Research Article
BibTex RIS Cite

Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory

Year 2021, , 162 - 172, 18.12.2021
https://doi.org/10.38088/jise.899061

Abstract

Density functional theory (DFT) calculations were performed in order to provide theoretical knowledge about fluorine-carbon alloy nanoclusters in this study. While fluorine atoms do not show a stable nanocluster formalism, carbon atom addition initiates the formation of FxCy nanoclusters by a strong F-C bonding mechanism. Single fluorine systems were the most favorable nanoclusters in FxCy alloys. FC2, FC3, FC4 nanoclusters were found to be minimum energy structures for three, four and five atoms respectively. The cohesive energy values of nanoclusters increase with the increasing number of carbon atoms in nanoclusters. Shape dependent magnetic moment was found in particular nanoclusters. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy gap (HLG) values of each stable cluster were also presented which provide information about chemical reactivity. The findings of this study can be a basis for fluorine-carbon alloy applications in nanotechnology.

Thanks

The computational resources were provided by Scientific and Technological Research Council of Turkey (TUBITAK) ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

References

  • Haruta, M., Kobayashi, T., Sano, H., Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0°C. Chemistry Letters 16: 405-408.
  • Laxmikanth Rao, J., Krishna Chaitanya, G., Basavaraja, S., Bhanuprakash, K., Venkataramana, A. (2007). Density-functional study of Au-Cu binary clusters of small size (n=6): Effect of structure on electronic properties. Journal of Molecular Structure THEOCHEM 803(1-3): 89-93.
  • Sabater, S., Mata, J.A., Peris, E. (2013). Hydrodefluorination of carbon-fluorine bonds by the synergistic action of a ruthenium-palladium catalyst. Nature Communications 4: 2553.
  • Purser, S., Moore, P.R., Swallow, S., Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chemical Society Reviews 37: 320-330.
  • Böhm, H.J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., Stahl, M. (2004). Fluorine in Medicinal Chemistry. ChemBioChem 5: 637-643.
  • Withers, F., Dubois, M., Savchenko, A.K. (2010). Electron properties of fluorinated single-layer graphene transistors. Physical Review B 82: 073403.
  • Zboril, R., Karlicky, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Safarova, K., ancik, D., Trapalis, C., Otyepka, M. (2010). Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 6(24) 2885-2891.
  • Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H. R., Gupta, A., Shen, N., Eklund, P. C., Sofo, J. O., Zhu, J. (2010). Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Physical Review B 81: 205435.
  • Forslund, L.E., Kaltsoyannis, N. (2003). Why is the F2 bond so weak? A bond energy decomposition analysis. New Journal of Chemistry 27: 1108-1114.
  • Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D. (2002). The SIESTA method for ab initio order-n materials simulation. Journal of Physics Condensed Matter 14 (11):2745-2779.
  • Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters 77: 3865.
  • Morita, A. (1958). Theory of Cohesive Energies and Energy-Band Structures of Diamond-Type Valence Crystals: The Method of SLCO, II. Progress of Theoretical Physics 19 (5): 534-540.
  • Schwartz, W. H. E., Valtazanos, P., Ruedenberg, K. (1985). Electron difference densities and chemical bonding. Theoretica Chimica Acta 68: 471-506.
  • Sanderson R. (1983). Polar Covalence. Academic Press, New York, USA. pp. 20-34. ISBN: 9780323159029.
  • Ponec, R., Cooper, D. L. (2007). Anatomy of Bond Formation. Domain-Averaged Fermi Holes as a Tool for the Study of the Nature of the Chemical Bonding in Li2, Li4, and F2. The Journal Physical Chemistry A 111: 11294-11301.
  • Weston-Jr, R. E. (1996). Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production. Atmospheric Environment 30(16): 2901-2910.
Year 2021, , 162 - 172, 18.12.2021
https://doi.org/10.38088/jise.899061

