Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity

Yıl 2023, Cilt: 9 Sayı: 3, 697 - 709, 20.09.2023
https://doi.org/10.28979/jarnas.1255113

Öz

Hydrogels are three dimentional networks that constitute of either chemical or physical crosslinks. In this study, preparation of polyvinyl pyrolidone/polyacrylamide (PVA/PAAm) hydrogels exhibiting antibacterial property was demonstrated. Bio-derived α-bisabolol, d-limonene, and geraniol were utilized as antibacterial agents, whereas stabilization of PVA/PAAm hydrogels was achieved by using beta-cyclodextrin (β-CD). PVA/AAm polyblend solutions were polymerizided via UV-irradiation. Then freeze-thawing and anneal-swelling were respectively carried out. Once the morphological, physical properties of the resulting hydrogels was characterized antibacterial efficiency tests were also performed. In the end, it was demonstrated that PVP/PAAm/α-bisabolol and PVP/PAAm/geraniol hydrogels have good antibacterial properties against Escherichia coli with 9 mm zone inhibition.

Teşekkür

The author gratefully acknowledge Dr. Uğur Parın for his kind help in the antibacterial measu-rements of the hydrogels and Aydın Adnan Menderes University of Faculty of Veterinary Science, Microbiological Department. The author thanks to acknowledge Enver BAYDIR for his kind help in the contact angle measurements and BTU Chemical Engineering Department.

Kaynakça

  • Agra, I. K., Pires, L. L., Carvalho, P. S., Silva-Filho, E. A., Smaniotto, S., & Barreto, E. (2013). Evalua-tion of wound healing and antimicrobial properties of aqueous extract from Bowdichia virgilioides stem barks in mice. Anais da Academia Brasileira de Ciências, 85, 945-954. https://doi.org/10.1590/S0001-37652013005000049 Al-Azzam, N., & Alazzam, A. (2022). Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. Plos one, 17(6), e0269914. https://doi.org/10.1371/journal.pone.0269914
  • Altaf, F., Niazi, M. B. K., Jahan, Z., Ahmad, T., Akram, M. A., Safdar, A., ... & Sher, F. (2021). Synt-hesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment, 29, 156-174. https://doi.org/10.1007/s10924-020-01866-w
  • Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mec-hanisms of action. Phytomedicine, 90, 153626. https://doi.org/10.1016/j.phymed.2021.153626
  • Bhavsar, V., & Tripathi, D. (2018). Structural, optical, and aging studies of biocompatible PVC-PVP blend films. Journal of Polymer Engineering, 38(5), 419-426. https://doi.org/10.1515/polyeng-2017-0184
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a re-view. International journal of food microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  • Cahyana, Y., Putri, Y. S. E., Solihah, D. S., Lutfi, F. S., Alqurashi, R. M., & Marta, H. (2022). Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. Molecules, 27(22), 7872. https://doi.org/10.3390/molecules27227872
  • Chang, H. W., Lin, Y. S., Tsai, Y. D., & Tsai, M. L. (2013). Effects of chitosan characteristics on the physicochemical properties, antibacterial activity, and cytotoxicity of chitosan/2‐glycerophosphate/nanosilver hydrogels. Journal of Applied Polymer Science, 127(1), 169-176. https://doi.org/10.1002/app.37855
  • Chauhan, A. K., & Kang, S. C. (2014). Thymol disrupts the membrane integrity of Salmonella ser. typ-himurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo mo-del. Research in microbiology, 165(7), 559-565. https://doi.org/10.1016/j.resmic.2014.07.001
  • Dafader, N. C., Akter, T., Haque, M. 1., Swapna, S. P., Islam, S., & Huq, D. (2012). Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma ra-diation. African Journal of Biotechnology, 11(66), 13049-13057. https://doi.org/10.5897/AJB-11-2333
  • Derdar, H., Belbachir, M., & Harrane, A. (2019). A green synthesis of polylimonene using Maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 69-78. https://doi.org/10.9767/bcrec.14.1.2692.69-78
