Derleme
BibTex RIS Kaynak Göster

Metamorfik Hormonlar, Oluşumları ve Böcek Başkalaşımındaki Rolleri

Yıl 2021, Cilt: 58 Sayı: 2, 295 - 304, 30.06.2021
https://doi.org/10.20289/zfdergi.838266

Öz

İki metamorfik hormon (juvenil hormon (JH) ve 20 hidroksiekdizon (20E)) başkalaşımda görevlidir. Bu iki hormon dışında krüppel homolog 1, broad compleks (Br-c), E93 genleri ile methoprene tolerant (met) juvenil hormon reseptörü olarak başkalaşımda rol almaktadır. Ekdizon diğer adıyla metamorfoz hormonu, protorasik bezden salgılandıktan sonra epidermis, orta barsak, malpigi tüpleri gibi periferal dokularda oksitlenerek 20 hidroksiekdizon’a dönüştürülür. 20 hidroksiekdizon, yumurtadan ergine kadar tüm biyolojik dönem geçişlerini tetiklerken, corpora allatadan (ca) salgılanan juvenil hormon başkalaşımı yavaşlatmaktadır. Juvenil hormonun başkalaşımı önleyen etkisi krüppel homolog1 (Kr-h1) geninin aracılığıyla gerçekleşmektedir. Hemimetabol böceklerde sondan bir önceki nimf döneminde krüppel homolog1 miktarının azalması prematüre ergin gelişimine neden olurken, holometabol böceklerde ise prematüre pupa oluşumuna neden olmaktadır. Blattella germanica (Dictyoptera: Blattellidae) ve R. prolixus türlerinin son dönem nimflerinde krüppel homolog1 miktarının azalıp, E93 miktarının artmasıyla nimf döneminden ergine geçişin gerçekleştiği kaydedilmiştir. E93, etkisi Kr-h1 tarafından engellenen hipostatik bir gendir. Ayrıca E93 geninin Drosophila melanogaster (Diptera: Drosophiliidae) ’de otofaji ve programlı hücre ölümünde etkili olduğu saptanmıştır. Metamorfik bir gen olan broad compleks (Br-c), hemimetabol türlerde imaginal disklerin oluşumu, holometabol türlerde ise pupal gelişim için gereklidir.

