Araştırma Makalesi
BibTex RIS Kaynak Göster

DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI

Yıl 2018, Cilt: 23 Sayı: 3, 341 - 354, 31.12.2018
https://doi.org/10.17482/uumfd.397735

Öz

Bu çalışmada otomotiv sektöründeki firmanın termal konfor şartları ve
çalışan kilosu, giysi yalıtım faktörü, metabolik oranın termal konfor üzerinde
etkilerini incelenmiştir. Konfor ölçümleri 6 bölümde yapılmıştır. Ölçümlerin
yapıldığı bölümler kalıphane, kaynak, pres, boya, montaj ve boyahane
bölümleridir. Ölçümler DELTA OHM 52.1 marka ekipmanlar ve yazılımı ile
yapılmıştır. Giysi faktörü ölçümlerde 0,8 clo olarak alınmıştır. Metabolik oran
değerleri bölümlerine bağlı olarak düşük 100 W/m2 ve orta 135 W/m2
değerler olarak kabul edilmiştir. Giysi faktörü etkisinin incelenmesinde
değerler 0,5, 0,6, 0,7, 0,8, 0,9, 1 clo olarak seçilmiştir. Çalışma sonucunda
fabrika içinde termal konfor bakımından en iyi ve kötü bölümün sırasıyla  lojistik ve kalıphane olduğu tespit
edilmiştir. Çalışanların düşük giysi faktörü değerlerinde özellikle iş
yoğunluğunun yüksek olmadığı sabah saatlerinde ortamı daha konforlu
hissettikleri görülmüştür. Çalışmada dikkate değer bir sonuç olarak ağırlığı 80
kg’ın üzerindeki kişilerin ortamı daha sıcak hissettikleri yapılan anket sonucu
belirlenmiştir. Yüksek metabolik oranda çalışan kişilerin düşük metabolik oran
gerektiren işlerle değişimli çalışmasının konfor hissi bakımından önemli olduğu
tespit edilmiştir.