  • Djefal-Kerrar, A., Abdoun, K. O., Chouikrat, R., El-Kahina, R. G., Khodja, A. J., & Mahlous, M. (2011). Study of bacterium fixation stability on Gamma radiation synthesized carriers to improve degradation. J. Bioremed. Biodegrad, 2, 117-124. https://doi.org/10.4172/2155-6199.1000117
  • Doğan, E. E., Tokcan, P., Diken, M. E., Yilmaz, B., Kizilduman, B. K., & Sabaz, P. (2019). Synthesis, characterization and some biological properties of PVA/PVP/PN hydrogel nanocomposites: Anti-bacterial and biocompatibility. Advances in Materials Science, 19(3), 32-45. https://doi.org/10.2478/adms-2019-0015
  • Edikresnha, D., Sriyanti, I., & Munir, M. M. (2017, May). Synthesis of polyvinylpyrrolidone (PVP)-Green tea extract composite nanostructures using electrohydrodynamic spraying technique. In IOP Conference Series: Materials Science and Engineering (Vol. 202, No. 1, p. 012043). IOP Publis-hing. https://doi.org/10.1088/1757-899X/202/1/012043
  • Ersoy, E., Ozkan, E. E., Boga, M., & Mat, A. (2020). Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. South African Journal of Botany, 130, 141-147. https://doi.org/10.1016/j.sajb.2019.12.017
  • Evingür, G. A., Kaygusuz, H., Erim, F. B., & Pekcan, Ö. (2014). Gelation of PAAm-PVP composites: A fluorescence study. International Journal of Modern Physics B, 28(20), 1450122. https://doi.org/10.1142/S0217979214501227
  • Fasihi, H., Noshirvani, N., & Hashemi, M. (2023). Novel bioactive films integrated with Pickering emul-sion of ginger essential oil for food packaging application. Food Bioscience, 51, 102269. https://doi.org/10.1016/j.fbio.2022.102269
  • Fletcher, M., & Pringle, J. H. (1985). The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces. Journal of Colloid and Interface Science, 104(1), 5-14. https://doi.org/10.1016/0021-9797(85)90004-9
  • Gad, Y. H., Salah, M., & Abdel-Ghaffar, A. M. (2021). Preparation of poly (PVP/acrylamide/glycerol/bentonite clay) nanocomposite films by gamma radiation for removal of Sandolane Rubinole Acid Red 37 dye. International Journal of Environmental Analytical Che-mistry, 1-20. https://doi.org/10.1080/03067319.2021.2011256
  • Gavini, E., Bonferoni, M. C., Rassu, G., Sandri, G., Rossi, S., Salis, A., ... & Giunchedi, P. (2016). En-gineered microparticles based on drug–polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Development and Industrial Phar-macy, 42(4), 554-562. https://doi.org/10.3109/03639045.2015.1100201
  • Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24(13), 2471. https://doi.org/10.3390/molecules24132471
  • Hu, J. W., Yen, M. W., Wang, A. J., & Chu, I. M. (2018). Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids and Surfaces B: Biointerfa-ces, 161, 51-58. https://doi.org/10.1016/j.colsurfb.2017.10.001
  • Huang, M., Hou, Y., Li, Y., Wang, D., & Zhang, L. (2017). High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Designed monomers and polymers, 20(1), 505-513. https://doi.org/10.1080/15685551.2017.1382433
  • Kamoun, E. A., El-Betany, A., Menzel, H., & Chen, X. (2018). Influence of photoinitiator concentra-tion and irradiation time on the crosslinking performance of visible-light activated pullulan-HEMA hydrogels. International journal of biological macromolecules, 120, 1884-1892. https://doi.org/10.1016/j.ijbiomac.2018.10.011
  • Kędzierska, M., Kudłacik-Kramarczyk, S., Jamroży, M., Bańkosz, M., Walter, J., Potemski, P., & Drabczyk, A. (2023). Verification of the Influence of the 2-Hydroxy-2-methylpropiophenone (Photoinitiator) Content in Hydrogel Materials on Their Physicochemical Properties and Surface Morphology. Coatings, 13(1), 40. https://doi.org/10.3390/coatings13010040
  • Kędzierska, M., Bańkosz, M., & Potemski, P. (2022). Studies on the Impact of the Photoinitiator Amo-unt Used during the PVP-Based Hydrogels’ Synthesis on Their Physicochemical Proper-ties. Materials, 15(17), 6089. https://doi.org/10.3390/ma15176089
  • Kekevi, B. Synthesis and Characterization of Bio-Derived Monoliths. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 826-832. https://doi.org/10.35193/bseufbd.963141 Krainer, S., & Hirn, U. (2021). Contact angle measurement on porous substrates: Effect of liquid ab-sorption and drop size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 619, 126503. https://doi.org/10.1016/j.colsurfa.2021.126503