Abstract

References

  • Haruta, M., Kobayashi, T., Sano, H., Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0°C. Chemistry Letters 16: 405-408.
  • Laxmikanth Rao, J., Krishna Chaitanya, G., Basavaraja, S., Bhanuprakash, K., Venkataramana, A. (2007). Density-functional study of Au-Cu binary clusters of small size (n=6): Effect of structure on electronic properties. Journal of Molecular Structure THEOCHEM 803(1-3): 89-93.
  • Sabater, S., Mata, J.A., Peris, E. (2013). Hydrodefluorination of carbon-fluorine bonds by the synergistic action of a ruthenium-palladium catalyst. Nature Communications 4: 2553.
  • Purser, S., Moore, P.R., Swallow, S., Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chemical Society Reviews 37: 320-330.
  • Böhm, H.J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., Stahl, M. (2004). Fluorine in Medicinal Chemistry. ChemBioChem 5: 637-643.
  • Withers, F., Dubois, M., Savchenko, A.K. (2010). Electron properties of fluorinated single-layer graphene transistors. Physical Review B 82: 073403.
  • Zboril, R., Karlicky, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Safarova, K., ancik, D., Trapalis, C., Otyepka, M. (2010). Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 6(24) 2885-2891.
  • Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H. R., Gupta, A., Shen, N., Eklund, P. C., Sofo, J. O., Zhu, J. (2010). Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Physical Review B 81: 205435.
  • Forslund, L.E., Kaltsoyannis, N. (2003). Why is the F2 bond so weak? A bond energy decomposition analysis. New Journal of Chemistry 27: 1108-1114.
  • Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D. (2002). The SIESTA method for ab initio order-n materials simulation. Journal of Physics Condensed Matter 14 (11):2745-2779.
  • Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters 77: 3865.
  • Morita, A. (1958). Theory of Cohesive Energies and Energy-Band Structures of Diamond-Type Valence Crystals: The Method of SLCO, II. Progress of Theoretical Physics 19 (5): 534-540.
  • Schwartz, W. H. E., Valtazanos, P., Ruedenberg, K. (1985). Electron difference densities and chemical bonding. Theoretica Chimica Acta 68: 471-506.
  • Sanderson R. (1983). Polar Covalence. Academic Press, New York, USA. pp. 20-34. ISBN: 9780323159029.
  • Ponec, R., Cooper, D. L. (2007). Anatomy of Bond Formation. Domain-Averaged Fermi Holes as a Tool for the Study of the Nature of the Chemical Bonding in Li2, Li4, and F2. The Journal Physical Chemistry A 111: 11294-11301.
  • Weston-Jr, R. E. (1996). Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production. Atmospheric Environment 30(16): 2901-2910.
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Yelda Kadıoğlu 0000-0002-3138-5420

Publication Date December 18, 2021
Published in Issue Year 2021

Cite

APA Kadıoğlu, Y. (2021). Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory. Journal of Innovative Science and Engineering, 5(2), 162-172. https://doi.org/10.38088/jise.899061
AMA Kadıoğlu Y. Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory. JISE. December 2021;5(2):162-172. doi:10.38088/jise.899061
Chicago Kadıoğlu, Yelda. “Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory”. Journal of Innovative Science and Engineering 5, no. 2 (December 2021): 162-72. https://doi.org/10.38088/jise.899061.
EndNote Kadıoğlu Y (December 1, 2021) Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory. Journal of Innovative Science and Engineering 5 2 162–172.
IEEE Y. Kadıoğlu, “Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory”, JISE, vol. 5, no. 2, pp. 162–172, 2021, doi: 10.38088/jise.899061.
ISNAD Kadıoğlu, Yelda. “Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory”. Journal of Innovative Science and Engineering 5/2 (December 2021), 162-172. https://doi.org/10.38088/jise.899061.
JAMA Kadıoğlu Y. Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory. JISE. 2021;5:162–172.
MLA Kadıoğlu, Yelda. “Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory”. Journal of Innovative Science and Engineering, vol. 5, no. 2, 2021, pp. 162-7, doi:10.38088/jise.899061.
Vancouver Kadıoğlu Y. Ultra Small Fluorine Carbon Nanoclusters by Density Functional Theory. JISE. 2021;5(2):162-7.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.