Araştırma Makalesi
BibTex RIS Kaynak Göster

NANO VE MİKRO TOZ MALZEMELERLE ÜRETİLEN YÜKSEK ISI YALITIM PERFORMANSLI VAKUM YALITIM PANELİ ÇEKİRDEKLERİNİN FİZİKSEL VE MEKANİK ÖZELLİKLERİ

Yıl 2023, Cilt: 11 Sayı: 4, 1424 - 1438, 30.12.2023
https://doi.org/10.21923/jesd.1240291

Öz

Vakum Yalıtım Panelleri (VYP), ısı kayıplarının azaltılmasında kullanılan ve geleneksel yalıtım malzemelerine kıyasla çok daha düşük ısı iletkenlik katsayısına sahip yeni nesil yalıtım malzemelerdir. Isı iletkenlik katsayıları ~3-7 mWm-1K-1 aralığında ve kalınlıkları geleneksel yalıtım malzemelerine göre 5-10 kat daha ince olabilmektedir. VYP’lerin, çekirdek malzemesi geçirimsiz bir bariyer içerisinde vakumlanır. Vakum sonrası panel üzerine uygulanan atmosfer basıncı ~10 ton/m2 seviyesindedir. Dolayısıyla çekirdeğin fiziksel ve mekanik özellikleri, boyutsal kararlılık açısından çok önemlidir. Yeterli mekanik özelliklere sahip olmayan çekirdekler vakumlandıktan sonra çöker ve rijit bir panel elde edilemez. Bu çalışmada, fumed silika (FS) ve alternatif tozların karışımı ile üretilen çekirdeklerin mekanik ve fiziksel özelliklerinin belirlenmesi amaçlanmıştır. Bu amaç doğrultusunda, çekirdek üretiminde beş farklı özgül yüzey alanına (ÖYA) sahip nano ve mikro boyutta tozlar kullanılmıştır. Ayrıca karışıma %5, %10 ve %15 oranlarında cam elyafı (fiber) eklenmiştir. Karışım oranları belirlendikten sonra 20-50 kN aralığında sıkıştırma kuvvetleri uygulanarak farklı fiziksel ve mekanik özellikte 45 çekirdek panel üretilmiştir. Çekirdeklerin fiziksel ve mekanik özellikleri DIN EN 1602, DIN EN 826, DIN EN 1607 standartlarına göre test edilmiştir. Elde edilen bulgular değerlendirildiğinde, çekirdek tasarımında ≤%10 fiber ilavesi ve yüksek ÖYA’na sahip tozların çekirdek boyutsal kararlılığını ve elastisite modülünü arttırdığı tespit edilmiştir. Sonuç olarak DIN EN standartlarına göre en uygun mekanik özellikleri CP-1-4 çekirdeği sağlamıştır.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK).

Proje Numarası

Proje No: 213M740

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 213M740 No'lu proje kapsamında desteklenmiştir. Yazarlar destekleri için TÜBİTAK'a teşekkür eder.