  • Langeveld, W. T., Veldhuizen, E. J., & Burt, S. A. (2014). Synergy between essential oil components and antibiotics: a review. Critical reviews in microbiology, 40(1), 76-94. https://doi.org/10.3109/1040841X.2013.763219
  • Lasoń, E. (2020). Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Sys-tems. Molecules, 25(23), 5758. https://doi.org/10.3390/molecules25235758
  • Li, C., Luo, X., Li, L., Cai, Y., Kang, X., & Li, P. (2022). Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. International Jour-nal of Biological Macromolecules, 209, 344-355. https://doi.org/10.1016/j.ijbiomac.2022.04.025
  • Li, S., Dong, S., Xu, W., Tu, S., Yan, L., Zhao, C., ... & Chen, X. (2018). Antibacterial hydro-gels. Advanced science, 5(5), 1700527. https://doi.org/10.1002/advs.201700527
  • Lopérgolo, L. C., Lugao, A. B., & Catalani, L. H. (2003). Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone)(PVP) to produce hydrogels. Polymer, 44(20), 6217-6222. https://doi.org/10.1016/S0032-3861(03)00686-4
  • Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial Effects and Mode of Ac-tion of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2015. https://doi.org/10.1155/2015/795435
  • Luthfianti, H. R., Waresindo, W. X., Edikresnha, D., Chahyadi, A., Suciati, T., Noor, F. A., & Khairurri-jal, K. (2023). Physicochemical Characteristics and Antibacterial Activities of Freeze-Thawed Poly-vinyl Alcohol/Andrographolide Hydrogels. ACS Omega. https://doi.org/10.1021/acsomega.2c05110
  • Magiatis, P., Skaltsounis, A. L., Chinou, I., & Haroutounian, S. A. (2002). Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Zeitschrift für Naturforschung C, 57(3-4), 287-290. https://doi.org/10.1515/znc-2002-3-415
  • Mahizan, N. A., Yang, S. K., Moo, C. L., Song, A. A. L., Chong, C. M., Chong, C. W., ... & Lai, K. S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) patho-gens. Molecules, 24(14), 2631. https://doi.org/10.3390/molecules24142631
  • Mao, L., Wang, D., Liu, F., & Gao, Y. (2018). Emulsion design for the delivery of β-carotene in comp-lex food systems. Critical Reviews in Food Science and Nutrition, 58(5), 770-784. https://doi.org/10.1080/10408398.2016.1223599
  • Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., ... & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in hu-man health and potential application as natural food preservatives. Food chemistry: X, 100217. https://doi.org/10.1016/j.fochx.2022.100217
  • Moo, C. L., Yang, S. K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., ... & Lai, K. S. (2020). Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current drug discovery technologies, 17(4), 430-447. https://doi.org/10.2174/1570163816666190304122219
  • Okay, O. (2020). Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Che-mistry, The 100 Year of Polymers, 507-525. https://doi.org/10.15671/hjbc.797525
  • Ouattara, B., Simard, R. E., Holley, R. A., Piette, G. J. P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International journal of food microbiology, 37(2-3), 155-162. https://doi.org/10.1016/S0168-1605(97)00070-6
  • Owonubi, S. J., Agwuncha, S. C., Malima, N. M., Sadiku, E. R., & Revaprasadu, N. (2021). Develop-ment of bacterial resistant acrylamide-polyvinylpyrrolidone-metal oxide hydrogel nanocomposi-tes. Materials Today: Proceedings, 38, 982-987. https://doi.org/10.1016/j.matpr.2020.05.502
  • Panahi, Y., Gharekhani, A., Hamishehkar, H., Zakeri-Milani, P., & Gharekhani, H. (2019). Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: Synthesis, characterization and in vitro drug release study. Advanced pharmaceutical bulletin, 9(1), 159. https://doi.org/10.15171/apb.2019.019
  • Perveen, S., & Al-Taweel, A. (2018). Introductory chapter: Terpenes and terpenoids. Terpenes and ter-penoids, 1, 1-12. https://doi.org/10.15171/apb.2019.019