Kaynakça

  • Amat, I., Desouhant, E., Gomes, E., Moreau, J., & Monceau, K. 2018. Insect personality: what can we learn from metamorphosis?. Current opinion in insect science, 27, 46-51.
  • Bellés, X. and Santos C. G. 2014. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochemistry and Molecular Biology 52, 60–68.
  • Belles, X. 2019. The innovation of the final moult and the origin of insect metamorphosis. Philosophical Transactions of the Royal Society B., 374(1783), 20180415.
  • Belles, X. 2020. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. Archives of Insect Biochemistry and Physiology,103(3), e21609.
  • Bruning, E., Saxer, A. and Lanzrein, B. 1985. Methyl farnesoate and juvenile hormone III in normal and precocene treated embryos of the ovoviviparous cockroach Nauphoeta cinerea.International journal of invertebrate reproduction and development, 8(4-5), 269-278.
  • Chafino, S., Ureña, E., Casanova, J., Casacuberta, E., Franch-Marro, X., & Martín, D. 2019. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle Tribolium castaneum, Cell reports, 27(4), 1039-1049.
  • Charles, J. P. 2010. The regulation of expression of insect cuticle protein genes. Insect biochemistry and molecular biology, 40(3), 205-213.
  • Charles, J.P., Iwema, T., Epa, V.C., Takaki, K., Rynes J. and . Jindra, M. 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences,108(52), 21128-21133.
  • Daimon, T., Kozaki, T., Niwa, R., Kobayashi, I., Furuta, K., Namiki, T., ... & Mita, K. 2012. Precocious metamorphosis in the Juvenile Hormone–Deficient Mutant of the silkworm, Bombyx mori. PLoS Genet, 8(3), e1002486.
  • Di Cara, F., & King-Jones, K. 2013. How clocks and hormones act in concert to control the timing of insect development. In Current Topics in Developmental Biology Vol. 105, pp. 1-36. Academic Press.
  • Duneau, D. F., & Lazzaro, B. P. 2018. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biology letters, 14(2), 20170771.
  • Engel P, Moran NA. 2013 The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735. (doi:10.1111/1574-6976.12025)
  • Engel, M. S. 2015. Insect evolution. Current Biology, 25(19), 868-872.
  • Fernandez-Nicolas, A., & Belles, X. 2017. Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development, 144(24), 4637-4644.
  • Godlewski, J., S. Wang and Wilson, T. G. 2006. Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. Biochemical and biophysical research communications, 342(4), 1305-1311.
  • Hammer, T. J., & Moran, N. A. 2019. Links between metamorphosis and symbiosis in holometabolous insects. Philosophical Transactions of the Royal Society B, 374(1783), 20190068.
  • Hiruma, K., & Kaneko, Y. 2013. Hormonal regulation of insect metamorphosis with special reference to juvenile hormone biosynthesis. In Current topics in developmental biology (Vol. 103, pp. 73-100). Academic Press.
  • Huang, J. H., Lozano, J. and Belles, X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochimica et Biophysica Acta (BBA)-General Subjects,1830(1), 2178-2187.
  • Ishimaru, Y., Tomonari, S., Matsuoka, Y., Watanabe, T., Miyawaki, K., Bando, T., ... & Mito, T. 2016. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proceedings of the National Academy of Sciences, 113(20), 5634-5639.
  • Jindra, M., Palli S. R., and Riddiford,L. M. 2013. The juvenile hormone signaling pathway in insect development. Annual review of entomology, 58, 181–204.
  • Jones D, Jones, G., Teal P., Hammac C., Messmer, L., Osborne K., Belgacem Y.H. and Martin, J.R. 2010. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. General and Comparative Endocrinology. 165(2):244–254.
  • Kayukawa, T., Minakuchi, C., Namiki, T., Togawa, T., Yoshiyama, M., Kamimura, M., ... & Shinoda, T. 2012. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proceedings of the National Academy of Sciences, 109(29), 11729-11734.
  • Kayukawa, T., M. Murata, I. Kobayashi, D. Muramatsu, C. Okada, K. Uchino, H. Sezutsu, M. Kiuchi, , T. Tamura K. Hiruma, Y. Ishikawa and Shinoda, T. 2014. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Developmental. Biology. 388(1), 48–56.
  • Kayukawa, T., Nagamine, K., Ito, Y., Nishita, Y., Ishikawa, Y., & Shinoda, T. 2016. Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of Broad-Complex, a pupal specifier gene. Journal of Biological Chemistry, 291(4), 1751-1762.
  • Kiss, I., Beaton, A. H., Tardiff, J., Fristrom, D. and Fristrom, J. W. 1988. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster.Genetics,118(2), 247-259.
  • Konopova, B., Smykal, V. and Jindra, M. 2011. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PloS one, 6(12), e28728.
  • Khyade, V. B., & Gaikawad, D. R. 2016. Insect Juvenile Hormone. World Scientific News, 44(2016), 216-239.Li, K. L., Yuan, S. Y., Nanda, S., Wang, W. X., Lai, F. X., Fu, Q., & Wan, P. J. (2018). The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Frontiers in Physiology, 9, 1677.
