Research Article
BibTex RIS Cite
Year 2018, , 81 - 96, 29.12.2018
https://doi.org/10.38088/jise.454098

Abstract

References

  • [1] Frace, A., Loge, C., Gallet, S., Lebegue, N., Carato, P., Chavatte, P., Berthelot, P., Lesieur, D. (2004). Docking study of ligands into the colchicine binding site of tubulin. J. Enzyme Inhib. Med. Chem. 19: 541-547.
  • [2] Abele, E., Lukevics, E. (2000). Recent advances in the chemistry of oximes. Org. Prep. Proc. Int. 32: 237–264.
  • [3] Li, C., Zhang, H., Cui, Y., Zhang, S., Zhao, Z., Choi, M.C.K., Chan, A.S.C. (2003). One-Pot Synthesis of Oxime Ethers from Benzaldehyde or Acetophenone, Hydroxylamine Salt, Potassium Hydroxide, and Alkyl Halides. Synthetic Communication 33: 543-546.
  • [4] Nakamura, H., Iitaka, Y., Sakakibara, H., Umezawa, H. (1974). The molecular and crystal structure determination of bisanhydroalthiomycin by the X-ray diffraction method. J. Antibiot. 27: 894-896.
  • [5] Kirst, H.A., Szymanski, E.F., Doman, D.E., Occolowitz, J.L., Jones, N.D., Chaney, M.O., Hamill, R.L., Hoehn, M.M. (1975). Structure of althiomycin. J. Antibiot. 28: 286-291.
  • [6] Ponomareva, V.V., Halley, N.K., Kou, X., Gerasimchuk, N.N., Domasevich, K.V. (1996). Synthesis, spectra and crystal structures of complexes of ambidentate C6H5C(O)C(NO)CN–. J. Chem. Soc. Dalton Trans. 2351-2359.
  • [7] Hambley, T.W., Ling, E.C.H., O’Mara, S., McKeage, M.J., Russell, P.J. (2000). Increased targeting of adenine-rich sequences by (2-amino-2-methyl-3-butanone oxime)dichloroplatinum(II) and investigations into its low cytotoxicity. J. Biol. Inorg. Chem. 5: 675-681.
  • [8] Quiroga, A.G., Cubo, L., de Blas, E., Aller, P., Navarro-Ranninger, C.J. (2007). Trans platinum complexes design:one novel water soluble oxime derivative that contains aliphatic amines in trans configuration. Inorg. Biochem. 101: 104-110.
  • [9] Zorbas-Seifried, S., Jakupec, M.A., Kukushkin, N.V., Groessl, M., Hartinger, Ch.G., Semenova, O., Zorbas, H., Kukushkin, V.Yu, Kepler, B.K. (2007). Reversion of structure-activity relationships of antitumor platinum complexes by acetoxime but not hydroxylamine ligands. Mol. Pharmacol. 71: 357-365.
  • [10] Scaffidi-Domianello, Y.Yu., Meelich, K., Jakupec, M.A., Arion, V.B., Kukushkin, V.Yu., Galanski, M., Kepler, B.K. (2010). Novel cis- and trans-configured bis(oxime)platinum(II) complexes: synthesis, characterization, and cytotoxic activity. Inorg. Chem. 49: 5669-5678.
  • [11] Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J Chem. Phys. 98: 5648.
  • [12] Sundaraganesan, N., Ilakiamani, S., Saleem, H., Wojciechowski, P.M., Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density nitropyridine. Spectrochim. Acta. A 61: 2995-3001.
  • [13] Jesus, A.J.L., Rosado, M.T.S., Reva, I., Fausto, R., Eusebio, M.E., Redinha, J.S. (2006). Conformational Study of Monomeric 2,3-Butanediols by Matrix-Isolation Infrared Spectroscopy and DFT Calculations. J. Phys. Chem. A 110: 4169-4179.
  • [14] Frisch, M.F., et al. Gaussian 09. Gaussian Inc.: Wallingford, CT, 2009.
  • [15] Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.
  • [16] Kaya, Y., Yilmaz, V.T., Arslan, T., Buyukgungor, O. (2012). Experimental and theoretical DFT studies of structure, spectroscopic and fluorescence properties of a new imine oxime derivative. J. Mol. Struc. 1024: 65-72.
  • [17] Kaya, Y., Yilmaz, V.T. (2014). Theoretical study of hydrolysis of an imine oxime in aqueous solution and crystal structure and spectroscopic characterization of a platinum(II) complex containing the hydrolysis product. Structural Chem. 25: 231-238.
  • [18] Colthup, N.B., Daly, L.H., Wiberley, S.E. (1964). Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., London.
  • [19] Bellamy, L.J. (1975). The Infra–red Spectra of Complex Molecules, Chapman and Hall Ltd., London.
  • [20] Cavalli, A., Salvatella, X., Dobson, C.M., Vendruscolo, M. (2007). Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 104: 9615-9620.
  • [21] Parr, R.G., Yang, W. (1989). Density Functional Theory of Atoms and Molecules. New York:Oxford University Press.
  • [22] Raja, M., Muhamed, R.R., Muthu, S., Suresh, M. (2017). Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), first order hyper polarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide. J. Mol. Struct. 1128: 481-492.
  • [23] Bopp, F., Meixner, J., Kestin, J. (1967). Thermodynamics and Statistical Mechanics, fifth ed. Academic Press Inc. (London) Ltd., New York.
  • [24] Zhang, X.H., Liu, L.N., Lin, Y.J., Lin, C.W. (2013). Synthesis and interaction of bovine serum albumin with p-hydroxybenzoic acid derivatives. Luminescence 28: 419-426.
  • [25] Endo, S., Goss, K. (2011). Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem. Res. Toxicol. 24: 2293-2301.

Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether

Year 2018, , 81 - 96, 29.12.2018
https://doi.org/10.38088/jise.454098

Abstract

The stable conformer of the synthesized 1-phenylethanone-O-pyropyl oxime ether (PEPOE) has been determined by potential energy profile analysis. All the
structural parameters of PEPOE were identified by Density Functional Theory
(DFT) with B3LYP method and 6-311++G(d,p) basis set. The spectroscopic
properties, FTIR, NMR and UV-Vis results have been theoretically
calculated and compared with experimental data. The highest occupied
molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energies
and the electron density distribution were performed by same level. The heat capacity,
entropy, and enthalpy of the PEPOE have been calculated at temperature range
from 100 to 1000 
°C. In addition, the molecular
docking studies with DNA and 
Human Serum Albumin (HSA) structures have been performed to find the most preferred binding mode
of the ligand inside the DNA and HSA cavity.
 As a result of these studies,
the binding free energies of DNA and HSA have been calculated as -20.92 and
-26.78 kJ/mol, respectively. The results show that these calculations are
valuable for providing insight into molecular properties of the oxime ether
compounds.

References

  • [1] Frace, A., Loge, C., Gallet, S., Lebegue, N., Carato, P., Chavatte, P., Berthelot, P., Lesieur, D. (2004). Docking study of ligands into the colchicine binding site of tubulin. J. Enzyme Inhib. Med. Chem. 19: 541-547.
  • [2] Abele, E., Lukevics, E. (2000). Recent advances in the chemistry of oximes. Org. Prep. Proc. Int. 32: 237–264.
  • [3] Li, C., Zhang, H., Cui, Y., Zhang, S., Zhao, Z., Choi, M.C.K., Chan, A.S.C. (2003). One-Pot Synthesis of Oxime Ethers from Benzaldehyde or Acetophenone, Hydroxylamine Salt, Potassium Hydroxide, and Alkyl Halides. Synthetic Communication 33: 543-546.
  • [4] Nakamura, H., Iitaka, Y., Sakakibara, H., Umezawa, H. (1974). The molecular and crystal structure determination of bisanhydroalthiomycin by the X-ray diffraction method. J. Antibiot. 27: 894-896.
  • [5] Kirst, H.A., Szymanski, E.F., Doman, D.E., Occolowitz, J.L., Jones, N.D., Chaney, M.O., Hamill, R.L., Hoehn, M.M. (1975). Structure of althiomycin. J. Antibiot. 28: 286-291.
  • [6] Ponomareva, V.V., Halley, N.K., Kou, X., Gerasimchuk, N.N., Domasevich, K.V. (1996). Synthesis, spectra and crystal structures of complexes of ambidentate C6H5C(O)C(NO)CN–. J. Chem. Soc. Dalton Trans. 2351-2359.
  • [7] Hambley, T.W., Ling, E.C.H., O’Mara, S., McKeage, M.J., Russell, P.J. (2000). Increased targeting of adenine-rich sequences by (2-amino-2-methyl-3-butanone oxime)dichloroplatinum(II) and investigations into its low cytotoxicity. J. Biol. Inorg. Chem. 5: 675-681.
  • [8] Quiroga, A.G., Cubo, L., de Blas, E., Aller, P., Navarro-Ranninger, C.J. (2007). Trans platinum complexes design:one novel water soluble oxime derivative that contains aliphatic amines in trans configuration. Inorg. Biochem. 101: 104-110.
  • [9] Zorbas-Seifried, S., Jakupec, M.A., Kukushkin, N.V., Groessl, M., Hartinger, Ch.G., Semenova, O., Zorbas, H., Kukushkin, V.Yu, Kepler, B.K. (2007). Reversion of structure-activity relationships of antitumor platinum complexes by acetoxime but not hydroxylamine ligands. Mol. Pharmacol. 71: 357-365.
  • [10] Scaffidi-Domianello, Y.Yu., Meelich, K., Jakupec, M.A., Arion, V.B., Kukushkin, V.Yu., Galanski, M., Kepler, B.K. (2010). Novel cis- and trans-configured bis(oxime)platinum(II) complexes: synthesis, characterization, and cytotoxic activity. Inorg. Chem. 49: 5669-5678.
  • [11] Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J Chem. Phys. 98: 5648.
  • [12] Sundaraganesan, N., Ilakiamani, S., Saleem, H., Wojciechowski, P.M., Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density nitropyridine. Spectrochim. Acta. A 61: 2995-3001.
  • [13] Jesus, A.J.L., Rosado, M.T.S., Reva, I., Fausto, R., Eusebio, M.E., Redinha, J.S. (2006). Conformational Study of Monomeric 2,3-Butanediols by Matrix-Isolation Infrared Spectroscopy and DFT Calculations. J. Phys. Chem. A 110: 4169-4179.
  • [14] Frisch, M.F., et al. Gaussian 09. Gaussian Inc.: Wallingford, CT, 2009.
  • [15] Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.
  • [16] Kaya, Y., Yilmaz, V.T., Arslan, T., Buyukgungor, O. (2012). Experimental and theoretical DFT studies of structure, spectroscopic and fluorescence properties of a new imine oxime derivative. J. Mol. Struc. 1024: 65-72.
  • [17] Kaya, Y., Yilmaz, V.T. (2014). Theoretical study of hydrolysis of an imine oxime in aqueous solution and crystal structure and spectroscopic characterization of a platinum(II) complex containing the hydrolysis product. Structural Chem. 25: 231-238.
  • [18] Colthup, N.B., Daly, L.H., Wiberley, S.E. (1964). Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., London.
  • [19] Bellamy, L.J. (1975). The Infra–red Spectra of Complex Molecules, Chapman and Hall Ltd., London.
  • [20] Cavalli, A., Salvatella, X., Dobson, C.M., Vendruscolo, M. (2007). Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 104: 9615-9620.
  • [21] Parr, R.G., Yang, W. (1989). Density Functional Theory of Atoms and Molecules. New York:Oxford University Press.
  • [22] Raja, M., Muhamed, R.R., Muthu, S., Suresh, M. (2017). Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), first order hyper polarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide. J. Mol. Struct. 1128: 481-492.
  • [23] Bopp, F., Meixner, J., Kestin, J. (1967). Thermodynamics and Statistical Mechanics, fifth ed. Academic Press Inc. (London) Ltd., New York.
  • [24] Zhang, X.H., Liu, L.N., Lin, Y.J., Lin, C.W. (2013). Synthesis and interaction of bovine serum albumin with p-hydroxybenzoic acid derivatives. Luminescence 28: 419-426.
  • [25] Endo, S., Goss, K. (2011). Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem. Res. Toxicol. 24: 2293-2301.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