  • Qureshi, M. A., Nishat, N., & Ahmed, S. (2023). Environmentally Benign Green Synthesized Chitosan-pNIPAm Composite Hydrogel. Advanced Chemicobiology Research, 45-53. https://doi.org/10.37256/acbr.2120231775
  • Rahma, A., Munir, M. M., Prasetyo, A., Suendo, V., & Rachmawati, H. (2016). Intermolecular interacti-ons and the release pattern of electrospun curcumin-polyvinyl (pyrrolidone) fiber. Biological and Pharmaceutical Bulletin, 39(2), 163-173. https://doi.org/10.1248/bpb.b15-00391
  • Roy, N., Saha, N., Kitano, T., & Saha, P. (2012). Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydrate polymers, 89(2), 346-353. https://doi.org/10.1016/j.carbpol.2012.03.008 Roy, N., Saha, N., Kitano, T., & Saha, P. (2010). Novel hydrogels of PVP–CMC and their swelling ef-fect on viscoelastic properties. Journal of Applied Polymer Science, 117(3), 1703-1710. https://doi.org/10.1002/app.32056
  • Saroj, A. L., Singh, R. K., & Chandra, S. (2013). Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: Effect of complexation on thermal stability, conductivity and relaxation behaviour. Materials Science and Engineering: B, 178(4), 231-238. https://doi.org/10.1016/j.mseb.2012.11.007
  • Sheik, S., Nagaraja, G. K., & Prashantha, K. (2018). Effect of silk fiber on the structural, thermal, and mechanical properties of PVA/PVP composite films. Polymer Engineering & Science, 58(11), 1923-1930. https://doi.org/10.1002/pen.24801
  • Silva, A. P. (2009). Síntese e avaliação da atividade antitumoral de tiossemicarbazonas derivadas do alfa-(-)-bisabolol (Doctoral dissertation, Master Thesis, Department of Chemistry, State University of Maringá-Maringá).
  • Souza, F. C., Souza, R. F., & Moraes, Â. M. (2016). Incorporation and release kinetics of alpha-bisabolol from PCL and chitosan/guar gum membranes. Brazilian Journal of Chemical Enginee-ring, 33, 453-467. https://doi.org/10.1590/0104-6632.20160333s20150083
  • Tang, H., Lu, A., Li, L., Zhou, W., Xie, Z., & Zhang, L. (2013). Highly antibacterial materials construc-ted from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Jour-nal, 234, 124-131. https://doi.org/10.1016/j.cej.2013.08.096
  • Torres, E., Vallés‐Lluch, A., Fombuena, V., Napiwocki, B., & Lih‐Sheng, T. (2017). Influence of the hydrophobic–hydrophilic nature of biomedical polymers and nanocomposites on in vitro biological development. Macromolecular Materials and Engineering, 302(12), 1700259.
  • Van Loosdrecht, M. C., Norde, W., Lyklema, J., & Zehnder, A. J. (1990). Hydrophobic and electrostatic parameters in bacterial adhesion: Dedicated to Werner Stumm for his 65 th birthday. Aquatic scien-ces, 52, 103-114. https://doi.org/10.1007/BF00878244
  • Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, 74(1-3), 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7
  • Worzakowska, M., & Ścigalski, P. (2013). TG/DSC/FTIR characterization of linear geranyl dies-ters. Journal of thermal analysis and calorimetry, 113, 53-60. https://doi.org/10.1007/s10973-012-2865-6
  • Wu, S., & Shanks, R. A. (2004). Solubility study of polyacrylamide in polar solvents. Journal of app-lied polymer science, 93(3), 1493-1499. https://doi.org/10.1002/app.20608
  • Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., & Wang, J. (2018). Antimicrobial hydrogels: promising materials for medical application. International Journal of Nanomedicine, 13, 2217. https://doi/epdf/10.2147/IJN.S154748
  • Xiao, K., Wen, L., & Jiang, L. (2016). Bioinspired Superwettability Materials. Kirk‐Othmer Encyclope-dia of Chemical Technology, 1-34. https://doi.org/10.1002/0471238961.koe00013
Yıl 2023, Cilt: 9 Sayı: 3, 697 - 709, 20.09.2023
https://doi.org/10.28979/jarnas.1255113

Öz

Kaynakça

  • Agra, I. K., Pires, L. L., Carvalho, P. S., Silva-Filho, E. A., Smaniotto, S., & Barreto, E. (2013). Evalua-tion of wound healing and antimicrobial properties of aqueous extract from Bowdichia virgilioides stem barks in mice. Anais da Academia Brasileira de Ciências, 85, 945-954. https://doi.org/10.1590/S0001-37652013005000049 Al-Azzam, N., & Alazzam, A. (2022). Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. Plos one, 17(6), e0269914. https://doi.org/10.1371/journal.pone.0269914
