C., Wan C.C., Wang Y.Y. (2005). Thermal analysis of lithium-ion batteries. Journal of Power Sources. 140:111–124. doi:10.1016/j.jpowsour.
  • [60] Balakrishnan P.G., Ramesh R., Kumar T.P. (2006). Safety mechanisms in lithium-ion batteries. Journal of Power Sources. 155:401–414. doi:10.1016/j.jpowsour.
  • [61] Wu M.S., Liu K.H., Wang Y.Y., Wan C.C. (2002). Heat dissipation design for lithium-ion batteries. J. Power Sources. 109:160–166. doi:10.1016/S0378-7753(02)00048-4.
  • [62] Wicks F. and Doane E. (1993). Temperature Dependent Performance of a Lead Acid Electric Vehicle Battery. in: Proc. 28th Lntersoczety Energy Convers. Eng. Conf.
  • [63] Schweiger H.G., Multerer M., Schweizer-Berberich M., Gores H.J. (2008). Optimization of cycling behavior of lithium ion cells at 60°C by additives for electrolytes based on lithium bis[1,2oxalato(2-)-O,O’] borate. International Journal of Electrochemical Science. 3:427–443.
  • [64] Adair D., Ismailov K., Bakenov Z. (2014). Thermal Management of Li-ion Battery Packs. Comsol Conference.
  • [65] Kizilel R., Sabbah R., Selman J.R., Al-hallaj S. (2009). An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources. 194:1105–1112. doi:10.1016/j.jpowsour.
  • [66] Pesaran A.A., Keyser M. (2001). Thermal characteristics of selected EV and HEV batteries. Sixt. Annu. Batter. Conf. 219–225. doi:10.1109/BCAA.
  • [67] Keyser M., Pesaran M., Mihalic A.A., Zolot M.D. (2000). Thermal Characterization of Advanced Battery Technologies for EV and HEV Aplications. NREL Rep.
  • [68] Sharpe T.F., Conell R.S. (1987). Low-temperature charging behaviour of lead-acid cells. J. Appl. Electrochem. 17:789–799. doi:10.1007/BF01007816.
  • [69] Smart M.C., Ratnakumar B. V., Surampudi S. (1999). Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. Journal of the Electrochemical Society. 146:486–492.
  • [70] Huang C., Sakamoto J.S., Wolfenstine J., Surampudi S. (2000). The Limits of Low-Temperature Performance of Li-Ion Cells. Journal of the Electrochemical Society. 147:2893–2896.
  • [71] Jin L.W., Lee P.S., Kong X.X., Fan Y., Chou S.K. (2014). Ultra-thin minichannel LCP for EV battery thermal management. Appl. Energy. 113:1786–1794. doi:10.1016/j.apenergy.
  • [72] Venkatachalapathy R., Lee C.W., Lu W., Prakash J. (2000). Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochemistry Communications. 2:104–107.
  • [73] Smart M.C., Ratnakumar B. V., Whitcanack L., Chin K., Rodriguez M., Surampudi S. (2002). Performance Characteristics of Lithium Ion Cells at Low Temperatures. IEEE Aerospace and Electronic Systems Magazine. 16–20.
  • [74] Nagasubramanian G. (2001). Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31:99–104. doi:10.1023/A:1004113825283.
  • [75] Nagasubramanian G., Laboratories S.N. (2001). Electrical characteristics of 18650 Li-ion cells at low temperatures. Journal of Applied Electrochemistry. 99–104.
  • [76] Wang C., Appleby A.J., Little F.E. (2002). Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement. Journal of the Electrochemical Society. 754– 760. doi:10.1149/1.1474427.
  • [77] Zhang S.S., Xu K., Jow T.R. (2002). A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications. 4:928–932.
  • [78] Zhang S.S., Xu K., Jow T.R. (2004). Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta. 49:1057–1061. doi:10.1016/j.electacta.
  • [79] Zhang P., Hu Y., Song L., Ni J., Xing W., Wang J. (2010). Solar Energy Materials & Solar Cells Effect of expanded graphite on properties of high-density polyethylene / paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol. Energy Mater. Sol. Cells. 94:360–365. doi:10.1016/j.solmat.
  • [80] Jansen A.N., Dees D.W., Abraham D.P., Amine K., Henriksen G.L. (2007). Low-temperature study of lithium-ion cells using a Li y Sn micro-reference electrode. Journal of Power Sources. 174:373–379. doi:10.1016/j.jpowsour.
  • [81] Zhang S.S., Xu K., Jow T.R. (2003). The low temperature performance of Li-ion batteries. Journal of Power Sources.115 :137–140.