  • Libbrecht, R., Corona, M., Wende, F., Azevedo, D. O., Serrão, J. E., and Keller, L. 2013. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proceedings of the National Academy of Sciences, 110(27), 11050-11055.
  • Lozano, J., and Belles, X. 2011. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific reports, 1, 163.
  • Lozano, J., Kayukawa, T., Shinoda, T., & Belles, X. 2014. A role for Taiman in insect metamorphosis. PLoS Genet, 10(10), e1004769.
  • McMahon, D. P. and Hayward, A. 2016. Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecological entomology, 41(5), 505-515.
  • Mitra, A. 2013. Cinderella's new shoes–how and why insects remodel their bodies between life stages. Current Science, 1028-1036.
  • Nicholson, D. B., Ross, A. J., and Mayhew, P. J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141823.
  • Ohhara, Y., Kobayashi, S., & Yamanaka, N. 2017. Nutrient-dependent endocycling in steroidogenic tissue dictates timing of metamorphosis in Drosophila melanogaster.PLoS genetics,13(1), e1006583.
  • Parthasarathy, R., Tan, A., Bai, H., and Palli, S. R. 2008. Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mechanisms of development, 125(3-4), 299-313.
  • Rainford, J. L., Hofreiter, M., Nicholson, D. B., and Mayhew, P. J. 2014. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One, 9(10), 109085.
  • Richard, D. S., Applebaum, S. W. Sliter, T. J. Baker, F. C. Schooley, D. A. Reuter, C. C. and Gilbert, L. I. 1989. Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proceedings of the National Academy of Sciences, 86(4), 1421-1425.
  • Riddiford, L. M., Truman, J. W., Mirth, C. K. and Shen, Y. C. 2010. A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development,137(7), 1117-1126.
  • Riddiford, L. M. 2020. A life's journey through insect metamorphosis. Annual Review of Entomology, 65, 1-16.
  • Rojo de la Paz, A., Delbecque, J., Bitsch, P. J. and Delachambre, J. 1983. Ecdysteroids in the haemolymph and the ovaries of the firebrat Thermobia domestica (Packard) (Insecta, Thysanura): correlations with integumental and ovarian cycles. Journal of Insect Physiology., 29 (4) , 323–329.
  • Santos, C. G., Fernandez-Nicolas, A., & Belles, X. 2016. Smads and insect hemimetabolan metamorphosis. Developmental biology, 417(1), 104-113.
  • Santos, C. G., Humann, F. C., & Hartfelder, K. 2019. Juvenile hormone signaling in insect oogenesis. Current opinion in insect science, 31, 43-48.
  • Schooley, D. A., Baker, F. C., Tsai, L. W., Miller, C. A., and Jamieson, G. C. 1984. Juvenile hormones O, I, and II exist only in Lepidoptera. In Biosynthesis, metabolism and mode of action of invertebrate hormones. 373-383. Springer, Berlin, Heidelberg.
  • Shukla, S. P., Sanders, J. G., Byrne, M. J., & Pierce, N. E. 2016. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae.Molecular ecology, 25(24), 6092-6106.
  • Teal, P.E.A. and Proveaux, A.T. 2006. Identification of methyl farnesoate from in vitro culture of the retrocerebral complex of adult females of the moth, Heliothis virescens (Lepidoptera: Noctuidae) and its conversion to juvenile hormone III. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America,61(2), 98-105.
  • Tracy, K., & Baehrecke, E. H. 2013. The role of autophagy in Drosophila metamorphosis. In Current topics in developmental biology (Vol. 103, pp. 101-125). Academic Press.
  • Truman, J. W., & Riddiford, L. M. 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B, 374(1783), 20190070.
  • Urena, E., Manjón, C., Franch-Marro, X., and Martín, D. 2014. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proceedings of the National Academy of Sciences,111(19), 7024-7029.
  • Urena, E., Chafino, S. Manjón, C., Franch-Marro, X. and Martín, D. 2016. The occurrence of the holometabolous pupal stage requires the interaction between E93, Krüppel-homolog 1 and Broad-complex. PLoS genetics,12(5), e1006020.
  • Vea, I. M., Tanaka, S., Shiotsuki, T., Jouraku, A., Tanaka, T., & Minakuchi, C. 2016. Differential juvenile hormone variations in scale insect extreme sexual dimorphism. PLoS One, 11(2), e0149459.
  • Vea, I. M., Tanaka, S., Tsuji, T., Shiotsuki, T., Jouraku, A., & Minakuchi, C. 2019. E93 expression and links to the juvenile hormone in hemipteran mealybugs with insights on female neoteny. Insect biochemistry and molecular biology, 104, 65-72.
  • Wigglesworth, V. B. 1934. Memoirs: The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Journal of Cell Science, 2(306), 191-222.
  • Willis, J. H. 2018. The evolution and metamorphosis of arthropod proteomics and genomics. Annual Review of Entomology, 63, 1-13.
  • Zhang, W., Ma, L., Xiao, H., Liu, C., Chen, L., Wu, S., & Liang, G. 2017. Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera. Scientific reports, 7(1), 1-12.