  • Altaf, F., Niazi, M. B. K., Jahan, Z., Ahmad, T., Akram, M. A., Safdar, A., ... & Sher, F. (2021). Synt-hesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment, 29, 156-174. https://doi.org/10.1007/s10924-020-01866-w
  • Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mec-hanisms of action. Phytomedicine, 90, 153626. https://doi.org/10.1016/j.phymed.2021.153626
  • Bhavsar, V., & Tripathi, D. (2018). Structural, optical, and aging studies of biocompatible PVC-PVP blend films. Journal of Polymer Engineering, 38(5), 419-426. https://doi.org/10.1515/polyeng-2017-0184
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a re-view. International journal of food microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  • Cahyana, Y., Putri, Y. S. E., Solihah, D. S., Lutfi, F. S., Alqurashi, R. M., & Marta, H. (2022). Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. Molecules, 27(22), 7872. https://doi.org/10.3390/molecules27227872
  • Chang, H. W., Lin, Y. S., Tsai, Y. D., & Tsai, M. L. (2013). Effects of chitosan characteristics on the physicochemical properties, antibacterial activity, and cytotoxicity of chitosan/2‐glycerophosphate/nanosilver hydrogels. Journal of Applied Polymer Science, 127(1), 169-176. https://doi.org/10.1002/app.37855
  • Chauhan, A. K., & Kang, S. C. (2014). Thymol disrupts the membrane integrity of Salmonella ser. typ-himurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo mo-del. Research in microbiology, 165(7), 559-565. https://doi.org/10.1016/j.resmic.2014.07.001
  • Dafader, N. C., Akter, T., Haque, M. 1., Swapna, S. P., Islam, S., & Huq, D. (2012). Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma ra-diation. African Journal of Biotechnology, 11(66), 13049-13057. https://doi.org/10.5897/AJB-11-2333
  • Derdar, H., Belbachir, M., & Harrane, A. (2019). A green synthesis of polylimonene using Maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 69-78. https://doi.org/10.9767/bcrec.14.1.2692.69-78
  • Djefal-Kerrar, A., Abdoun, K. O., Chouikrat, R., El-Kahina, R. G., Khodja, A. J., & Mahlous, M. (2011). Study of bacterium fixation stability on Gamma radiation synthesized carriers to improve degradation. J. Bioremed. Biodegrad, 2, 117-124. https://doi.org/10.4172/2155-6199.1000117
  • Doğan, E. E., Tokcan, P., Diken, M. E., Yilmaz, B., Kizilduman, B. K., & Sabaz, P. (2019). Synthesis, characterization and some biological properties of PVA/PVP/PN hydrogel nanocomposites: Anti-bacterial and biocompatibility. Advances in Materials Science, 19(3), 32-45. https://doi.org/10.2478/adms-2019-0015
  • Edikresnha, D., Sriyanti, I., & Munir, M. M. (2017, May). Synthesis of polyvinylpyrrolidone (PVP)-Green tea extract composite nanostructures using electrohydrodynamic spraying technique. In IOP Conference Series: Materials Science and Engineering (Vol. 202, No. 1, p. 012043). IOP Publis-hing. https://doi.org/10.1088/1757-899X/202/1/012043
  • Ersoy, E., Ozkan, E. E., Boga, M., & Mat, A. (2020). Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. South African Journal of Botany, 130, 141-147. https://doi.org/10.1016/j.sajb.2019.12.017
  • Evingür, G. A., Kaygusuz, H., Erim, F. B., & Pekcan, Ö. (2014). Gelation of PAAm-PVP composites: A fluorescence study. International Journal of Modern Physics B, 28(20), 1450122. https://doi.org/10.1142/S0217979214501227
  • Fasihi, H., Noshirvani, N., & Hashemi, M. (2023). Novel bioactive films integrated with Pickering emul-sion of ginger essential oil for food packaging application. Food Bioscience, 51, 102269. https://doi.org/10.1016/j.fbio.2022.102269
  • Fletcher, M., & Pringle, J. H. (1985). The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces. Journal of Colloid and Interface Science, 104(1), 5-14. https://doi.org/10.1016/0021-9797(85)90004-9