  • [82] Lin H., Chua D., Salomon M., Shiao H., Hendrickson M. (2001). Low-Temperature Behavior of LiIon Cells. Electrochemical and Solid State Letters. 4:71–73. doi:10.1149/1.1368736.
  • [83] Nissan LEAF® Electric Car Range. https://www.nissanusa.com/electric-cars/leaf/features/
  • [84] Matthe R., Turner L., Mettlach H. (2011). VOLTEC Battery System for Electric Vehicle with Extended Range. SAE Int. J. Engines. 4(1):1944-1962.
  • [85] Lithium Battery Failures. (2016). http://www.mpoweruk.com/lithium_failures.htm.
  • [86] Zhang S.S., Xu K., Jow T.R. (2002). Low temperature performance of graphite electrode in Li-ioncells. Electrochimica Acta. 48:241–246. doi:10.1016/S0013-4686(02)00620-5.
  • [87] Ji Y., Yang C. (2013). Electrochimica Acta Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochimica Acta. 107:664–674. doi:10.1016/j.electacta.
  • [88] Burch, S.D., Parish, R.C,. Keyser, M.A. (1995). Thermal Management of Batteries Using a Variable-Conductance Insulation (VCI) Enclosure.Proceedings of the 30 th. Intersociety Energy Conversion Engineering Conference. Vols 1-3:343-348
  • [89] Pesaran A., Burch S.D., Keyser M. (1999). An approach for designing thermal management systems for electric and hybrid vehicle battery packs. Fourth Veh. Therm. Manag. Syst. Conf. Exhib.
  • [90] Pesaran A.A., D. Ph, Vlahinos A., D. Ph, Burch S.D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium. Orlando, Florida
  • [91] Zolot M.D., Kelly K., Keyser M., Mihalic M., Pesaran A., Hieronymus A. (2001). Thermal Evaluation of the Honda Insight Battery Pack Preprint. The 36th Intersociety Energy Conversion Engineering Conference (IECECí01) Savannah, Georgia. Pages:1-9.
  • [92] Pesaran A., Vlahinos A., Stuart T. (2003). TED-AJ03-633 Cooling and Preheating of Batteries in Hybrid Electric Vehicles. 6th ASME -JSME Thermal Engineering Conference. Hawaii. Pages: 1-31.
  • [93] Ji Y., Zhang Y., Wang C. (2013). Li-Ion Cell Operation at Low Temperatures. Journal of the Electrochemical Society.160: 636–649. doi:10.1149/2.047304jes.
  • [94] VALEO. (2010). Battery Thermal Management for HEV and EV. http://www.valeo.com/en/batterythermal-management-2/
  • [95] Huo Y., Rao Z., Liu X., Zhao J. (2015). Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 89:387–395. doi:10.1016/j.enconman.
  • [96] Xu X.M., He R. (2014). Review on the heat dissipation performance of battery pack with different structures and operation conditions. Renew. Sustain. Energy Rev. 29:301–315. doi:10.1016/j.rser.
  • [97] Nelson P., Dees D., Amine K., Henriksen G. (2002). Modeling thermal management of lithium-ion PNGV batteries. Journal of Power Sources.110:349–356.
  • [98] Saums D.L. (2009). Vaporizable Dielectric Fluid Cooling of IGBT Power Semiconductors for Vehicle Powertrains. Fifth IEEE Vehicle Power and Propulsion Conference (VPPC'09), Dearborn MI USA. Pages : 1-13.
  • [99] Rao Z., Zhang Y., Wang S. (2012). Energy saving of power battery by liquid single-phase convective heat transfer. Energy Education Science and Technology Part A-Energy Science and Research. 30:103–112.
  • [100] The Chevrolet Volt Cooling/Heating Systems Explained. (2010). - GM-VOLT : Chevy Volt Electric Car Site GM-VOLT : Chevy Volt Electric Car Site. Popular Science.
  • [101] Khateeb S.A., Amiruddin S., Farid M., Selman J.R., Al-hallaj S. (2005). Thermal management of Li-ion battery with phase change material for electric scooters : experimental validation. Journal of Power Sources.142:345–353. doi:10.1016/j.jpowsour.
  • [102] Konuklu Y., Paksoy H.O. (2011). Energy Efficiency in Buildings with Phase-Changing Materials. UlusalTesi ̇ sMühendi ̇ sli ̇ ği ̇ Kongresi ̇ . 919–930.
  • [103] Ghoneim A.A., Klein S.A., Duffie J.A. (1991). Analysis of collector-storage building walls using phase-change materials. Sol. Energy. 47:237–242. doi:10.1016/0038-092X(91)90084-A.