Kaynakça

  • Ansi/Ashrae. (2004). Thermal Environmental Conditions for Human Occupancy. Ashrae, 2004, 30. https://doi.org/10.1007/s11926-011-0203-9
  • Atmaca, I., Kaynakli, O., & Yigit, A. (2007). Effects of radiant temperature on thermal comfort. Building and Environment, 42(9), 3210–3220. https://doi.org/10.1016/j.buildenv.2006.08.009
  • Beaton, M., Bellenger, L. G., Coggins, J. L., Feldman, E., Gallo, F. M., Hanson, S. D., … Borges, D. S. (2004). Ventilation for Acceptable. ANSI/ASHRAE Addendum N to ANSI/ASHRAE Standard 62-2001, 8400. https://doi.org/ISSN 1041-2336
  • Bridger RS. (2003). Introduction to ergonomics (2nd Editio). London: Taylor & Francis.
  • Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20–32. https://doi.org/10.1016/j.jsams.2007.07.003
  • Epstein, Y., & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44(3), 388–398. https://doi.org/10.2486/indhealth.44.388
  • Epstein, Y., & Roberts, W. O. (2011). The pathopysiology of heat stroke: an integrative view of the final common pathway. Scandinavian Journal of Medicine and Science in Sports, 21(6), 742–748. https://doi.org/10.1111/j.1600-0838.2011.01333.x
  • Fanger, P. O. (1970). Thermal comfort : analysis and applications in environmental engineering. New York: McGraw-Hill.
  • Fisk, W. J., & Rosenfeld, A. H. (1997). Estimates of Improved Productivity and Health from Better Indoor Environments. Indoor Air, 7(3), 158–172. https://doi.org/10.1111/j.1600-0668.1997.t01-1-00002.x
  • Fox, W. . (1967). Human Performance in the Cold. The Journal of the Human Factors and Ergonomics, 9(3), 203–220. https://doi.org/10.1177/001872086700900302
  • Guan, Y., JonesB.W., Mohammad H. Hosni, Gielda, T. P. (2003). No TitlLiterature Review of the Advances in Thermal Comfort Modelinge. ASHRAE Transactions, 3(109), 908–916.
  • Hales JRS, R. D. (1987). Heat stress-physical exertion and environment. Amsterdam: Excerpta Medica.
  • Ho, S. H., Rosario, L., & Rahman, M. M. (2009). Thermal comfort enhancement by using a ceiling fan. Applied Thermal Engineering, 29(8–9), 1648–1656. https://doi.org/10.1016/j.applthermaleng.2008.07.015
  • Holm, D., & Engelbrecht, F. A. (2005). Practical choice of thermal comfort scale and range in naturally ventilated buildings in South Africa. Journal of the South African Institution of Civil Engineering, 47(2), 9–14.
  • HSE. (1999). Thermal comfort in the workplace: Guidance for employers. Retrieved from http://www.ucu.org.uk/media/pdf/6/f/HSG194_-_Thermal_Comfort.pdf
  • Ismail, A. R., Jusoh, N., Makhtar, N. K., Daraham, M. R., Parimun, M. R., & Husin, M. A. (2010). Assessment of Environmental Factors and Thermal Comfort at Automotive Paint Shop. Journal of Applied Sciences, 10(13), 1300–1306. https://doi.org/10.3923/jas.2010.1300.1306
  • Ismail, A. R., Karagaratnan, S. K., & Kadirgama, K. (2013). Thermal comfort findings: Scenario at Malaysian automotive industry. Thermal Science, 17(2), 387–396. https://doi.org/10.2298/TSCI1111110151
  • ISO 7730 International Standard. (1994). Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort.
  • Kerslake, M. D. (1972). The Stress of Hot Environments. London: Cambridge University Press.
  • Kjellstrom, T., Holmer, I., & Lemke, B. (2009). Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change. Global Health Action, 2(Special Issue). https://doi.org/10.3402/gha.v2i0.2047
  • Lemke, B., & Kjellstrom, T. (2012). Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Industrial Health, 50(4), 267–278. https://doi.org/10.2486/indhealth.MS1352
  • Malchaire, P. J. (2004). Ergonomics of the thermal environment Determination of metabolic rate, 3, 1–14. https://doi.org/10.3403/03205220
  • McIntyre, D. A. (1980). Indoor Climate. London, United Kingdom: Elsevier.
  • One, P. (2003). Table of of contents, (November), 1–85. https://doi.org/10.1002/ejoc.201200111
  • Orosa, J. A., & Oliveira, A. C. (2010). Assessment of work-related risk criteria onboard a ship as an aid to designing its onboard environment. Journal of Marine Science and Technology, 15(1), 16–22. https://doi.org/10.1007/s00773-009-0067-0
  • Parsons, K. (2006). Heat stress standard ISO 7243 and its global application. Industrial Health, 44(3), 368–379. https://doi.org/10.2486/indhealth.44.368
  • Parsons, K. . (1993). Human Thermal Environments. London: Taylor & Francis.
  • Parsons, K. C. (2000). Environmental ergonomics: A review of principles, methods and models. Applied Ergonomics, 31(6), 581–594. https://doi.org/10.1016/S0003-6870(00)00044-2
  • Pfafferott, J., Herkel, S., & Wapler, J. (2005). Thermal building behaviour in summer: Long-term data evaluation using simplified models. Energy and Buildings, 37(8), 844–852. https://doi.org/10.1016/j.enbuild.2004.11.007
  • Pilcher, J. J., Nadler, E., & Busch, C. (2002). Effects of Hot and Cold Temperature Exposure on Performance: a Meta-Analytic Review. Ergonomics, 45(10), 682–698. https://doi.org/10.1080/00140130210158419
  • Predicting Thermal Comfort Fanger Comfort Analysis. (n.d.). Retrieved from http://ceae.colorado.edu/~brandem/aren3050/docs/ThermalComfort.pdf
  • Ramsey, J. D. (1995). Task performance in heat: a review. Ergonomics, 38(1), 154–165. https://doi.org/10.1080/00140139508925092
  • Ramsey, J. D., Burford, C. L., Beshir, M. Y., & Jensen, R. C. (1983). Effects of workplace thermal conditions on safe work behavior. Journal of Safety Research, 14(3), 105–114. https://doi.org/10.1016/0022-4375(83)90021-X
  • Yamankaradeniz, R., Horuz, İ., Coşkun, S., Kaynaklı, Ö., Yamankaradeniz, N., (2008). İklimlendirme Esasları ve Uygulamaları. Bursa: Dora Yayıncılık.
  • Shikdar, A. A., & Sawaqed, N. M. (2003). Worker productivity, and occupational health and safety issues in selected industries. Computers and Industrial Engineering, 45(4), 563–572. https://doi.org/10.1016/S0360-8352(03)00074-3
  • Skoog, J., Fransson, N., & Jagemar, L. (2005). Thermal environment in Swedish hospitals: Summer and winter measurements. Energy and Buildings, 37(8), 872–877. https://doi.org/10.1016/j.enbuild.2004.11.003
  • TS EN 27243. (2002). Sıcak ortamlar - Wbgt (yaş - Hazne küre sıcaklığı) indeksine göre ısının çalışan üzerindeki baskısının tahmini, Türk Standartları Enstitüsü, Ankara.
  • Zhang, L. Z., & Niu, J. L. (2003). Indoor humidity behaviors associated with decoupled cooling in hot and humid climates. Building and Environment, 38(1), 99–107. https://doi.org/10.1016/S0360-1323(02)00018-5

