Research Article
BibTex RIS Cite

Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends

Year 2019, , 47 - 56, 31.12.2019
https://doi.org/10.38088/jise.654790

Abstract

Polyurethane foams are used in many different
applications, such as insulation and coating materials, packaging, furniture
and so on.  It has very low weight, low
cost and thermal conductivity hereby frequently preferred by architectural and
construction industry. On the other hand, these large-scale uses bring with
waste problem after applications. In this study, the effect of polyurethane
foam waste (PUw) on the thermal and morphological properties of polypropylene
(PP)/ poly(lactic acid) (PLA) composites plasticized with polyethylene glycol
(PEG 400) was investigated. PUw filled PP/PLA composites were prepared using
melt blending followed by compression molding. Thermal and morphological
properties of PUw filled PP/PLA composites were characterized by thermogravimetric
analysis (TGA), differential scanning calorimetry (DSC), thermal conductivity
analyzer and scanning electron microscopy (SEM). The results shown that the thermal
conductivity of the composites improved significantly with addition of PUw, while
glass transition temperature (Tg), the melting temperature (Tm)
and melting enthalpy (ΔHm) values of the composites decreased. Based
on finding, the PUw could be used as filler in PP/PLA composites for insulation
and energy efficiency.

Thanks

The authors are grateful to NuhPol for PEG 400 and polyurethane foam waste samples supply.

References

  • Ertas, M., Altuntas, E. and Donmez Cavdar, A. (2019). Effects of halloysite nanotube on the performance of natural fiber filled poly (lactic acid) composites. Polymer Composites, 2019:1-10
  • Bulut, Y., Erdoğan, Ü. H. (2011). Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı. Tekstil ve Mühendis, 18: 82-85.
  • Mohanty, A. K., Misra, M. A. and Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular materials and Engineering, 276(1): 1-24.
  • Hong, C. K., Hwang, I., Kim, N., Park, D. H., Hwang, B. S. and Nah, C. (2008). Mechanical properties of silanized jute–polypropylene composites. Journal of Industrial and Engineering Chemistry, 14(1): 71-76.
  • García, M., Garmendia, I. and García, J. (2008). Influence of natural fiber type in eco‐composites. Journal of Applied Polymer Science, 107(5): 2994-3004.
  • Oksman, K., Skrifvars, M. and Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites science and technology, 63(9): 1317-1324.
  • De Silva, R. T., Pasbakhsh, P., Goh, K. L., Chai, S. P. and Chen, J. (2014). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30): 3705-3717.
  • Krishnaiah, P., Ratnam, C. T. and Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135: 583-595.
  • Sangeetha, V. H., Deka, H., Varghese, T. O. and Nayak, S. K. (2018). State of the art and future prospectives of poly (lactic acid) based blends and composites. Polymer composites, 39(1): 81-101.
  • Dorgan, J. R. (1999). Poly (lactic acid) properties and prospects of an environmentally benign plastic. In 3rd Annual Green Chemistry and Engineering Conference Proceedings 99:145-149.
  • Ren, J. (2010). Modification of PLA. In Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications, Springer Berlin Heidelberg, Germany. pp 38-141. ISBN: 978-3-642-17596-1
  • Chiellini, E., Covolan, V. L., Orsini, L. M. and Solaro, R. (2003). Polymeric nanoparticles based on polylactide and related copolymers. In Macromolecular Symposia, 197(1): 345-354.
  • Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource technology, 99(11): 4661-4667.
  • Hartmann, M. H. (1998). High molecular weight polylactic acid polymers. In Biopolymers from renewable resources Springer, Berlin, Heidelberg. Germany. pp. 367-411. ISBN: 978-3-662-03680-8
  • Drumright, E. Gruber, R. and Henton E. (2000). Polylactic acid technology, Advanced Materials, 12: 1841-1846.
  • Rajan, K. P., Thomas, S. P., Gopanna, A., Al-Ghamdi, A. And Chavali, M. (2018). Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Materials Research Express, 5(8): 085304.
  • Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., Narongchai, O., Pavasupree, S. and Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89: 353-360.
  • Yurtseven, R., Tarakçılar, A. and Topçu, M. (2013). Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan Köpük Malzemelerin Mekanik Özellikleri İle Isıl Ve Yanma Davranışları Üzerine Etkileri. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(4).
  • Ubowska, A. (2010). Montmorillonite as a polyurethane foams flame retardant. Archivum Combustionis, 30(4): 459-462.
  • Goods, S. H., Neuschwanger, C. L., Whinnery, L. L. and Nix, W. D. (1999). Mechanical properties of a particle‐strengthened polyurethane foam. Journal of Applied Polymer Science, 74(11): 2724-2736.
  • Wang, J. Q. and Chow, W. K. (2005). A brief review on fire retardants for polymeric foams. Journal of applied polymer science, 97(1): 366-376.
  • Romero-Ibarra, I. C., Bonilla-Blancas, E., Sanchez-Solis, A. and Manero, O. (2012). Influence of the morphology of barium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites. European Polymer Journal, 48(4): 670-676.
  • Saha, M. C., Kabir, M. E., & Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering: 479(1-2): 213-222.
  • Saint-Michel, F., Chazeau, L. and Cavaillé, J. Y. (2006). Mechanical properties of high density polyurethane foams: II Effect of the filler size. Composites Science and Technology, 66(15): 2709-2718.
  • Aydoğan, B. and Usta, N. (2015). Nanokil ve Kabaran Alev Geciktirici ilavesinin Rijit Poliüretan Köpük Malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1): 9-18.
  • Yu, L., Dean, K. and Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6): 576-602.
  • Mohanty, A. K., Misra, M. and Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2): 19-26.
  • Zhang, M. Q., Rong, M. Z. and Lu, X. (2005). Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites. Composites Science and Technology, 65(15-16): 2514-2525.
  • Nyambo, C., Mohanty, A. K. and Misra, M. (2010). Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11(6):1654-1660.
  • Chow, W. S., Tham, W. L., Poh, B. T. and Ishak, Z. M. (2018). Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. Journal of Polymers and the Environment, 26(7): 2973-2982.
  • Ndazi, B. S. And Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2).
  • Quero, E., Müller, A. J., Signori, F., Coltelli, M. B. and Bronco, S. (2012). Isothermal Cold‐Crystallization of PLA/PBAT Blends With and Without the Addition of Acetyl Tributyl Citrate. Macromolecular Chemistry and Physics, 213(1): 36-48.
  • Ploypetchara, N., Suppakul, P., Atong, D. And Pechyen, C. (2014). Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia, 56: 201-210.
Year 2019, , 47 - 56, 31.12.2019
https://doi.org/10.38088/jise.654790