  • [104] Rao Z.H., Zhang G.Q. (2011). Thermal Properties of Paraffin Wax-based Composites Containing Graphite. Energy Sources. Part A Recover. Util. Environ. Eff. 33:587–593. doi:10.1080/15567030903117679.
  • [105] Phase Change Materials: Thermal Management Solutions. http://www.pcmproducts.net
  • [106] Al Hallaj S., Selman J.R. (2000). A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. Journal of the Electrochemical Society. 147:3231–3236.
  • [107] Charged EVs, (2013), | Can phase change material mitigate thermal runaway in Li-ion packs?. Charged Electric Vehicles Magazine.
  • [108] Agyenim F., Hewitt N., Eames P., Smyth M. (2010). A review of materials , heat transfer and phase change problem formulation for latent heat thermal energy storage systems ( LHTESS ). Renew. Sustain. Energy Rev.14:615–628.
  • [109] Bal L.M., Satya S., Naik S.N. (2010). Solar dryer with thermal energy storage systems for drying agricultural food products : A review. Renew. Sustain. Energy Rev. 14:2298–2314. doi:10.1016/j.rser.
  • [110] Sharma A., V. Tyagi V, Chen C.R., Buddhi D. (2009). Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev.13:318–345. doi:10.1016/j.rser. [111] Alrashdan A., Turki A., Al-hallaj S. (2010). Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. Journal of Materials Processing Technology. 210:174–179. doi:10.1016/j.jmatprotec.
  • [112] Sabbah R., Kizilel R., Selman J.R., Al-Hallaj S. (2008). Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J. Power Sources. 182:630–638. doi:10.1016/j.jpowsour.
  • [113] Kandasamy R., Wang X., Mujumdar A.S. (2007). Application of phase change materials in thermal management of electronics. Applied Thermal Engineering. 27:2822–2832. doi:10.1016/j.applthermaleng.
  • [114] Mills A., Al-hallaj S. (2005). Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources. 141:307–315. doi:10.1016/j.jpowsour.
  • [115] Mills A. (2006). Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering. 26:1652–1661. doi:10.1016/j.applthermaleng.
  • [116] Bulut D.D.H. (2005). Thermoelectric Cooling Systems. Journal of Cooling World. 31:9–16.
  • [117] Yang X., Yan Y.Y., Mullen D. (2012). Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 33–34: 1–14. doi:10.1016/j.applthermaleng.
  • [118] ARSLAN G. (2007). Experimental Study And Mathematical Modelling On The Oscillating Loop Heat Heat Pipe Consisting Of Three Interconnected Columns. Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology 88.
  • [119] Tran T.H., Harmand S., Desmet B., Filangi S. (2014). Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl. Therm. Eng. 63:551–558. doi:10.1016/j.applthermaleng.
  • [120] Zhang S.S., Xu K., Jow T.R. (2006). Charge and discharge characteristics of a commercial LiCoO 2 -based 18650 Li-ion battery. Journal of Power Sources. 160:1403–1409. doi:10.1016/j.jpowsour.
  • [121] Stuart T.A., Hande A. (2004). HEV battery heating using AC currents. Journal of Power Sources. 129:368–378. doi:10.1016/j.jpowsour.
  • [122] Ein-eli Y. (1999). A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells. Electrochemical and Solid Letters. 2:212–214.
  • [123] Ue M., Mori S. (1995). Mobility and Ionic Association of Lithium Salts in a Propylene CarbonateEthyl Methyl Carbonate Mixed Solvent. Journal of Electrochemical Society. 142: 5–9.
  • [124] Eineli Y., Thomas S.R., Koch V. (1996). Ethylmethylcarbonate, a Promising Solvent for Li-Ion Rechargeable Batteries. Journal of Electrochemical Society. 143:1–5.
  • [125] Al-hallaj S., Selman J.R. (2002). Thermal modeling of secondary lithium batteries for electric vehicle / hybrid electric vehicle applications. Journal of Power Sources. 110:341–348.
  • [126] Lou Y. (2007). Nickel-metal hydride battery cooling system research for hybrid electric vehicle. Shanghai Jiao Tong University. Shanghai. [in Chinese]
  • [127] Dickinson B.E., Swan D.H. (1995). EV Battery Pack Life: Pack Degradation and Solutions. Future Transportation Technology Conference & Exposition. SAE Technical Paper 951949.in: doi:10.4271/951949.
  • [128] Yi J., Koo B., Shin C. (2014). Three-Dimensional Modeling of the Thermal Behavior of a LithiumIon Battery Module for Hybrid Electric Vehicle Applications. Energies. 7:7586–7601. doi:10.3390/en7117586.