Kaynakça

  • Alam, M., Singh, H., Brunner, S., & Naziris, C. (2014). Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—Fumed silica composite for effective vacuum insulation panel (VYP) core. Energy and Buildings, 69, 442-450.
  • Aldykiewicz Jr, A., Desjarlais, A. O., & Biswas, K. (2022). The effect of barrier films and exposure on the aging of vacuum insulation panels with fumed silica cores. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
  • Bayrakçı, H., Davraz, M., & Başpınar, E. (2011). Yeni Nesil Isı Yalıtım Malzemesi: Vakum Yalıtım Paneli. Teknik Bilimler Dergisi, 1(2), 1-12.
  • Bayraktar D., Bayraktar E.A., Mevcut Binalarda Isı Yalıtım Uygulamalarının Değerlendirilmesi, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2016, 7(1), 59-66.
  • Davraz, M., Bayrakçı, H, C., Koru, M., İpek, O., Yusufoğlu, Y., 2014. Ekonomik VYP Üretimi İçin Çekirdek Dolgu Maddeleri Türlerinin ve Performanslarının Araştırılması, TÜBİTAK 1003- Proje No:213M740. Development of Transparent and Opaque Vacuum Insulation Panels for Energy Efficient Buildings.
  • Davraz, M., Bayrakçı, H. C., Delikanlı, K., & Akdağ, A. (2019). Vakum Yalıtım Paneli Çekirdeğinin Fiziko-Mekanik Özellikleri. Teknik Bilimler Dergisi, 6(1), 27-37.
  • Di, X., Gao, Y., Bao, C., & Ma, S. (2014). Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials. Energy and Buildings, 73, 176-183.
  • DINEN 826:199605, Thermal Insulating Products for Building Applications Determination of Compression Behavior, German version EN 826:1996.
  • DINEN 1602:199701, Thermal Insulating Products for Building Applications Determination of The Apparent Density, German version EN 1602:1996.
  • DINEN 1605:200706, Thermal Insulating Products for Building Applications Determination of Deformation under Specified Compressive Load and Temperature Conditions, German version EN 1605:1996 + A1:2006.
  • DINEN 1607:199701, Thermal Insulating Products For Building Applications Determination of Tensile Strength Perpendicular to Faces, German version EN 1607:1996.
  • Dong, X., Zhang, Q., Lan, Y., Zeng, Q., Fan, M., Chen, L., & Zhao, W. (2022). Preparation and characterization of vacuum insulation panels with hybrid composite core materials of bamboo and glass fiber. Industrial Crops and Products, 188, 115691
  • Fantucci, S., Garbaccio, S., Lorenzati, A., & Perino, M. (2019). Thermo-economic analysis of building energy retrofits using VIP-Vacuum Insulation Panels. Energy and Buildings, 196, 269-279.
  • Fricke, J., Heinemann, U., & Ebert, H. P. (2008). Vacuum insulation panels—From research to market. Vacuum, 82(7), 680-690.
  • H. Schwab, U. Heinemann, A. Beck, H.P. Ebert, J. Fricke, Prediction of service life for vacuum insulation panels with fumed silica kernel and foil cover, Journal of Thermal Envelope and Building Science 28 (2005) 357–374.
  • Kan, A., Zhang, X., Chen, Z., & Cao, D. (2023). Effective thermal conductivity of vacuum insulation panels prepared with recyclable fibrous cotton core. International Journal of Thermal Sciences, 187, 108176.
  • Katsura, T., & Nagano, K. (2023). Investigation on Longer Service Life of Vacuum Insulation Panels by Applying Double Envelopes. In E3S Web of Conferences (Vol. 396, p. 04009). EDP Sciences.
  • Kwon, J. S., Jang, C. H., Jung, H., & Song, T. H. (2010). Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP. Energy and Buildings, 42(5), 590-597.
  • Lakatos, Á., & Kovács, Z. (2021). Comparison of thermal insulation performance of vacuum insulation panels with EPS protection layers measured with different methods. Energy and Buildings, 236, 110771.
  • Latsuzbaya, V., Middendorf, P., Völkle, D., & Weber, C. (2022). Improving the thermal properties of aircraft cabin interiors with the integration of vacuum insulation panels. CEAS Aeronautical Journal, 13(3), 705-718.
  • Li, C., Li, B., Pan, N., Chen, Z., Saeed, M. U., Xu, T., & Yang, Y. (2016). Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and buildings, 125, 298-309.
  • Mao, S., Kan, A., Huang, Z., & Zhu, W. (2020). Prediction of thermal performance of vacuum insulation panels (VYPs) with micro-fiber core materials. Materials Today Communications, 22, 100786.
  • Mukhopadhyaya, P., Kumaran, K., Lackey, J., Normandin, N., & Van Reenen, D. (2005). Long-term thermal resistance and use of vacuum insulation panel in buildings. In 10th Canadian Conference on Building Science and Technology (pp. 169-181).
  • Mukhopadhyaya, P., Kumaran, K., Normandin, N., van Reenen, D., & Lackey, J. (2008). High-performance vacuum insulation panel: development of alternative core materials. Journal of Cold Regions Engineering, 22(4), 103.
  • Resalati, S., Okoroafor, T., Henshall, P., Simões, N., Gonçalves, M., & Alam, M. (2021). Comparative life cycle assessment of different vacuum insulation panel core materials using a cradle to gate approach. Building and Environment, 188, 107501.
  • Simmler, H., Brunner, S., Heinemann, U., Schwab, H., Kumaran, K., Mukhopadhyaya, P., ... & Erb, M. (2005). Vacuum Insulation Panels-Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A).
  • Vacuum Insulation Panels Subtask A, Report HiPTI-IEA/ECBCS Annex 39
  • Verma, S., & Singh, H. (2022). Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels. International Journal of Thermal Sciences, 171, 107245.
  • Verma, S., Sara, A., & Singh, H. (2023). Why and which opacifier for perlite based vacuum insulation panels (VIPs) in the average temperature range of 10–70° C. International Journal of Thermal Sciences, 186, 108136.
  • Zach, J., Peterková, J., Dufek, Z., & Sekavčnik, T. (2019). Development of vacuum insulating panels (VYP) with non-traditional core materials. Energy and Buildings, 199, 12-19.
  • Zhao, W., Yan, W., Zhang, Z., Gao, H., Zeng, Q., Du, G., & Fan, M. (2022). Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels. Journal of Cleaner Production, 357, 131957.
  • Zhuang, J., Ghaffar, S. H., Fan, M., & Corker, J. (2017). Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels. Composites Part B: Engineering, 127, 215-221.

