Review
BibTex RIS Cite
Year 2022, , 61 - 75, 08.06.2022
https://doi.org/10.38088/jise.951179

Abstract

References

  • [1] Marella, C., Muthukumarappan K., and Metzger, L. (2013). Application of membrane separation technology for developing novel dairy food ingredients. Journal of Food Processing & Technology, 4(9).
  • [2] Marcelo, P.A. and Rizvi S.S. (2008). Applications of membrane technology in the dairy industry, in Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, CRC Press. pp. 635-669.
  • [3] Strathmann, H. (2000). Membrane separation processes, 1. Principles. Ullmann's Encyclopedia of Industrial Chemistry.
  • [4] Lipnizki, F. (2010). Cross-flow membrane applications in the food industry. Membranes for food applications. Edited by Peinemann K.V., Pereira S., Giorno L., Estados Unidos de América: Willey-VCH. pp. 1-23.
  • [5] Pouliot, Y. (2008). Membrane processes in dairy technology-From a simple idea to worldwide panacea. International Dairy Journal, 18(7): 735-740.
  • [6] Goldsmith, R.L., deFilippi, R.P., Hossain, S., & Timmins, R.S. (1971). Industrial ultrafiltration, in membrane processes in industry and biomedicine, M. Bier. Plenum Press, New York. pp. 267-300.
  • [7] Muthukumarappan, K., and Marella, C. (2010). Membrane processing. Edited by M. M. Farid , Mathematical modeling of food processing CRC Press. pp. 735-758.
  • [8] Mistry, V.V., and Maubois, J.L. (1993). Application of membrane separation technology to cheese production. Edited by P. F. Fox, Cheese: Chemistry, Physics and Microbiology Chapman & Hall, London, England. pp. 493-521.
  • [9] Salehi, F. (2014). Current and future applications for nanofiltration technology in food processing. Journal of Food and Bioproducts Processing, 92(2): 161-177.
  • [10] Le, T.T., Cabaltica, A.D., and Bue, V.M. (2014). Membrane separation in dairy processing. Journal of Food Research and Technology, 2(1): 1-14.
  • [11] Garcia, L.F., Blanco, S.A., and Riera, F.A. (2012). Microfiltration applied to dairy streams: Removal of bacteria. Journal of Food Agriculture, 93(2): 1981-1900.
  • [12] Akpinar-Bayizit, A., Ozcan T., and Yilmaz-Ersan L. (2009). Membrane processes in production of functional whey components. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 59(4): 282-288.
  • [13] Marella, C. (2009). Whey protein fractionation using membrane separation technology. PhD thesis, South Dakota State University. Brookings, USA. 186 p.
  • [14] Dupont, D., Croguennec T., and Pochet S. (2018). Milk Proteins-Analytical Methods. Reference Module in Food Science. p. np.
  • [15] Brans, G., Schroën, C.G.P.H., van der Sman, R.G.M., and Boom, R.M. (2004). Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 243(1): 263-272.
  • [16] De Wit, J.N. (2001). Lecturer’s Handbook on whey and whey products. European Whey Products Association, Brussels, Belgium.
  • [17] Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., van Boekel, M. A. J. S. (1999). Dairy Technology-Principles of milk properties and processes. Marcel Dekker, New York, NY.
  • [18] Ng-Kwai-Hang, K. F. (2011). Milk proteins heterogeneity, fractionation, and isolation. Edited by J. W. Fuquay, P. F. Fox, P. L.H. McSweeney, Encyclopedia of dairy sciences, Second Edition, McGill University, Montreal, QC, Canada: Elsevier Ltd. pp. 751-764.
  • [19] Luque, S., Gómez, D., and Álvarez, J. R. (2008). Industrial applications of porous ceramic membranes (pressure driven processes). Journal of Membrane Science and Technology 13: 177–216.
  • [20]Schier, G., and Paar, S. (2007). Standardization of casein using different membranes. Evaluation of the cross-flow microfiltration of milk. Lebensmittelindustrie und Milchwirtschaft, 128: 22-25.
  • [21] Lawrence, N.D., Kentish, S.E., O`Connor, A.J., Barber, A.R. and Stevens, G.W. (2008). Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Separation and Purification Technology, 60: 237-244.
  • [22] Saboya, L.V., and Maubois, J. L. (2000). Current developments of microfiltration technology in the dairy industry. Journal of Le Lait, 80(6): 541-554.
  • [23] Hayaloğlu, A., and Özer, B. (2011). Peynir biliminin temelleri. Sidas Medya Ltd.
  • [24] Ur-Rehman, S., Dunker, J. M. (2010). Methods for Casein Production. Patent, 12/741,034 (US 2010/0303958 A1) Winstead PC, Dallas, United States.
  • [25] Zulewska, J., Newbold, M., & Barbano, D.M. (2009). Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50°C. Journal of Dairy Science, 92(4): 1361-1377.
  • [26] Maubois, J.L., and Ollivier, G. (1992). Milk Protein Fractionation. Edited by R. de Boer, P. Jelen, Z. Puhan, New Applications of Membrane Processes IDF Special Issue, 9201. Brussels, Belgium. pp. 15-22.
  • [27] Kumar, P., Sharma, N., Ranjan, R., Kumar, S., Bhat, Z.F., and Jeong, D.K. (2013). Perspective of membrane technology in dairy industry: A Review. Asian-Australasian Journal of Animal Sciences, 26(9): 1347–1358.
  • [28] Nelson, B.K., and Barbano, D.M. (2005.) A microfiltration process to maximize removal of serum proteins from skim milk before cheese making. Journal of Dairy Science, 88(5): 1891-1900.
  • [29] Dong, J.Y., Chen, L.Y., Maubois, J.L., and Ma, Y. (2009). Influence of medium concentration factor microfiltration treatment on the characteristics of low-moisture Mozarella cheese. Journal of Dairy Science and Technology, 89(2): 139-154.
  • [30] Maubois, J. L., Pierre, A., Fauquant, J., and Piot, M. (1987). Industrial fractionation of the main whey proteins. Bulletin of the International Dairy Federation, 212: 154-159.