  • [129] McKinney B.L., Wierschem G.L., Mrotek E.N. (1983). Thermal Management of Lead-Acid Batteries for Electric Vehicles. SAE International Congress and Exposition. SAE Technical Paper 830229. in: doi:10.4271/830229.
  • [130] Park Y., Jun S., Kim S., Lee D.-H. (2010). Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft. J. Mech. Sci. Technol. 24:609–618. doi:10.1007/s12206-009-1214-6.
  • [131] Cosley, M.R.; Garcia, M.P. (2004). Battery thermal management system. In Proceedings of the INTELEC 26th Annual International Telecommunications Energy Conference, Chicago, IL, USA,; pp. 38–45.
  • [132] Pesaran M., Mihalic A.A., Zolot M.D. (2002), Thermal evaluation of Toyota Prius battery pack. Future Car Congress. SAE Technical Paper 01-1962.
  • [133] Plichta E.J., Hendrickson M., Thompson R., Au G., Behl W.K. (2001). Development of low temperature Li-ion electrolytes for NASA and DoD applications. Journal of Power Sources. 94:160-162.
  • [134] Smart M.C., Ratnakumar B. V., Whitcanack L.D., Chin K.B. (2003). Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources. 119:349-358.
  • [135] Nobili F., Mancini M., Dsoke S., Tossici R., Marassi R. (2010). Low-temperature behavior of graphite – tin composite anodes for Li-ion batteries. J. Power Sources. 195, 7090–7097. doi:10.1016/j.jpowsour.
  • [136] Mancini M., Nobili F., Dsoke S., Amico F.D., Tossici R., Croce F., Marassi R. (2009). Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. Journal of Power Sources. 190:141-148.
  • [137] Chen S., Yuan R., Chai Y., Hu F. (2013). Electrochemical sensing of hydrogen peroxide using metal nanoparticles : a review. Microchimica Acta. 180:15-32.
  • [138] Yuan T., Yu X., Cai R., Zhou Y., Shao Z. (2010). Synthesis of pristine and carbon-coated Li 4 Ti 5 O 12 and their low-temperature electrochemical performance. J. Power Sources. 195:4997–5004. doi:10.1016/j.jpowsour.
  • [139] Abraham D.P., Heaton J.R., Kang S., Dees D.W., Jansen A.N. (2008). Investigating the LowTemperature Impedance Increase of Lithium-Ion Cells. Journal of Electochemical Society. 155: 41–47. doi:10.1149/1.2801366.
  • [140] Ho C.J., Gao J.Y. (2009). Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transf. 36:467–470. doi:10.1016/j.icheatmasstransfer.
  • [141] Jung D.Y., Lee B.H., Kim S.W. (2002). Development of battery management system for nickelmetal hydride batteries in electric vehicle applications. J. Power Sources. 109:1–10. doi:10.1016/S0378-7753(02)00020-4.
There are 137 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

K. Furkan Sökmen

Muhammed Çavuş

Publication Date December 26, 2017
Published in Issue Year 2017Volume: 1 Issue: 1

Cite

APA Sökmen, K. F., & Çavuş, M. (2017). Review of Batteries Thermal Problems and Thermal Management Systems. Journal of Innovative Science and Engineering, 1(1), 35-55.
AMA Sökmen KF, Çavuş M. Review of Batteries Thermal Problems and Thermal Management Systems. JISE. December 2017;1(1):35-55.
Chicago Sökmen, K. Furkan, and Muhammed Çavuş. “Review of Batteries Thermal Problems and Thermal Management Systems”. Journal of Innovative Science and Engineering 1, no. 1 (December 2017): 35-55.
EndNote Sökmen KF, Çavuş M (December 1, 2017) Review of Batteries Thermal Problems and Thermal Management Systems. Journal of Innovative Science and Engineering 1 1 35–55.
IEEE K. F. Sökmen and M. Çavuş, “Review of Batteries Thermal Problems and Thermal Management Systems”, JISE, vol. 1, no. 1, pp. 35–55, 2017.
ISNAD Sökmen, K. Furkan - Çavuş, Muhammed. “Review of Batteries Thermal Problems and Thermal Management Systems”. Journal of Innovative Science and Engineering 1/1 (December 2017), 35-55.
JAMA Sökmen KF, Çavuş M. Review of Batteries Thermal Problems and Thermal Management Systems. JISE. 2017;1:35–55.
MLA Sökmen, K. Furkan and Muhammed Çavuş. “Review of Batteries Thermal Problems and Thermal Management Systems”. Journal of Innovative Science and Engineering, vol. 1, no. 1, 2017, pp. 35-55.
Vancouver Sökmen KF, Çavuş M. Review of Batteries Thermal Problems and Thermal Management Systems. JISE. 2017;1(1):35-5.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.