Thermal Comfort Examination in an Industrial Establishment Ventilated Naturally and Investigation of the Effects of Clothing Factor, Metabolic Rate, Comfort of Working Weight

Yıl 2018, Cilt: 23 Sayı: 3, 341 - 354, 31.12.2018
https://doi.org/10.17482/uumfd.397735

Öz

In this study, the
thermal comfort conditions of the company in the automotive sector and the
effects of working weight, clothing factor, metabolic rate on thermal comfort
were investigated. Thermal comfort measurements were done in 6 divisions. The
divisions that the measurements were done are molding, welding, pressing, dye
house, assembling and logistic. The measurements were done via DELTA OHM 52.1
labeled
equipments and software. The clothing factor is taken as 0,8
clo during measurements. Metabolic rates varies between low 100 W/m2
and medium 135 W/m2 ratios depending to their divisions. During
examination of the clothing factor, the rates were selected as 0,5, 0,6, 0,7,
0,8, 0,9, 1 clo. As a result of the study, it was determined that the best and
worst thermal comfort in the factory are respectively logistics and molding. On
low ratio clothing factor, employees feel more snug especially during morning
hours as workload is not high was seen. During the research, the people whose
weight are over 80 kg.
feel surrounding much more hot was determined as significant finding as the
conclusion of survey. The importance of alternate shift between the employees
work with high metabolism ratio and the employees work with low metabolism
ratio ascertained.