Metamorphic Hormones Formations and Roles of Insect Metamorphosis

Yıl 2021, Cilt: 58 Sayı: 2, 295 - 304, 30.06.2021
https://doi.org/10.20289/zfdergi.838266

Öz

Two basic methamorpic hormones (juvenile hormone and 20 hydroxyecdyzone) are involved the metamorphosis. Apart from this two hormones, krüppel homolog 1, broad compleks, E93 genes and juvenil hormone reseptör -methoprene tolerant are involved the metamorphosis. Ecdysone is secreted from the protoracic gland and it is oxidized in peripheral tissues such as epidermis, middle bowel and malpighian tubes and converted into 20 hydroxyecdyzone. While 20 hydroxyecdyzone triggers all biological period transitions from egg to adult, juvenile hormone which is secreted from corpora allata prevents metamorphosis. The anti-metamorphic effect of juvenile hormone is mediated by krüppel homolog1. Decrease in the amount of krüppel homolog1 in the penultimate period in hemimetabola insects causes premature adult development, while in holometabola insects it causes premature pupa formation. In the last period nymphs of Blattella germanica (Dictyoptera: Blattellidae) and Rhodnius prolixus (Hemiptera: Reduviidae) it was recorded that the titer of krüppel homolog1 decreased and the titer of E93 increased. E93 effect is the hypostatic gene blocked by Kr-h1. In addition, E93 has been found to be effective in autophagy and apoptosis in Drosophila melanogaster (Diptera: Drosophiliidae). Broad complex gene is require for the formation of imaginal discs in hemimetabola species, on the other hand in pupal commitment in holometabola species.