Abstract

References

  • Ertas, M., Altuntas, E. and Donmez Cavdar, A. (2019). Effects of halloysite nanotube on the performance of natural fiber filled poly (lactic acid) composites. Polymer Composites, 2019:1-10
  • Bulut, Y., Erdoğan, Ü. H. (2011). Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı. Tekstil ve Mühendis, 18: 82-85.
  • Mohanty, A. K., Misra, M. A. and Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular materials and Engineering, 276(1): 1-24.
  • Hong, C. K., Hwang, I., Kim, N., Park, D. H., Hwang, B. S. and Nah, C. (2008). Mechanical properties of silanized jute–polypropylene composites. Journal of Industrial and Engineering Chemistry, 14(1): 71-76.
  • García, M., Garmendia, I. and García, J. (2008). Influence of natural fiber type in eco‐composites. Journal of Applied Polymer Science, 107(5): 2994-3004.
  • Oksman, K., Skrifvars, M. and Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites science and technology, 63(9): 1317-1324.
  • De Silva, R. T., Pasbakhsh, P., Goh, K. L., Chai, S. P. and Chen, J. (2014). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30): 3705-3717.
  • Krishnaiah, P., Ratnam, C. T. and Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135: 583-595.
  • Sangeetha, V. H., Deka, H., Varghese, T. O. and Nayak, S. K. (2018). State of the art and future prospectives of poly (lactic acid) based blends and composites. Polymer composites, 39(1): 81-101.
  • Dorgan, J. R. (1999). Poly (lactic acid) properties and prospects of an environmentally benign plastic. In 3rd Annual Green Chemistry and Engineering Conference Proceedings 99:145-149.
  • Ren, J. (2010). Modification of PLA. In Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications, Springer Berlin Heidelberg, Germany. pp 38-141. ISBN: 978-3-642-17596-1
  • Chiellini, E., Covolan, V. L., Orsini, L. M. and Solaro, R. (2003). Polymeric nanoparticles based on polylactide and related copolymers. In Macromolecular Symposia, 197(1): 345-354.
  • Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource technology, 99(11): 4661-4667.
  • Hartmann, M. H. (1998). High molecular weight polylactic acid polymers. In Biopolymers from renewable resources Springer, Berlin, Heidelberg. Germany. pp. 367-411. ISBN: 978-3-662-03680-8
  • Drumright, E. Gruber, R. and Henton E. (2000). Polylactic acid technology, Advanced Materials, 12: 1841-1846.
  • Rajan, K. P., Thomas, S. P., Gopanna, A., Al-Ghamdi, A. And Chavali, M. (2018). Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Materials Research Express, 5(8): 085304.
  • Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., Narongchai, O., Pavasupree, S. and Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89: 353-360.
  • Yurtseven, R., Tarakçılar, A. and Topçu, M. (2013). Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan Köpük Malzemelerin Mekanik Özellikleri İle Isıl Ve Yanma Davranışları Üzerine Etkileri. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(4).
  • Ubowska, A. (2010). Montmorillonite as a polyurethane foams flame retardant. Archivum Combustionis, 30(4): 459-462.
  • Goods, S. H., Neuschwanger, C. L., Whinnery, L. L. and Nix, W. D. (1999). Mechanical properties of a particle‐strengthened polyurethane foam. Journal of Applied Polymer Science, 74(11): 2724-2736.
  • Wang, J. Q. and Chow, W. K. (2005). A brief review on fire retardants for polymeric foams. Journal of applied polymer science, 97(1): 366-376.
  • Romero-Ibarra, I. C., Bonilla-Blancas, E., Sanchez-Solis, A. and Manero, O. (2012). Influence of the morphology of barium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites. European Polymer Journal, 48(4): 670-676.