PHYSICAL AND MECHANICAL PROPERTIES OF VACUUM INSULATION PANEL CORES WITH HIGH THERMAL INSULATION PERFORMANCE PRODUCED WITH NANO AND MICRO POWDER MATERIALS

Yıl 2023, Cilt: 11 Sayı: 4, 1424 - 1438, 30.12.2023
https://doi.org/10.21923/jesd.1240291

Öz

Vacuum Insulation Panels (VIPs) are next-generation insulation materials used to reduce heat loss, characterized by significantly lower thermal conductivity compared to traditional insulation materials. The thermal conductivity of Vacuum Insulation Panels (VIPs) typically ranges between 3-7 mWm-1K-1, and their thickness can be 5-10 times thinner compared to traditional insulation materials. The core material of the VYPs is vacuumed inside an impermeable barrier. After vacuuming, the atmospheric pressure applied to the panel is approximately 10 tons/m2. Therefore, the physical and mechanical properties of the core material are crucial in terms of dimensional stability. Core materials that lack sufficient mechanical properties collapse after vacuuming; thus, it is not possible to achieve a rijit panel. This study aimed to determine the mechanical and physical properties of cores produced by mixing fumed silica (FS) with alternative powders. Five specific surface areas (SSA) nano and micro-sized powders were utilized in core production to achieve this purpose. Additionally, glass fiber was added to the mixture at 5%, 10%, and 15% ratios. After determining the mixture ratios, 45 core panels with varying physical and mechanical properties were produced by applying compression forces in the 20-50 kN range. The physical and mechanical properties of the cores were tested according to DIN EN 1602, DIN EN 826, and DIN EN 1607 standards. Upon evaluating the obtained findings, it was determined that adding ≤10% fiber in core design and using powders with high specific surface area (SSA) increased core dimensional stability and elastic modulus. Consequently, according to DIN EN standards, the CP-1-4 core exhibited the most suitable mechanical properties.