Kaynakça

  • Amat, I., Desouhant, E., Gomes, E., Moreau, J., & Monceau, K. 2018. Insect personality: what can we learn from metamorphosis?. Current opinion in insect science, 27, 46-51.
  • Bellés, X. and Santos C. G. 2014. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochemistry and Molecular Biology 52, 60–68.
  • Belles, X. 2019. The innovation of the final moult and the origin of insect metamorphosis. Philosophical Transactions of the Royal Society B., 374(1783), 20180415.
  • Belles, X. 2020. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. Archives of Insect Biochemistry and Physiology,103(3), e21609.
  • Bruning, E., Saxer, A. and Lanzrein, B. 1985. Methyl farnesoate and juvenile hormone III in normal and precocene treated embryos of the ovoviviparous cockroach Nauphoeta cinerea.International journal of invertebrate reproduction and development, 8(4-5), 269-278.
  • Chafino, S., Ureña, E., Casanova, J., Casacuberta, E., Franch-Marro, X., & Martín, D. 2019. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle Tribolium castaneum, Cell reports, 27(4), 1039-1049.
  • Charles, J. P. 2010. The regulation of expression of insect cuticle protein genes. Insect biochemistry and molecular biology, 40(3), 205-213.
  • Charles, J.P., Iwema, T., Epa, V.C., Takaki, K., Rynes J. and . Jindra, M. 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences,108(52), 21128-21133.
  • Daimon, T., Kozaki, T., Niwa, R., Kobayashi, I., Furuta, K., Namiki, T., ... & Mita, K. 2012. Precocious metamorphosis in the Juvenile Hormone–Deficient Mutant of the silkworm, Bombyx mori. PLoS Genet, 8(3), e1002486.
  • Di Cara, F., & King-Jones, K. 2013. How clocks and hormones act in concert to control the timing of insect development. In Current Topics in Developmental Biology Vol. 105, pp. 1-36. Academic Press.
  • Duneau, D. F., & Lazzaro, B. P. 2018. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biology letters, 14(2), 20170771.
  • Engel P, Moran NA. 2013 The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735. (doi:10.1111/1574-6976.12025)
  • Engel, M. S. 2015. Insect evolution. Current Biology, 25(19), 868-872.
  • Fernandez-Nicolas, A., & Belles, X. 2017. Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development, 144(24), 4637-4644.
  • Godlewski, J., S. Wang and Wilson, T. G. 2006. Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. Biochemical and biophysical research communications, 342(4), 1305-1311.
  • Hammer, T. J., & Moran, N. A. 2019. Links between metamorphosis and symbiosis in holometabolous insects. Philosophical Transactions of the Royal Society B, 374(1783), 20190068.
  • Hiruma, K., & Kaneko, Y. 2013. Hormonal regulation of insect metamorphosis with special reference to juvenile hormone biosynthesis. In Current topics in developmental biology (Vol. 103, pp. 73-100). Academic Press.
  • Huang, J. H., Lozano, J. and Belles, X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochimica et Biophysica Acta (BBA)-General Subjects,1830(1), 2178-2187.
  • Ishimaru, Y., Tomonari, S., Matsuoka, Y., Watanabe, T., Miyawaki, K., Bando, T., ... & Mito, T. 2016. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proceedings of the National Academy of Sciences, 113(20), 5634-5639.
  • Jindra, M., Palli S. R., and Riddiford,L. M. 2013. The juvenile hormone signaling pathway in insect development. Annual review of entomology, 58, 181–204.
  • Jones D, Jones, G., Teal P., Hammac C., Messmer, L., Osborne K., Belgacem Y.H. and Martin, J.R. 2010. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. General and Comparative Endocrinology. 165(2):244–254.
  • Kayukawa, T., Minakuchi, C., Namiki, T., Togawa, T., Yoshiyama, M., Kamimura, M., ... & Shinoda, T. 2012. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proceedings of the National Academy of Sciences, 109(29), 11729-11734.
  • Kayukawa, T., M. Murata, I. Kobayashi, D. Muramatsu, C. Okada, K. Uchino, H. Sezutsu, M. Kiuchi, , T. Tamura K. Hiruma, Y. Ishikawa and Shinoda, T. 2014. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Developmental. Biology. 388(1), 48–56.
  • Kayukawa, T., Nagamine, K., Ito, Y., Nishita, Y., Ishikawa, Y., & Shinoda, T. 2016. Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of Broad-Complex, a pupal specifier gene. Journal of Biological Chemistry, 291(4), 1751-1762.
  • Kiss, I., Beaton, A. H., Tardiff, J., Fristrom, D. and Fristrom, J. W. 1988. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster.Genetics,118(2), 247-259.
  • Konopova, B., Smykal, V. and Jindra, M. 2011. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PloS one, 6(12), e28728.
  • Khyade, V. B., & Gaikawad, D. R. 2016. Insect Juvenile Hormone. World Scientific News, 44(2016), 216-239.Li, K. L., Yuan, S. Y., Nanda, S., Wang, W. X., Lai, F. X., Fu, Q., & Wan, P. J. (2018). The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Frontiers in Physiology, 9, 1677.
  • Libbrecht, R., Corona, M., Wende, F., Azevedo, D. O., Serrão, J. E., and Keller, L. 2013. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proceedings of the National Academy of Sciences, 110(27), 11050-11055.