  • Saha, M. C., Kabir, M. E., & Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering: 479(1-2): 213-222.
  • Saint-Michel, F., Chazeau, L. and Cavaillé, J. Y. (2006). Mechanical properties of high density polyurethane foams: II Effect of the filler size. Composites Science and Technology, 66(15): 2709-2718.
  • Aydoğan, B. and Usta, N. (2015). Nanokil ve Kabaran Alev Geciktirici ilavesinin Rijit Poliüretan Köpük Malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1): 9-18.
  • Yu, L., Dean, K. and Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6): 576-602.
  • Mohanty, A. K., Misra, M. and Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2): 19-26.
  • Zhang, M. Q., Rong, M. Z. and Lu, X. (2005). Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites. Composites Science and Technology, 65(15-16): 2514-2525.
  • Nyambo, C., Mohanty, A. K. and Misra, M. (2010). Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11(6):1654-1660.
  • Chow, W. S., Tham, W. L., Poh, B. T. and Ishak, Z. M. (2018). Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. Journal of Polymers and the Environment, 26(7): 2973-2982.
  • Ndazi, B. S. And Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2).
  • Quero, E., Müller, A. J., Signori, F., Coltelli, M. B. and Bronco, S. (2012). Isothermal Cold‐Crystallization of PLA/PBAT Blends With and Without the Addition of Acetyl Tributyl Citrate. Macromolecular Chemistry and Physics, 213(1): 36-48.
  • Ploypetchara, N., Suppakul, P., Atong, D. And Pechyen, C. (2014). Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia, 56: 201-210.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Naile Angın 0000-0001-8384-7546

Sena Çaylak 0000-0003-1324-3741

Murat Ertaş 0000-0001-9218-5513

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Angın, N., Çaylak, S., & Ertaş, M. (2019). Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. Journal of Innovative Science and Engineering, 3(2), 47-56. https://doi.org/10.38088/jise.654790
AMA Angın N, Çaylak S, Ertaş M. Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. JISE. December 2019;3(2):47-56. doi:10.38088/jise.654790
Chicago Angın, Naile, Sena Çaylak, and Murat Ertaş. “Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic Acid) Blends”. Journal of Innovative Science and Engineering 3, no. 2 (December 2019): 47-56. https://doi.org/10.38088/jise.654790.
EndNote Angın N, Çaylak S, Ertaş M (December 1, 2019) Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. Journal of Innovative Science and Engineering 3 2 47–56.
IEEE N. Angın, S. Çaylak, and M. Ertaş, “Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends”, JISE, vol. 3, no. 2, pp. 47–56, 2019, doi: 10.38088/jise.654790.
ISNAD Angın, Naile et al. “Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic Acid) Blends”. Journal of Innovative Science and Engineering 3/2 (December 2019), 47-56. https://doi.org/10.38088/jise.654790.
JAMA Angın N, Çaylak S, Ertaş M. Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. JISE. 2019;3:47–56.
MLA Angın, Naile et al. “Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic Acid) Blends”. Journal of Innovative Science and Engineering, vol. 3, no. 2, 2019, pp. 47-56, doi:10.38088/jise.654790.
Vancouver Angın N, Çaylak S, Ertaş M. Studies on Thermal and Morphological Properties of Polyurethane Foam Filled Polypropylene/Poly(lactic acid) Blends. JISE. 2019;3(2):47-56.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.