  • Gad, Y. H., Salah, M., & Abdel-Ghaffar, A. M. (2021). Preparation of poly (PVP/acrylamide/glycerol/bentonite clay) nanocomposite films by gamma radiation for removal of Sandolane Rubinole Acid Red 37 dye. International Journal of Environmental Analytical Che-mistry, 1-20. https://doi.org/10.1080/03067319.2021.2011256
  • Gavini, E., Bonferoni, M. C., Rassu, G., Sandri, G., Rossi, S., Salis, A., ... & Giunchedi, P. (2016). En-gineered microparticles based on drug–polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Development and Industrial Phar-macy, 42(4), 554-562. https://doi.org/10.3109/03639045.2015.1100201
  • Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24(13), 2471. https://doi.org/10.3390/molecules24132471
  • Hu, J. W., Yen, M. W., Wang, A. J., & Chu, I. M. (2018). Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids and Surfaces B: Biointerfa-ces, 161, 51-58. https://doi.org/10.1016/j.colsurfb.2017.10.001
  • Huang, M., Hou, Y., Li, Y., Wang, D., & Zhang, L. (2017). High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Designed monomers and polymers, 20(1), 505-513. https://doi.org/10.1080/15685551.2017.1382433
  • Kamoun, E. A., El-Betany, A., Menzel, H., & Chen, X. (2018). Influence of photoinitiator concentra-tion and irradiation time on the crosslinking performance of visible-light activated pullulan-HEMA hydrogels. International journal of biological macromolecules, 120, 1884-1892. https://doi.org/10.1016/j.ijbiomac.2018.10.011
  • Kędzierska, M., Kudłacik-Kramarczyk, S., Jamroży, M., Bańkosz, M., Walter, J., Potemski, P., & Drabczyk, A. (2023). Verification of the Influence of the 2-Hydroxy-2-methylpropiophenone (Photoinitiator) Content in Hydrogel Materials on Their Physicochemical Properties and Surface Morphology. Coatings, 13(1), 40. https://doi.org/10.3390/coatings13010040
  • Kędzierska, M., Bańkosz, M., & Potemski, P. (2022). Studies on the Impact of the Photoinitiator Amo-unt Used during the PVP-Based Hydrogels’ Synthesis on Their Physicochemical Proper-ties. Materials, 15(17), 6089. https://doi.org/10.3390/ma15176089
  • Kekevi, B. Synthesis and Characterization of Bio-Derived Monoliths. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 826-832. https://doi.org/10.35193/bseufbd.963141 Krainer, S., & Hirn, U. (2021). Contact angle measurement on porous substrates: Effect of liquid ab-sorption and drop size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 619, 126503. https://doi.org/10.1016/j.colsurfa.2021.126503
  • Langeveld, W. T., Veldhuizen, E. J., & Burt, S. A. (2014). Synergy between essential oil components and antibiotics: a review. Critical reviews in microbiology, 40(1), 76-94. https://doi.org/10.3109/1040841X.2013.763219
  • Lasoń, E. (2020). Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Sys-tems. Molecules, 25(23), 5758. https://doi.org/10.3390/molecules25235758
  • Li, C., Luo, X., Li, L., Cai, Y., Kang, X., & Li, P. (2022). Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. International Jour-nal of Biological Macromolecules, 209, 344-355. https://doi.org/10.1016/j.ijbiomac.2022.04.025
  • Li, S., Dong, S., Xu, W., Tu, S., Yan, L., Zhao, C., ... & Chen, X. (2018). Antibacterial hydro-gels. Advanced science, 5(5), 1700527. https://doi.org/10.1002/advs.201700527
  • Lopérgolo, L. C., Lugao, A. B., & Catalani, L. H. (2003). Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone)(PVP) to produce hydrogels. Polymer, 44(20), 6217-6222. https://doi.org/10.1016/S0032-3861(03)00686-4
  • Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial Effects and Mode of Ac-tion of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2015. https://doi.org/10.1155/2015/795435
  • Luthfianti, H. R., Waresindo, W. X., Edikresnha, D., Chahyadi, A., Suciati, T., Noor, F. A., & Khairurri-jal, K. (2023). Physicochemical Characteristics and Antibacterial Activities of Freeze-Thawed Poly-vinyl Alcohol/Andrographolide Hydrogels. ACS Omega. https://doi.org/10.1021/acsomega.2c05110
  • Magiatis, P., Skaltsounis, A. L., Chinou, I., & Haroutounian, S. A. (2002). Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Zeitschrift für Naturforschung C, 57(3-4), 287-290. https://doi.org/10.1515/znc-2002-3-415
  • Mahizan, N. A., Yang, S. K., Moo, C. L., Song, A. A. L., Chong, C. M., Chong, C. W., ... & Lai, K. S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) patho-gens. Molecules, 24(14), 2631. https://doi.org/10.3390/molecules24142631
  • Mao, L., Wang, D., Liu, F., & Gao, Y. (2018). Emulsion design for the delivery of β-carotene in comp-lex food systems. Critical Reviews in Food Science and Nutrition, 58(5), 770-784. https://doi.org/10.1080/10408398.2016.1223599
  • Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., ... & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in hu-man health and potential application as natural food preservatives. Food chemistry: X, 100217. https://doi.org/10.1016/j.fochx.2022.100217
  • Moo, C. L., Yang, S. K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., ... & Lai, K. S. (2020). Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current drug discovery technologies, 17(4), 430-447. https://doi.org/10.2174/1570163816666190304122219
  • Okay, O. (2020). Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Che-mistry, The 100 Year of Polymers, 507-525. https://doi.org/10.15671/hjbc.797525
  • Ouattara, B., Simard, R. E., Holley, R. A., Piette, G. J. P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International journal of food microbiology, 37(2-3), 155-162. https://doi.org/10.1016/S0168-1605(97)00070-6
  • Owonubi, S. J., Agwuncha, S. C., Malima, N. M., Sadiku, E. R., & Revaprasadu, N. (2021). Develop-ment of bacterial resistant acrylamide-polyvinylpyrrolidone-metal oxide hydrogel nanocomposi-tes. Materials Today: Proceedings, 38, 982-987. https://doi.org/10.1016/j.matpr.2020.05.502
  • Panahi, Y., Gharekhani, A., Hamishehkar, H., Zakeri-Milani, P., & Gharekhani, H. (2019). Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: Synthesis, characterization and in vitro drug release study. Advanced pharmaceutical bulletin, 9(1), 159. https://doi.org/10.15171/apb.2019.019
  • Perveen, S., & Al-Taweel, A. (2018). Introductory chapter: Terpenes and terpenoids. Terpenes and ter-penoids, 1, 1-12. https://doi.org/10.15171/apb.2019.019
  • Qureshi, M. A., Nishat, N., & Ahmed, S. (2023). Environmentally Benign Green Synthesized Chitosan-pNIPAm Composite Hydrogel. Advanced Chemicobiology Research, 45-53. https://doi.org/10.37256/acbr.2120231775
  • Rahma, A., Munir, M. M., Prasetyo, A., Suendo, V., & Rachmawati, H. (2016). Intermolecular interacti-ons and the release pattern of electrospun curcumin-polyvinyl (pyrrolidone) fiber. Biological and Pharmaceutical Bulletin, 39(2), 163-173. https://doi.org/10.1248/bpb.b15-00391
  • Roy, N., Saha, N., Kitano, T., & Saha, P. (2012). Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydrate polymers, 89(2), 346-353. https://doi.org/10.1016/j.carbpol.2012.03.008 Roy, N., Saha, N., Kitano, T., & Saha, P. (2010). Novel hydrogels of PVP–CMC and their swelling ef-fect on viscoelastic properties. Journal of Applied Polymer Science, 117(3), 1703-1710. https://doi.org/10.1002/app.32056
  • Saroj, A. L., Singh, R. K., & Chandra, S. (2013). Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: Effect of complexation on thermal stability, conductivity and relaxation behaviour. Materials Science and Engineering: B, 178(4), 231-238. https://doi.org/10.1016/j.mseb.2012.11.007
  • Sheik, S., Nagaraja, G. K., & Prashantha, K. (2018). Effect of silk fiber on the structural, thermal, and mechanical properties of PVA/PVP composite films. Polymer Engineering & Science, 58(11), 1923-1930. https://doi.org/10.1002/pen.24801
  • Silva, A. P. (2009). Síntese e avaliação da atividade antitumoral de tiossemicarbazonas derivadas do alfa-(-)-bisabolol (Doctoral dissertation, Master Thesis, Department of Chemistry, State University of Maringá-Maringá).
