Research Article
BibTex RIS Cite
Year 2021, , 76 - 90, 18.12.2021
https://doi.org/10.38088/jise.829553

Abstract

References

  • 1. Buzzi, S., Chih-Lin, I., Klein, T.E., Poor, H.V., Yang, C., and Zappone, A. (2016) A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun., 34 (4), 697–709.
  • 2. Sharma, S.K., Woungang, I., Anpalagan, A., and Chatzinotas, S. (2020) Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions. IEEE Access, 1–1.
  • 3. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J., and Lopez-Soler, J.M. (2020) A Survey on 5G Usage Scenarios and Traffic Models. IEEE Commun. Surv. Tutorials, 1–1.
  • 4. Chen, X., Ng, D.W.K., Yu, W., Larsson, E.G., Al-Dhahir, N., and Schober, R. (2020) Massive Access for 5G and Beyond.
  • 5. Aydin, E., Cogen, F., and Basar, E. (2019) Code-Index Modulation Aided Quadrature Spatial Modulation for High-Rate MIMO Systems. IEEE Trans. Veh. Technol., 68 (10), 10257–10261.
  • 6. Rugini, L. (2016) Symbol Error Probability of Hexagonal QAM. IEEE Commun. Lett., 20 (8), 1523–1526.
  • 7. Murphy, C.D. (2000) High-order optimum hexagonal constellations. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, 1, 143–146.
  • 8. Gao Xingxin, Lu Mingquan, and Feng Zhenming (2002) Asymmetric hexagonal QAM based OFDM system. IEEE 2002 Int. Conf. Commun. Circuits Syst. West Sino Expo., 1, 299–302.
  • 9. Cogen, F., and Aydin, E. (2019) Hexagonal Quadrature Amplitude Modulation Aided Spatial Modulation. 2019 11th Int. Conf. Electr. Electron. Eng., 730–733.
  • 10. Huang, H., Papadias, C.B., and Venkatesan, S. (2012) MIMO Communication for Cellular Networks, Springer US, Boston, MA.
  • 11. Hampton, J.R. (2013) Introduction to MIMO Communications, Cambridge University Press, Cambridge.
  • 12. Kumbhani, B., and Kshetrimayum, R.S. (2017) MIMO Wireless Communications over Generalized Fading Channels, CRC Press.
  • 13. Heath Jr, R.W., and Lozano, A. (2018) Foundations of MIMO Communication, Cambridge University Press.
  • 14. Mesleh, R.Y., Haas, H., Sinanović, S., Ahn, C.W., and Yun, S. (2008) Spatial modulation. IEEE Trans. Veh. Technol., 57 (4), 2228–2241.
  • 15. Mesleh, R., and Alhassi, A. (2018) Space Modulation Techniques, John Wiley & Sons, Inc, Hoboken, NJ, USA.
  • 16. Cogen, F., Aydin, E., Kabaoglu, N., Basar, E., and Ilhan, H. (2020) Generalized Code Index Modulation and Spatial Modulation for High Rate and Energy-Efficient MIMO Systems on Rayleigh Block-Fading Channel. IEEE Syst. J., 1–8.
  • 17. Pillay, N., and Xu, H. (2017) Improved generalized spatial modulation via antenna selection. Int. J. Commun. Syst., 30 (10), e3236.
  • 18. ASAATI, B., and ABU-HUDROUSS, A. (2020) Transmit antenna selection schemes for STBC-SM. TURKISH J. Electr. Eng. Comput. Sci., 28 (4), 2077–2087.
  • 19. Aydın, E. (2019) EDAS/COAS based antenna selection for code index modulation aided spatial modulation. Electrica, 19 (2), 113–119.
  • 20. Proakis, J., and Salehi, M. (2008) Fifth Edition : Digital Communications.
  • 21. Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008) Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett., 12 (8), 545–547.
  • 22. Proakis, J., and Salehi, M. (2008) Fifth edition: digital communications.
  • 23. Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008) Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett., 12 (8):545–547.

Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation

Year 2021, , 76 - 90, 18.12.2021
https://doi.org/10.38088/jise.829553

Abstract

There is a tremendous demand from various industries for next-generation 5G networks, which has dramatically increased the need for high data rates and energy efficiency. It is an indisputable fact that next-generation networks should be not only energy-efficient but also resource-efficient. Given the fact that 10% of the current energy consumption in the world is caused by Information and Communication Technology, it is evident that energy-efficiency has become the most crucial performance criteria in the next-generation communication techniques. Based on these needs, we previously suggested the hexagonal quadrature amplitude modulation (HQAM) aided spatial modulation (SM) technique (HQAM-SM) to the literature. In this study, we found it appropriate to do this research to further increase the performance of the HQAM-SM scheme through the antenna selection technique and to investigate the effects of antenna selection technique on HQAM-SM. Moving from this point, in this article, rational capacity-optimized antenna selection (COAS), SM, and energy-efficient HQAM techniques are combined, and a new system called COAS-HSM is presented. Hexagonal constellations are to optimize the constellation points to form a hexagonal constellation to minimize the Hamming distance between the constellation points. This layout not only offers better energy efficiency than traditional QAM constellations but also performs almost the same BER performance as QAM at high signal-to-noise ratio (SNR) values. On the other hand, antenna selection algorithms are one of the transmission schemes that have been frequently encountered in the literature in recent years, and that considerably increases the performance of various multiple-input multiple-output (MIMO) communication structures. In particular, the COAS transmission scheme is an intelligent method of selecting transmission antennas over the highest channel amplitudes. Performance analysis of the proposed COAS-HSM technique is carried out in Rayleigh fading channels.