İlhan Kucuk

Yunus Kaya

Publication Date December 29, 2018
Published in Issue Year 2018

Cite

APA Kucuk, İ., & Kaya, Y. (2018). Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether. Journal of Innovative Science and Engineering, 2(2), 81-96. https://doi.org/10.38088/jise.454098
AMA Kucuk İ, Kaya Y. Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether. JISE. December 2018;2(2):81-96. doi:10.38088/jise.454098
Chicago Kucuk, İlhan, and Yunus Kaya. “Conformational Analysis, Spectroscopic (FTIR, NMR and UV-Vis.), Molecular Docking and Quantum Chemical Simulation Studies of 1-Phenylethanone-O-Pyropyl Oxime Ether”. Journal of Innovative Science and Engineering 2, no. 2 (December 2018): 81-96. https://doi.org/10.38088/jise.454098.
EndNote Kucuk İ, Kaya Y (December 1, 2018) Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether. Journal of Innovative Science and Engineering 2 2 81–96.
IEEE İ. Kucuk and Y. Kaya, “Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether”, JISE, vol. 2, no. 2, pp. 81–96, 2018, doi: 10.38088/jise.454098.
ISNAD Kucuk, İlhan - Kaya, Yunus. “Conformational Analysis, Spectroscopic (FTIR, NMR and UV-Vis.), Molecular Docking and Quantum Chemical Simulation Studies of 1-Phenylethanone-O-Pyropyl Oxime Ether”. Journal of Innovative Science and Engineering 2/2 (December 2018), 81-96. https://doi.org/10.38088/jise.454098.
JAMA Kucuk İ, Kaya Y. Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether. JISE. 2018;2:81–96.
MLA Kucuk, İlhan and Yunus Kaya. “Conformational Analysis, Spectroscopic (FTIR, NMR and UV-Vis.), Molecular Docking and Quantum Chemical Simulation Studies of 1-Phenylethanone-O-Pyropyl Oxime Ether”. Journal of Innovative Science and Engineering, vol. 2, no. 2, 2018, pp. 81-96, doi:10.38088/jise.454098.
Vancouver Kucuk İ, Kaya Y. Conformational analysis, spectroscopic (FTIR, NMR and UV-Vis.), molecular docking and quantum chemical simulation studies of 1-phenylethanone-O-pyropyl oxime ether. JISE. 2018;2(2):81-96.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.