  • Souza, F. C., Souza, R. F., & Moraes, Â. M. (2016). Incorporation and release kinetics of alpha-bisabolol from PCL and chitosan/guar gum membranes. Brazilian Journal of Chemical Enginee-ring, 33, 453-467. https://doi.org/10.1590/0104-6632.20160333s20150083
  • Tang, H., Lu, A., Li, L., Zhou, W., Xie, Z., & Zhang, L. (2013). Highly antibacterial materials construc-ted from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Jour-nal, 234, 124-131. https://doi.org/10.1016/j.cej.2013.08.096
  • Torres, E., Vallés‐Lluch, A., Fombuena, V., Napiwocki, B., & Lih‐Sheng, T. (2017). Influence of the hydrophobic–hydrophilic nature of biomedical polymers and nanocomposites on in vitro biological development. Macromolecular Materials and Engineering, 302(12), 1700259.
  • Van Loosdrecht, M. C., Norde, W., Lyklema, J., & Zehnder, A. J. (1990). Hydrophobic and electrostatic parameters in bacterial adhesion: Dedicated to Werner Stumm for his 65 th birthday. Aquatic scien-ces, 52, 103-114. https://doi.org/10.1007/BF00878244
  • Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, 74(1-3), 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7
  • Worzakowska, M., & Ścigalski, P. (2013). TG/DSC/FTIR characterization of linear geranyl dies-ters. Journal of thermal analysis and calorimetry, 113, 53-60. https://doi.org/10.1007/s10973-012-2865-6
  • Wu, S., & Shanks, R. A. (2004). Solubility study of polyacrylamide in polar solvents. Journal of app-lied polymer science, 93(3), 1493-1499. https://doi.org/10.1002/app.20608
  • Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., & Wang, J. (2018). Antimicrobial hydrogels: promising materials for medical application. International Journal of Nanomedicine, 13, 2217. https://doi/epdf/10.2147/IJN.S154748
  • Xiao, K., Wen, L., & Jiang, L. (2016). Bioinspired Superwettability Materials. Kirk‐Othmer Encyclope-dia of Chemical Technology, 1-34. https://doi.org/10.1002/0471238961.koe00013
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Fatma Nur Parın 0000-0003-2048-2951

Erken Görünüm Tarihi 19 Eylül 2023
Yayımlanma Tarihi 20 Eylül 2023
Gönderilme Tarihi 22 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 3

Kaynak Göster

APA Parın, F. N. (2023). Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. Journal of Advanced Research in Natural and Applied Sciences, 9(3), 697-709. https://doi.org/10.28979/jarnas.1255113
AMA Parın FN. Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. JARNAS. Eylül 2023;9(3):697-709. doi:10.28979/jarnas.1255113
Chicago Parın, Fatma Nur. “Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity”. Journal of Advanced Research in Natural and Applied Sciences 9, sy. 3 (Eylül 2023): 697-709. https://doi.org/10.28979/jarnas.1255113.
EndNote Parın FN (01 Eylül 2023) Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. Journal of Advanced Research in Natural and Applied Sciences 9 3 697–709.
IEEE F. N. Parın, “Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity”, JARNAS, c. 9, sy. 3, ss. 697–709, 2023, doi: 10.28979/jarnas.1255113.
ISNAD Parın, Fatma Nur. “Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity”. Journal of Advanced Research in Natural and Applied Sciences 9/3 (Eylül 2023), 697-709. https://doi.org/10.28979/jarnas.1255113.
JAMA Parın FN. Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. JARNAS. 2023;9:697–709.
MLA Parın, Fatma Nur. “Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity”. Journal of Advanced Research in Natural and Applied Sciences, c. 9, sy. 3, 2023, ss. 697-09, doi:10.28979/jarnas.1255113.
Vancouver Parın FN. Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. JARNAS. 2023;9(3):697-709.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).