References

  • 1. Buzzi, S., Chih-Lin, I., Klein, T.E., Poor, H.V., Yang, C., and Zappone, A. (2016) A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun., 34 (4), 697–709.
  • 2. Sharma, S.K., Woungang, I., Anpalagan, A., and Chatzinotas, S. (2020) Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions. IEEE Access, 1–1.
  • 3. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J., and Lopez-Soler, J.M. (2020) A Survey on 5G Usage Scenarios and Traffic Models. IEEE Commun. Surv. Tutorials, 1–1.
  • 4. Chen, X., Ng, D.W.K., Yu, W., Larsson, E.G., Al-Dhahir, N., and Schober, R. (2020) Massive Access for 5G and Beyond.
  • 5. Aydin, E., Cogen, F., and Basar, E. (2019) Code-Index Modulation Aided Quadrature Spatial Modulation for High-Rate MIMO Systems. IEEE Trans. Veh. Technol., 68 (10), 10257–10261.
  • 6. Rugini, L. (2016) Symbol Error Probability of Hexagonal QAM. IEEE Commun. Lett., 20 (8), 1523–1526.
  • 7. Murphy, C.D. (2000) High-order optimum hexagonal constellations. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, 1, 143–146.
  • 8. Gao Xingxin, Lu Mingquan, and Feng Zhenming (2002) Asymmetric hexagonal QAM based OFDM system. IEEE 2002 Int. Conf. Commun. Circuits Syst. West Sino Expo., 1, 299–302.
  • 9. Cogen, F., and Aydin, E. (2019) Hexagonal Quadrature Amplitude Modulation Aided Spatial Modulation. 2019 11th Int. Conf. Electr. Electron. Eng., 730–733.
  • 10. Huang, H., Papadias, C.B., and Venkatesan, S. (2012) MIMO Communication for Cellular Networks, Springer US, Boston, MA.
  • 11. Hampton, J.R. (2013) Introduction to MIMO Communications, Cambridge University Press, Cambridge.
  • 12. Kumbhani, B., and Kshetrimayum, R.S. (2017) MIMO Wireless Communications over Generalized Fading Channels, CRC Press.
  • 13. Heath Jr, R.W., and Lozano, A. (2018) Foundations of MIMO Communication, Cambridge University Press.
  • 14. Mesleh, R.Y., Haas, H., Sinanović, S., Ahn, C.W., and Yun, S. (2008) Spatial modulation. IEEE Trans. Veh. Technol., 57 (4), 2228–2241.
  • 15. Mesleh, R., and Alhassi, A. (2018) Space Modulation Techniques, John Wiley & Sons, Inc, Hoboken, NJ, USA.
  • 16. Cogen, F., Aydin, E., Kabaoglu, N., Basar, E., and Ilhan, H. (2020) Generalized Code Index Modulation and Spatial Modulation for High Rate and Energy-Efficient MIMO Systems on Rayleigh Block-Fading Channel. IEEE Syst. J., 1–8.
  • 17. Pillay, N., and Xu, H. (2017) Improved generalized spatial modulation via antenna selection. Int. J. Commun. Syst., 30 (10), e3236.
  • 18. ASAATI, B., and ABU-HUDROUSS, A. (2020) Transmit antenna selection schemes for STBC-SM. TURKISH J. Electr. Eng. Comput. Sci., 28 (4), 2077–2087.
  • 19. Aydın, E. (2019) EDAS/COAS based antenna selection for code index modulation aided spatial modulation. Electrica, 19 (2), 113–119.
  • 20. Proakis, J., and Salehi, M. (2008) Fifth Edition : Digital Communications.
  • 21. Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008) Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett., 12 (8), 545–547.
  • 22. Proakis, J., and Salehi, M. (2008) Fifth edition: digital communications.
  • 23. Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008) Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett., 12 (8):545–547.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Fatih Cogen 0000-0002-1163-5920

Erdoğan Aydın 0000-0002-5198-0980

Publication Date December 18, 2021
Published in Issue Year 2021

Cite

APA Cogen, F., & Aydın, E. (2021). Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation. Journal of Innovative Science and Engineering, 5(2), 76-90. https://doi.org/10.38088/jise.829553
AMA Cogen F, Aydın E. Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation. JISE. December 2021;5(2):76-90. doi:10.38088/jise.829553
Chicago Cogen, Fatih, and Erdoğan Aydın. “Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation”. Journal of Innovative Science and Engineering 5, no. 2 (December 2021): 76-90. https://doi.org/10.38088/jise.829553.
EndNote Cogen F, Aydın E (December 1, 2021) Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation. Journal of Innovative Science and Engineering 5 2 76–90.
IEEE F. Cogen and E. Aydın, “Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation”, JISE, vol. 5, no. 2, pp. 76–90, 2021, doi: 10.38088/jise.829553.
ISNAD Cogen, Fatih - Aydın, Erdoğan. “Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation”. Journal of Innovative Science and Engineering 5/2 (December 2021), 76-90. https://doi.org/10.38088/jise.829553.
JAMA Cogen F, Aydın E. Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation. JISE. 2021;5:76–90.
MLA Cogen, Fatih and Erdoğan Aydın. “Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation”. Journal of Innovative Science and Engineering, vol. 5, no. 2, 2021, pp. 76-90, doi:10.38088/jise.829553.
Vancouver Cogen F, Aydın E. Transmit Antenna Selection for Spatial Modulation Based on Hexagonal Quadrature Amplitude Modulation. JISE. 2021;5(2):76-90.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.