  • Lozano, J., and Belles, X. 2011. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific reports, 1, 163.
  • Lozano, J., Kayukawa, T., Shinoda, T., & Belles, X. 2014. A role for Taiman in insect metamorphosis. PLoS Genet, 10(10), e1004769.
  • McMahon, D. P. and Hayward, A. 2016. Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecological entomology, 41(5), 505-515.
  • Mitra, A. 2013. Cinderella's new shoes–how and why insects remodel their bodies between life stages. Current Science, 1028-1036.
  • Nicholson, D. B., Ross, A. J., and Mayhew, P. J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141823.
  • Ohhara, Y., Kobayashi, S., & Yamanaka, N. 2017. Nutrient-dependent endocycling in steroidogenic tissue dictates timing of metamorphosis in Drosophila melanogaster.PLoS genetics,13(1), e1006583.
  • Parthasarathy, R., Tan, A., Bai, H., and Palli, S. R. 2008. Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mechanisms of development, 125(3-4), 299-313.
  • Rainford, J. L., Hofreiter, M., Nicholson, D. B., and Mayhew, P. J. 2014. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One, 9(10), 109085.
  • Richard, D. S., Applebaum, S. W. Sliter, T. J. Baker, F. C. Schooley, D. A. Reuter, C. C. and Gilbert, L. I. 1989. Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proceedings of the National Academy of Sciences, 86(4), 1421-1425.
  • Riddiford, L. M., Truman, J. W., Mirth, C. K. and Shen, Y. C. 2010. A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development,137(7), 1117-1126.
  • Riddiford, L. M. 2020. A life's journey through insect metamorphosis. Annual Review of Entomology, 65, 1-16.
  • Rojo de la Paz, A., Delbecque, J., Bitsch, P. J. and Delachambre, J. 1983. Ecdysteroids in the haemolymph and the ovaries of the firebrat Thermobia domestica (Packard) (Insecta, Thysanura): correlations with integumental and ovarian cycles. Journal of Insect Physiology., 29 (4) , 323–329.
  • Santos, C. G., Fernandez-Nicolas, A., & Belles, X. 2016. Smads and insect hemimetabolan metamorphosis. Developmental biology, 417(1), 104-113.
  • Santos, C. G., Humann, F. C., & Hartfelder, K. 2019. Juvenile hormone signaling in insect oogenesis. Current opinion in insect science, 31, 43-48.
  • Schooley, D. A., Baker, F. C., Tsai, L. W., Miller, C. A., and Jamieson, G. C. 1984. Juvenile hormones O, I, and II exist only in Lepidoptera. In Biosynthesis, metabolism and mode of action of invertebrate hormones. 373-383. Springer, Berlin, Heidelberg.
  • Shukla, S. P., Sanders, J. G., Byrne, M. J., & Pierce, N. E. 2016. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae.Molecular ecology, 25(24), 6092-6106.
  • Teal, P.E.A. and Proveaux, A.T. 2006. Identification of methyl farnesoate from in vitro culture of the retrocerebral complex of adult females of the moth, Heliothis virescens (Lepidoptera: Noctuidae) and its conversion to juvenile hormone III. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America,61(2), 98-105.
  • Tracy, K., & Baehrecke, E. H. 2013. The role of autophagy in Drosophila metamorphosis. In Current topics in developmental biology (Vol. 103, pp. 101-125). Academic Press.
  • Truman, J. W., & Riddiford, L. M. 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B, 374(1783), 20190070.
  • Urena, E., Manjón, C., Franch-Marro, X., and Martín, D. 2014. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proceedings of the National Academy of Sciences,111(19), 7024-7029.
  • Urena, E., Chafino, S. Manjón, C., Franch-Marro, X. and Martín, D. 2016. The occurrence of the holometabolous pupal stage requires the interaction between E93, Krüppel-homolog 1 and Broad-complex. PLoS genetics,12(5), e1006020.
  • Vea, I. M., Tanaka, S., Shiotsuki, T., Jouraku, A., Tanaka, T., & Minakuchi, C. 2016. Differential juvenile hormone variations in scale insect extreme sexual dimorphism. PLoS One, 11(2), e0149459.
  • Vea, I. M., Tanaka, S., Tsuji, T., Shiotsuki, T., Jouraku, A., & Minakuchi, C. 2019. E93 expression and links to the juvenile hormone in hemipteran mealybugs with insights on female neoteny. Insect biochemistry and molecular biology, 104, 65-72.
  • Wigglesworth, V. B. 1934. Memoirs: The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Journal of Cell Science, 2(306), 191-222.
  • Willis, J. H. 2018. The evolution and metamorphosis of arthropod proteomics and genomics. Annual Review of Entomology, 63, 1-13.
  • Zhang, W., Ma, L., Xiao, H., Liu, C., Chen, L., Wu, S., & Liang, G. 2017. Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera. Scientific reports, 7(1), 1-12.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Neşe Keskin 0000-0002-1716-9350

Ferit Turanlı 0000-0003-1096-1756

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 9 Aralık 2020
Kabul Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 58 Sayı: 2

Kaynak Göster

APA Keskin, N., & Turanlı, F. (2021). Metamorfik Hormonlar, Oluşumları ve Böcek Başkalaşımındaki Rolleri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 58(2), 295-304. https://doi.org/10.20289/zfdergi.838266

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.