Kaynakça

  • Ansi/Ashrae. (2004). Thermal Environmental Conditions for Human Occupancy. Ashrae, 2004, 30. https://doi.org/10.1007/s11926-011-0203-9
  • Atmaca, I., Kaynakli, O., & Yigit, A. (2007). Effects of radiant temperature on thermal comfort. Building and Environment, 42(9), 3210–3220. https://doi.org/10.1016/j.buildenv.2006.08.009
  • Beaton, M., Bellenger, L. G., Coggins, J. L., Feldman, E., Gallo, F. M., Hanson, S. D., … Borges, D. S. (2004). Ventilation for Acceptable. ANSI/ASHRAE Addendum N to ANSI/ASHRAE Standard 62-2001, 8400. https://doi.org/ISSN 1041-2336
  • Bridger RS. (2003). Introduction to ergonomics (2nd Editio). London: Taylor & Francis.
  • Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20–32. https://doi.org/10.1016/j.jsams.2007.07.003
  • Epstein, Y., & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44(3), 388–398. https://doi.org/10.2486/indhealth.44.388
  • Epstein, Y., & Roberts, W. O. (2011). The pathopysiology of heat stroke: an integrative view of the final common pathway. Scandinavian Journal of Medicine and Science in Sports, 21(6), 742–748. https://doi.org/10.1111/j.1600-0838.2011.01333.x
  • Fanger, P. O. (1970). Thermal comfort : analysis and applications in environmental engineering. New York: McGraw-Hill.
  • Fisk, W. J., & Rosenfeld, A. H. (1997). Estimates of Improved Productivity and Health from Better Indoor Environments. Indoor Air, 7(3), 158–172. https://doi.org/10.1111/j.1600-0668.1997.t01-1-00002.x
  • Fox, W. . (1967). Human Performance in the Cold. The Journal of the Human Factors and Ergonomics, 9(3), 203–220. https://doi.org/10.1177/001872086700900302
  • Guan, Y., JonesB.W., Mohammad H. Hosni, Gielda, T. P. (2003). No TitlLiterature Review of the Advances in Thermal Comfort Modelinge. ASHRAE Transactions, 3(109), 908–916.
  • Hales JRS, R. D. (1987). Heat stress-physical exertion and environment. Amsterdam: Excerpta Medica.
  • Ho, S. H., Rosario, L., & Rahman, M. M. (2009). Thermal comfort enhancement by using a ceiling fan. Applied Thermal Engineering, 29(8–9), 1648–1656. https://doi.org/10.1016/j.applthermaleng.2008.07.015
  • Holm, D., & Engelbrecht, F. A. (2005). Practical choice of thermal comfort scale and range in naturally ventilated buildings in South Africa. Journal of the South African Institution of Civil Engineering, 47(2), 9–14.
  • HSE. (1999). Thermal comfort in the workplace: Guidance for employers. Retrieved from http://www.ucu.org.uk/media/pdf/6/f/HSG194_-_Thermal_Comfort.pdf
  • Ismail, A. R., Jusoh, N., Makhtar, N. K., Daraham, M. R., Parimun, M. R., & Husin, M. A. (2010). Assessment of Environmental Factors and Thermal Comfort at Automotive Paint Shop. Journal of Applied Sciences, 10(13), 1300–1306. https://doi.org/10.3923/jas.2010.1300.1306
  • Ismail, A. R., Karagaratnan, S. K., & Kadirgama, K. (2013). Thermal comfort findings: Scenario at Malaysian automotive industry. Thermal Science, 17(2), 387–396. https://doi.org/10.2298/TSCI1111110151
  • ISO 7730 International Standard. (1994). Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort.
  • Kerslake, M. D. (1972). The Stress of Hot Environments. London: Cambridge University Press.
  • Kjellstrom, T., Holmer, I., & Lemke, B. (2009). Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change. Global Health Action, 2(Special Issue). https://doi.org/10.3402/gha.v2i0.2047
  • Lemke, B., & Kjellstrom, T. (2012). Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Industrial Health, 50(4), 267–278. https://doi.org/10.2486/indhealth.MS1352
  • Malchaire, P. J. (2004). Ergonomics of the thermal environment Determination of metabolic rate, 3, 1–14. https://doi.org/10.3403/03205220
  • McIntyre, D. A. (1980). Indoor Climate. London, United Kingdom: Elsevier.
  • One, P. (2003). Table of of contents, (November), 1–85. https://doi.org/10.1002/ejoc.201200111