Proje Numarası

Proje No: 213M740

Kaynakça

  • Alam, M., Singh, H., Brunner, S., & Naziris, C. (2014). Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—Fumed silica composite for effective vacuum insulation panel (VYP) core. Energy and Buildings, 69, 442-450.
  • Aldykiewicz Jr, A., Desjarlais, A. O., & Biswas, K. (2022). The effect of barrier films and exposure on the aging of vacuum insulation panels with fumed silica cores. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
  • Bayrakçı, H., Davraz, M., & Başpınar, E. (2011). Yeni Nesil Isı Yalıtım Malzemesi: Vakum Yalıtım Paneli. Teknik Bilimler Dergisi, 1(2), 1-12.
  • Bayraktar D., Bayraktar E.A., Mevcut Binalarda Isı Yalıtım Uygulamalarının Değerlendirilmesi, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2016, 7(1), 59-66.
  • Davraz, M., Bayrakçı, H, C., Koru, M., İpek, O., Yusufoğlu, Y., 2014. Ekonomik VYP Üretimi İçin Çekirdek Dolgu Maddeleri Türlerinin ve Performanslarının Araştırılması, TÜBİTAK 1003- Proje No:213M740. Development of Transparent and Opaque Vacuum Insulation Panels for Energy Efficient Buildings.
  • Davraz, M., Bayrakçı, H. C., Delikanlı, K., & Akdağ, A. (2019). Vakum Yalıtım Paneli Çekirdeğinin Fiziko-Mekanik Özellikleri. Teknik Bilimler Dergisi, 6(1), 27-37.
  • Di, X., Gao, Y., Bao, C., & Ma, S. (2014). Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials. Energy and Buildings, 73, 176-183.
  • DINEN 826:199605, Thermal Insulating Products for Building Applications Determination of Compression Behavior, German version EN 826:1996.
  • DINEN 1602:199701, Thermal Insulating Products for Building Applications Determination of The Apparent Density, German version EN 1602:1996.
  • DINEN 1605:200706, Thermal Insulating Products for Building Applications Determination of Deformation under Specified Compressive Load and Temperature Conditions, German version EN 1605:1996 + A1:2006.
  • DINEN 1607:199701, Thermal Insulating Products For Building Applications Determination of Tensile Strength Perpendicular to Faces, German version EN 1607:1996.
  • Dong, X., Zhang, Q., Lan, Y., Zeng, Q., Fan, M., Chen, L., & Zhao, W. (2022). Preparation and characterization of vacuum insulation panels with hybrid composite core materials of bamboo and glass fiber. Industrial Crops and Products, 188, 115691
  • Fantucci, S., Garbaccio, S., Lorenzati, A., & Perino, M. (2019). Thermo-economic analysis of building energy retrofits using VIP-Vacuum Insulation Panels. Energy and Buildings, 196, 269-279.
  • Fricke, J., Heinemann, U., & Ebert, H. P. (2008). Vacuum insulation panels—From research to market. Vacuum, 82(7), 680-690.
  • H. Schwab, U. Heinemann, A. Beck, H.P. Ebert, J. Fricke, Prediction of service life for vacuum insulation panels with fumed silica kernel and foil cover, Journal of Thermal Envelope and Building Science 28 (2005) 357–374.
  • Kan, A., Zhang, X., Chen, Z., & Cao, D. (2023). Effective thermal conductivity of vacuum insulation panels prepared with recyclable fibrous cotton core. International Journal of Thermal Sciences, 187, 108176.
  • Katsura, T., & Nagano, K. (2023). Investigation on Longer Service Life of Vacuum Insulation Panels by Applying Double Envelopes. In E3S Web of Conferences (Vol. 396, p. 04009). EDP Sciences.
  • Kwon, J. S., Jang, C. H., Jung, H., & Song, T. H. (2010). Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP. Energy and Buildings, 42(5), 590-597.
  • Lakatos, Á., & Kovács, Z. (2021). Comparison of thermal insulation performance of vacuum insulation panels with EPS protection layers measured with different methods. Energy and Buildings, 236, 110771.
  • Latsuzbaya, V., Middendorf, P., Völkle, D., & Weber, C. (2022). Improving the thermal properties of aircraft cabin interiors with the integration of vacuum insulation panels. CEAS Aeronautical Journal, 13(3), 705-718.
  • Li, C., Li, B., Pan, N., Chen, Z., Saeed, M. U., Xu, T., & Yang, Y. (2016). Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and buildings, 125, 298-309.
  • Mao, S., Kan, A., Huang, Z., & Zhu, W. (2020). Prediction of thermal performance of vacuum insulation panels (VYPs) with micro-fiber core materials. Materials Today Communications, 22, 100786.
  • Mukhopadhyaya, P., Kumaran, K., Lackey, J., Normandin, N., & Van Reenen, D. (2005). Long-term thermal resistance and use of vacuum insulation panel in buildings. In 10th Canadian Conference on Building Science and Technology (pp. 169-181).
  • Mukhopadhyaya, P., Kumaran, K., Normandin, N., van Reenen, D., & Lackey, J. (2008). High-performance vacuum insulation panel: development of alternative core materials. Journal of Cold Regions Engineering, 22(4), 103.
  • Resalati, S., Okoroafor, T., Henshall, P., Simões, N., Gonçalves, M., & Alam, M. (2021). Comparative life cycle assessment of different vacuum insulation panel core materials using a cradle to gate approach. Building and Environment, 188, 107501.
  • Simmler, H., Brunner, S., Heinemann, U., Schwab, H., Kumaran, K., Mukhopadhyaya, P., ... & Erb, M. (2005). Vacuum Insulation Panels-Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A).
  • Vacuum Insulation Panels Subtask A, Report HiPTI-IEA/ECBCS Annex 39
  • Verma, S., & Singh, H. (2022). Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels. International Journal of Thermal Sciences, 171, 107245.
  • Verma, S., Sara, A., & Singh, H. (2023). Why and which opacifier for perlite based vacuum insulation panels (VIPs) in the average temperature range of 10–70° C. International Journal of Thermal Sciences, 186, 108136.
  • Zach, J., Peterková, J., Dufek, Z., & Sekavčnik, T. (2019). Development of vacuum insulating panels (VYP) with non-traditional core materials. Energy and Buildings, 199, 12-19.
  • Zhao, W., Yan, W., Zhang, Z., Gao, H., Zeng, Q., Du, G., & Fan, M. (2022). Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels. Journal of Cleaner Production, 357, 131957.
  • Zhuang, J., Ghaffar, S. H., Fan, M., & Corker, J. (2017). Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels. Composites Part B: Engineering, 127, 215-221.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ali Ekrem Akdağ 0000-0002-3699-9376

Metin Davraz 0000-0002-6069-7802

Kamil Delikanlı 0000-0001-5074-7872

Proje Numarası Proje No: 213M740
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 21 Ocak 2023
Kabul Tarihi 18 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Akdağ, A. E., Davraz, M., & Delikanlı, K. (2023). NANO VE MİKRO TOZ MALZEMELERLE ÜRETİLEN YÜKSEK ISI YALITIM PERFORMANSLI VAKUM YALITIM PANELİ ÇEKİRDEKLERİNİN FİZİKSEL VE MEKANİK ÖZELLİKLERİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(4), 1424-1438. https://doi.org/10.21923/jesd.1240291