  • [31] Punidadas, P., and Rizvi, S. S. H. (1998). Separation of milk proteins into fractions rich in casein or whey proteins by cross flow filtration. Food Research International, 31(4): 265-272.
  • [32] Walstra, P., Wouters, J.T.M., and Geurts, T.J. (2006). Dairy Science and Technology: Second Edition. Boca Raton, Florida: CRC Press, Taylor & Francis Group.
  • [33] Beckman, S.L., Zulewska, J., Newbold, M., and Barbano, D.M. (2010). Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes. Journal of Dairy Science, 93(10): 4506-4517.
  • [34] Daufin, G., Escudier, J.P., Carrere, H., Berot, S., Fillaudeau, L., and Decloux, M. (2001). Recent and emerging applications of membrane processes in the food and dairy industry. Food and Bioproducts Processing, 79(2): 89-102.
  • [35] Marshall, A.D., Munro, P.A., and Tragardh, G. (1993). The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review. Journal of Desalination, 91(1): 65-108.
  • [36] Arkell, A., Vrgoc, F., and Jönsson, A.S. (2014). Back-pulsing as an energy-saving method in the microfiltration of milk. International Dairy Journal, 35(1): 1-5.
  • [37] Arkell, A., Vrgoc, F., Wallberg, O., and Jönsson, A.S. (2015). Increasing flux by back-pulsing in the microfiltration of milk. International Dairy Journal, 41: 23-25.
  • [38] Rizvi, S. S. H., and Brandsma, R. L. (2003). Microfiltration of skim milk for cheese making and whey proteins. Patent, 10/255,085 (US 6,623,781 B2) Cornell Research Foundation, Inc., Ithaca, NY, United States.
  • [39] Adams, M.C., & Barbano, D.M. (2013). Serum protein removal from skim milk with a 3-stage, 3×ceramic Isoflux membrane process at 50°C. Journal Dairy Science, 96(4): 2020-2034.
  • [40] Beckman, S.L., and Barbano, D.M. (2013). Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes. Journal of Dairy Science, 96(10): 6199-6212.
  • [41] Neocleus, M., Barbano, D.M., and Rudan, M.A. (2002). Impact of Low Concentration Factor Microfiltration on the Composition and Aging of Cheddar Cheese. Journal of Dairy Science, 85(10): 2425–2437
  • [42] Samuelsson, G., Dejmek, P., Trägårdh, G., and Paulsson, M. (1997). Minimizing whey protein retention in cross-flow microfiltration of skim milk. International Dairy Journal, 7(4): 237-242.
  • [43] Kuperus, J. H., Janakievski, F., Glagovskaiaand, O., & De Silva, K. (2013). Effect of pH, temperature and milk dilution on skim milk microfiltration. International Membrane Science & Technology Conference. Melbourne, Australia.
  • [44] Doyen, W., Andriansens, W., Molenberghs, B., and Leysen, R. (1996). A comparison between polysulfone, zirconia and organo-mineral membranes for use in ultrafiltration. Journal of Membrane Science, 113(2): 247-258.
  • [45] Cui, Z. (2005). Protein separation using ultrafiltration-An example of multi-scale complex systems. Journal of China Particuology, 3(6): 343-348.
  • [46] Lucena, M.E., Alvarez, S., Menendez, C., Riere, F.A., and Alvarez, R. (2006). Beta-lactoglobulin removal from whey protein concentrates production of milk derivatives as a base for infant formulas. Separation and Purification Technology, 52(2): 310-316.
  • [47] Kelly, P.M. (2011). Milk Protein Products-Membrane-Based Fractionation. Edited by J.W. Fuquay, P.F. Fox, P.L.H. McSweeney, Encyclopedia of dairy sciences, Second Edition, San Diego, Academic Press. pp. 864-872.
  • [48] Metsämuuronen, S., Mänttäri, M., and Nyström, M. (2011). Comparison of analysis methods for protein concentration and its use in UF fractionation of whey. Journal of Desalination, 283: 156-164.
  • [49] Uchida, Y., Masaharu, S., Tamami, M., & Masanobu, K. (1996). Process for preparing a fraction having a high content of α-lactalbumin from whey and nutritional compositions containing such fractions. Patent 284,919 (US 5,503,864). Snow Brand Milk Products, Inc., Hokkaido, Japan.
  • [50] Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering, 67(3): 325-332.
  • [51] Baldasso, C., Barros, T.C., and Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278(1-3): 381-386.
  • [52] Holland, B., Kackmar, J., and Corredig, M. (2012). Isolation of a whey fraction rich in α-lactalbumin from skim milk using tangential flow filtration. Journal of Dairy Science, 95(10): 5604-5607.
  • [53] Arankumar, A., and Etzel, M.R. (2014). Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. Journal of Food Membranes, 454: 488-495.
  • [54] Horst, H.C., Timmer, J.M.K., Robbertsen, T., and Leenders, J. (1995). Use of nanofiltration for concentration and demineralization in the dairy indusrty: Model for mass transport. Journal of Membrane Science, 104(3): 205-218.
  • [55] Kelly, J., and Kelly, P. (1995). Desalination of acid casein whey by nanofiltration. International Dairy Journal, 5(3): 291-303.
  • [56] Rasanen, E., Nyström, M., Sahlstein, J., and Tossavainen, O. (2002). Comparison of commercial membranes in nanofiltration of sweet whey. Journal of Lait, 82(3): 343-356.
  • [57] Pan, K., Sing, Q., Wang, L., and Cao, B. (2011). A study of demineralization of whey by nanofiltration membrane. Desalination, 267(2-3): 217-221.
  • [58], Y., Gauthier, S.F., and Heureux, J.L. (2000). Effect of peptide distribution on the fractionation of whey protein hydrolysates by nanofiltration membranes. Lait, 80(1): 113–122.
  • [59] Butylina, S., Luque, S., and Nyström, M. (2006). Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. Journal of Membrane Science, 280(1-2): 418-426.
  • [60] Nguyen, M., Reynolds, N., and Vigneswaren, S. (2003). By-product recovery from cottage cheese production by nanofiltration. Journal of Cleaner Production, 11(7): 803-807. ction by nanofiltration. Journal of Cleaner Production, 11(7): 803-807.

Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins

Year 2022, , 61 - 75, 08.06.2022
https://doi.org/10.38088/jise.951179

Abstract

Whey is the major by-product of cheese industry which contains valuable organic materials. Further processes are needed before these organic materials can be used in food industry. Membrane filtration is a convenient alternative to traditional processes. Low energy consumption, reduced processing costs and enhanced quality of products are the main benefits of membrane filtration. Due to these advantages membrane filtration techniques have affected dairy industry in many aspects and become important part of the dairy processing. Pressure driven membrane filtration techniques namely, microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have found wide range of application areas to produce value-added dairy products. Depending on their application ranges, all the milk components can be separated and fractionated efficiently. In this paper, a comprehensive review is presented on the researches and developments related to membrane separation and fractionation of milk proteins.

References

  • [1] Marella, C., Muthukumarappan K., and Metzger, L. (2013). Application of membrane separation technology for developing novel dairy food ingredients. Journal of Food Processing & Technology, 4(9).
  • [2] Marcelo, P.A. and Rizvi S.S. (2008). Applications of membrane technology in the dairy industry, in Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, CRC Press. pp. 635-669.
  • [3] Strathmann, H. (2000). Membrane separation processes, 1. Principles. Ullmann's Encyclopedia of Industrial Chemistry.
  • [4] Lipnizki, F. (2010). Cross-flow membrane applications in the food industry. Membranes for food applications. Edited by Peinemann K.V., Pereira S., Giorno L., Estados Unidos de América: Willey-VCH. pp. 1-23.
  • [5] Pouliot, Y. (2008). Membrane processes in dairy technology-From a simple idea to worldwide panacea. International Dairy Journal, 18(7): 735-740.
  • [6] Goldsmith, R.L., deFilippi, R.P., Hossain, S., & Timmins, R.S. (1971). Industrial ultrafiltration, in membrane processes in industry and biomedicine, M. Bier. Plenum Press, New York. pp. 267-300.
  • [7] Muthukumarappan, K., and Marella, C. (2010). Membrane processing. Edited by M. M. Farid , Mathematical modeling of food processing CRC Press. pp. 735-758.
  • [8] Mistry, V.V., and Maubois, J.L. (1993). Application of membrane separation technology to cheese production. Edited by P. F. Fox, Cheese: Chemistry, Physics and Microbiology Chapman & Hall, London, England. pp. 493-521.
  • [9] Salehi, F. (2014). Current and future applications for nanofiltration technology in food processing. Journal of Food and Bioproducts Processing, 92(2): 161-177.
  • [10] Le, T.T., Cabaltica, A.D., and Bue, V.M. (2014). Membrane separation in dairy processing. Journal of Food Research and Technology, 2(1): 1-14.
  • [11] Garcia, L.F., Blanco, S.A., and Riera, F.A. (2012). Microfiltration applied to dairy streams: Removal of bacteria. Journal of Food Agriculture, 93(2): 1981-1900.
  • [12] Akpinar-Bayizit, A., Ozcan T., and Yilmaz-Ersan L. (2009). Membrane processes in production of functional whey components. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 59(4): 282-288.
  • [13] Marella, C. (2009). Whey protein fractionation using membrane separation technology. PhD thesis, South Dakota State University. Brookings, USA. 186 p.
  • [14] Dupont, D., Croguennec T., and Pochet S. (2018). Milk Proteins-Analytical Methods. Reference Module in Food Science. p. np.
  • [15] Brans, G., Schroën, C.G.P.H., van der Sman, R.G.M., and Boom, R.M. (2004). Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 243(1): 263-272.
  • [16] De Wit, J.N. (2001). Lecturer’s Handbook on whey and whey products. European Whey Products Association, Brussels, Belgium.
  • [17] Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., van Boekel, M. A. J. S. (1999). Dairy Technology-Principles of milk properties and processes. Marcel Dekker, New York, NY.
  • [18] Ng-Kwai-Hang, K. F. (2011). Milk proteins heterogeneity, fractionation, and isolation. Edited by J. W. Fuquay, P. F. Fox, P. L.H. McSweeney, Encyclopedia of dairy sciences, Second Edition, McGill University, Montreal, QC, Canada: Elsevier Ltd. pp. 751-764.
  • [19] Luque, S., Gómez, D., and Álvarez, J. R. (2008). Industrial applications of porous ceramic membranes (pressure driven processes). Journal of Membrane Science and Technology 13: 177–216.
  • [20]Schier, G., and Paar, S. (2007). Standardization of casein using different membranes. Evaluation of the cross-flow microfiltration of milk. Lebensmittelindustrie und Milchwirtschaft, 128: 22-25.
  • [21] Lawrence, N.D., Kentish, S.E., O`Connor, A.J., Barber, A.R. and Stevens, G.W. (2008). Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Separation and Purification Technology, 60: 237-244.
  • [22] Saboya, L.V., and Maubois, J. L. (2000). Current developments of microfiltration technology in the dairy industry. Journal of Le Lait, 80(6): 541-554.
  • [23] Hayaloğlu, A., and Özer, B. (2011). Peynir biliminin temelleri. Sidas Medya Ltd.
  • [24] Ur-Rehman, S., Dunker, J. M. (2010). Methods for Casein Production. Patent, 12/741,034 (US 2010/0303958 A1) Winstead PC, Dallas, United States.
  • [25] Zulewska, J., Newbold, M., & Barbano, D.M. (2009). Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50°C. Journal of Dairy Science, 92(4): 1361-1377.
  • [26] Maubois, J.L., and Ollivier, G. (1992). Milk Protein Fractionation. Edited by R. de Boer, P. Jelen, Z. Puhan, New Applications of Membrane Processes IDF Special Issue, 9201. Brussels, Belgium. pp. 15-22.
  • [27] Kumar, P., Sharma, N., Ranjan, R., Kumar, S., Bhat, Z.F., and Jeong, D.K. (2013). Perspective of membrane technology in dairy industry: A Review. Asian-Australasian Journal of Animal Sciences, 26(9): 1347–1358.
  • [28] Nelson, B.K., and Barbano, D.M. (2005.) A microfiltration process to maximize removal of serum proteins from skim milk before cheese making. Journal of Dairy Science, 88(5): 1891-1900.
  • [29] Dong, J.Y., Chen, L.Y., Maubois, J.L., and Ma, Y. (2009). Influence of medium concentration factor microfiltration treatment on the characteristics of low-moisture Mozarella cheese. Journal of Dairy Science and Technology, 89(2): 139-154.
  • [30] Maubois, J. L., Pierre, A., Fauquant, J., and Piot, M. (1987). Industrial fractionation of the main whey proteins. Bulletin of the International Dairy Federation, 212: 154-159.
  • [31] Punidadas, P., and Rizvi, S. S. H. (1998). Separation of milk proteins into fractions rich in casein or whey proteins by cross flow filtration. Food Research International, 31(4): 265-272.
  • [32] Walstra, P., Wouters, J.T.M., and Geurts, T.J. (2006). Dairy Science and Technology: Second Edition. Boca Raton, Florida: CRC Press, Taylor & Francis Group.
  • [33] Beckman, S.L., Zulewska, J., Newbold, M., and Barbano, D.M. (2010). Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes. Journal of Dairy Science, 93(10): 4506-4517.
  • [34] Daufin, G., Escudier, J.P., Carrere, H., Berot, S., Fillaudeau, L., and Decloux, M. (2001). Recent and emerging applications of membrane processes in the food and dairy industry. Food and Bioproducts Processing, 79(2): 89-102.
  • [35] Marshall, A.D., Munro, P.A., and Tragardh, G. (1993). The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review. Journal of Desalination, 91(1): 65-108.
  • [36] Arkell, A., Vrgoc, F., and Jönsson, A.S. (2014). Back-pulsing as an energy-saving method in the microfiltration of milk. International Dairy Journal, 35(1): 1-5.
  • [37] Arkell, A., Vrgoc, F., Wallberg, O., and Jönsson, A.S. (2015). Increasing flux by back-pulsing in the microfiltration of milk. International Dairy Journal, 41: 23-25.
  • [38] Rizvi, S. S. H., and Brandsma, R. L. (2003). Microfiltration of skim milk for cheese making and whey proteins. Patent, 10/255,085 (US 6,623,781 B2) Cornell Research Foundation, Inc., Ithaca, NY, United States.
  • [39] Adams, M.C., & Barbano, D.M. (2013). Serum protein removal from skim milk with a 3-stage, 3×ceramic Isoflux membrane process at 50°C. Journal Dairy Science, 96(4): 2020-2034.
  • [40] Beckman, S.L., and Barbano, D.M. (2013). Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes. Journal of Dairy Science, 96(10): 6199-6212.
  • [41] Neocleus, M., Barbano, D.M., and Rudan, M.A. (2002). Impact of Low Concentration Factor Microfiltration on the Composition and Aging of Cheddar Cheese. Journal of Dairy Science, 85(10): 2425–2437
  • [42] Samuelsson, G., Dejmek, P., Trägårdh, G., and Paulsson, M. (1997). Minimizing whey protein retention in cross-flow microfiltration of skim milk. International Dairy Journal, 7(4): 237-242.
  • [43] Kuperus, J. H., Janakievski, F., Glagovskaiaand, O., & De Silva, K. (2013). Effect of pH, temperature and milk dilution on skim milk microfiltration. International Membrane Science & Technology Conference. Melbourne, Australia.
  • [44] Doyen, W., Andriansens, W., Molenberghs, B., and Leysen, R. (1996). A comparison between polysulfone, zirconia and organo-mineral membranes for use in ultrafiltration. Journal of Membrane Science, 113(2): 247-258.
  • [45] Cui, Z. (2005). Protein separation using ultrafiltration-An example of multi-scale complex systems. Journal of China Particuology, 3(6): 343-348.
  • [46] Lucena, M.E., Alvarez, S., Menendez, C., Riere, F.A., and Alvarez, R. (2006). Beta-lactoglobulin removal from whey protein concentrates production of milk derivatives as a base for infant formulas. Separation and Purification Technology, 52(2): 310-316.
  • [47] Kelly, P.M. (2011). Milk Protein Products-Membrane-Based Fractionation. Edited by J.W. Fuquay, P.F. Fox, P.L.H. McSweeney, Encyclopedia of dairy sciences, Second Edition, San Diego, Academic Press. pp. 864-872.
  • [48] Metsämuuronen, S., Mänttäri, M., and Nyström, M. (2011). Comparison of analysis methods for protein concentration and its use in UF fractionation of whey. Journal of Desalination, 283: 156-164.
  • [49] Uchida, Y., Masaharu, S., Tamami, M., & Masanobu, K. (1996). Process for preparing a fraction having a high content of α-lactalbumin from whey and nutritional compositions containing such fractions. Patent 284,919 (US 5,503,864). Snow Brand Milk Products, Inc., Hokkaido, Japan.
  • [50] Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering, 67(3): 325-332.
  • [51] Baldasso, C., Barros, T.C., and Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278(1-3): 381-386.
  • [52] Holland, B., Kackmar, J., and Corredig, M. (2012). Isolation of a whey fraction rich in α-lactalbumin from skim milk using tangential flow filtration. Journal of Dairy Science, 95(10): 5604-5607.
  • [53] Arankumar, A., and Etzel, M.R. (2014). Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. Journal of Food Membranes, 454: 488-495.
  • [54] Horst, H.C., Timmer, J.M.K., Robbertsen, T., and Leenders, J. (1995). Use of nanofiltration for concentration and demineralization in the dairy indusrty: Model for mass transport. Journal of Membrane Science, 104(3): 205-218.
  • [55] Kelly, J., and Kelly, P. (1995). Desalination of acid casein whey by nanofiltration. International Dairy Journal, 5(3): 291-303.
  • [56] Rasanen, E., Nyström, M., Sahlstein, J., and Tossavainen, O. (2002). Comparison of commercial membranes in nanofiltration of sweet whey. Journal of Lait, 82(3): 343-356.
  • [57] Pan, K., Sing, Q., Wang, L., and Cao, B. (2011). A study of demineralization of whey by nanofiltration membrane. Desalination, 267(2-3): 217-221.
  • [58], Y., Gauthier, S.F., and Heureux, J.L. (2000). Effect of peptide distribution on the fractionation of whey protein hydrolysates by nanofiltration membranes. Lait, 80(1): 113–122.
  • [59] Butylina, S., Luque, S., and Nyström, M. (2006). Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. Journal of Membrane Science, 280(1-2): 418-426.
  • [60] Nguyen, M., Reynolds, N., and Vigneswaren, S. (2003). By-product recovery from cottage cheese production by nanofiltration. Journal of Cleaner Production, 11(7): 803-807. ction by nanofiltration. Journal of Cleaner Production, 11(7): 803-807.
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Articles
Authors

Kadir Çınar 0000-0001-5488-652X

Publication Date June 8, 2022
Published in Issue Year 2022

Cite

APA Çınar, K. (2022). Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins. Journal of Innovative Science and Engineering, 6(1), 61-75. https://doi.org/10.38088/jise.951179
AMA Çınar K. Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins. JISE. June 2022;6(1):61-75. doi:10.38088/jise.951179
Chicago Çınar, Kadir. “Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins”. Journal of Innovative Science and Engineering 6, no. 1 (June 2022): 61-75. https://doi.org/10.38088/jise.951179.
EndNote Çınar K (June 1, 2022) Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins. Journal of Innovative Science and Engineering 6 1 61–75.
IEEE K. Çınar, “Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins”, JISE, vol. 6, no. 1, pp. 61–75, 2022, doi: 10.38088/jise.951179.
ISNAD Çınar, Kadir. “Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins”. Journal of Innovative Science and Engineering 6/1 (June 2022), 61-75. https://doi.org/10.38088/jise.951179.
JAMA Çınar K. Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins. JISE. 2022;6:61–75.
MLA Çınar, Kadir. “Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins”. Journal of Innovative Science and Engineering, vol. 6, no. 1, 2022, pp. 61-75, doi:10.38088/jise.951179.
Vancouver Çınar K. Membrane Filtration of Milk: Separation and Fractionation of Milk Proteins. JISE. 2022;6(1):61-75.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.