  • Orosa, J. A., & Oliveira, A. C. (2010). Assessment of work-related risk criteria onboard a ship as an aid to designing its onboard environment. Journal of Marine Science and Technology, 15(1), 16–22. https://doi.org/10.1007/s00773-009-0067-0
  • Parsons, K. (2006). Heat stress standard ISO 7243 and its global application. Industrial Health, 44(3), 368–379. https://doi.org/10.2486/indhealth.44.368
  • Parsons, K. . (1993). Human Thermal Environments. London: Taylor & Francis.
  • Parsons, K. C. (2000). Environmental ergonomics: A review of principles, methods and models. Applied Ergonomics, 31(6), 581–594. https://doi.org/10.1016/S0003-6870(00)00044-2
  • Pfafferott, J., Herkel, S., & Wapler, J. (2005). Thermal building behaviour in summer: Long-term data evaluation using simplified models. Energy and Buildings, 37(8), 844–852. https://doi.org/10.1016/j.enbuild.2004.11.007
  • Pilcher, J. J., Nadler, E., & Busch, C. (2002). Effects of Hot and Cold Temperature Exposure on Performance: a Meta-Analytic Review. Ergonomics, 45(10), 682–698. https://doi.org/10.1080/00140130210158419
  • Predicting Thermal Comfort Fanger Comfort Analysis. (n.d.). Retrieved from http://ceae.colorado.edu/~brandem/aren3050/docs/ThermalComfort.pdf
  • Ramsey, J. D. (1995). Task performance in heat: a review. Ergonomics, 38(1), 154–165. https://doi.org/10.1080/00140139508925092
  • Ramsey, J. D., Burford, C. L., Beshir, M. Y., & Jensen, R. C. (1983). Effects of workplace thermal conditions on safe work behavior. Journal of Safety Research, 14(3), 105–114. https://doi.org/10.1016/0022-4375(83)90021-X
  • Yamankaradeniz, R., Horuz, İ., Coşkun, S., Kaynaklı, Ö., Yamankaradeniz, N., (2008). İklimlendirme Esasları ve Uygulamaları. Bursa: Dora Yayıncılık.
  • Shikdar, A. A., & Sawaqed, N. M. (2003). Worker productivity, and occupational health and safety issues in selected industries. Computers and Industrial Engineering, 45(4), 563–572. https://doi.org/10.1016/S0360-8352(03)00074-3
  • Skoog, J., Fransson, N., & Jagemar, L. (2005). Thermal environment in Swedish hospitals: Summer and winter measurements. Energy and Buildings, 37(8), 872–877. https://doi.org/10.1016/j.enbuild.2004.11.003
  • TS EN 27243. (2002). Sıcak ortamlar - Wbgt (yaş - Hazne küre sıcaklığı) indeksine göre ısının çalışan üzerindeki baskısının tahmini, Türk Standartları Enstitüsü, Ankara.
  • Zhang, L. Z., & Niu, J. L. (2003). Indoor humidity behaviors associated with decoupled cooling in hot and humid climates. Building and Environment, 38(1), 99–107. https://doi.org/10.1016/S0360-1323(02)00018-5
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Kemal Furkan Sökmen 0000-0001-8647-4861

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 22 Şubat 2018
Kabul Tarihi 10 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 3

Kaynak Göster

APA Sökmen, K. F. (2018). DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 341-354. https://doi.org/10.17482/uumfd.397735
AMA Sökmen KF. DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI. UUJFE. Aralık 2018;23(3):341-354. doi:10.17482/uumfd.397735
Chicago Sökmen, Kemal Furkan. “DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 3 (Aralık 2018): 341-54. https://doi.org/10.17482/uumfd.397735.
EndNote Sökmen KF (01 Aralık 2018) DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 341–354.
IEEE K. F. Sökmen, “DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI”, UUJFE, c. 23, sy. 3, ss. 341–354, 2018, doi: 10.17482/uumfd.397735.
ISNAD Sökmen, Kemal Furkan. “DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (Aralık 2018), 341-354. https://doi.org/10.17482/uumfd.397735.
JAMA Sökmen KF. DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI. UUJFE. 2018;23:341–354.
MLA Sökmen, Kemal Furkan. “DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 3, 2018, ss. 341-54, doi:10.17482/uumfd.397735.
Vancouver Sökmen KF. DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ FAKTÖRÜ, METABOLİK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI. UUJFE. 2018;23(3):341-54.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr