Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 8 Sayı: 1, 63 - 77, 07.06.2024
https://doi.org/10.38088/jise.1195520

Öz

Kaynakça

  • [1] Çelik, Ö. (2001). Küresel Grafitli dökme demirlerin aşınma davranışları, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • [2] Murthy, V.S.R. and Kishore, Seshan, S., (1984). Characteristics of compacted Graphite Cast Iron, Transactions of the American Foundrymen's Society, 92: 373-380.
  • [3] Makine Eğitimi, Küresel grafitli dökme demirler, Erişim Tarihi: Mart 17, 2022 [Online]. Erişim: https://www.makinaegitimi.com/kuresel-grafitli-dokme-demirler/.
  • [4] Coelho, R.T., Souza, A.F., Roger, A.R., Rigatti A.M.Y. and Riberio, A.A (2010). Mechanistic approach to predict real machining time for milling free-form geometries applying high feed rate, International Journal of Advanced Manufacturing Technology, 46: 1103–1111.
  • [5] Hsu, C.H., Chen, M.L. and Hu, C.J. (2007) Microstructure and mechanical properties of 4% cobalt and nickel alloyed ductile irons, Materials Science and Engineering A, 444: 339–346.
  • [6] Şeker, U., Çiftçi İ. and Hasirci, H. (2003) The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron, Materials and Design, 24: 47–51.
  • [7] Ucun, I. and Aslantas, K. (2009). The performance of ceramic and cermet cutting tools for the machining of austempered ductile iron, International Journal of Advanced Manufacturing Technology, 41: 642–650.
  • [8] Ghani, A.K. and Choudhury, Husni I.A. (2002). Study of tool life, surface roughness and vibration in machining nodular cast iron with seramic tool, Journal of Materials Processing Technology, 127: 17–22.
  • [9] Klocke, F. Klöpper, C. Lung, D. and Essig, C. (2007). Fundamental wear mechanisms when machining austempered ductile iron (ADI), Annals of the CIRP., 56(1): 73-76.
  • [10] Cakir, M.C., Bayram A., Isik, Y. and Salar, B. (2005). The effects of austempering temperature and time onto the machinability of austempered ductile iron, Materials Science and Engineering A, 407: 147–153.
  • [11] Çetin, M. ve Gül, F. (2006). Östemperlenmiş küresel grafitli dökme demirin abrasiv aşınma davranışına östemperleme işleminde soğutmanın etkisi, Gazi Üniv. Müh. Mim. Fak. Der., 21(2): 359-366.
  • [12] Moncada, O.J., Spicacci, R.H. and Sikora, J.A. (1998). Machinability of austempered ductile iron, AFS Trans, 106: 39–45.
  • [13] Çakır, M.C. (2018). Modern Talaşlı İmalatın Esasları, Dora yayınları, 155-239. ISBN: 978-6052470053.
  • [14] Marwanga, R.O., Voigt, R.C. and Cohen, P.H. (2000). Influence of graphite morphology and matrix structure on chip formation during machining of continuously cast ductile irons, AFS Transactions, 108: 651, 2000.
  • [15] Yardımeden, A., Aksoy, M. ve İnan, A. (2004). Lamel grafitli dökme demirlerin işlenmesinde kale mile parça arasında meydana gelen gerilime, işleme şartları ve malzeme yapısının etkisi, 11. Uluslararası Makina Tasarım ve İmalat Kongresi, Antalya, Türkiye.
  • [16] Kaçal, A. Çelik, B. ve Sertsöz, Ş. (2019). GGG70 sfero dökme demirin frezelenmesinde yüzey pürüzlülüğü ve takım aşınmasının incelenmesi, IMCOFE 2019, Antalya, Türkiye, 308-315.
  • [17] Kahraman, Y., Uzun, G. ve Korkut, İ. (2015). Vermiküler grafitli dökme demirlerin frezelenmesinde östemperleme sıcaklığı ve süresinin yüzey pürüzlülüğüne etkisi, 6. Ulusal Talaşlı İmalat Sempozyumu (UTİS 2015), İstanbul, Türkiye, 178-188.
  • [18] Çakıroğlu, R. ve Uzun, G. (2021). Yüksek ilerleme ile frezeleme işlemi esnasında oluşan kesme kuvvetinin ve iş parçası yüzey pürüzlülüğünün Yapay Sinir Ağları ile modellenmesi, Gazi Mühendislik Bilimleri Dergisi, 7(1): 58-66.
  • [19] Aşkun, Y., Hasırcı, H. ve Şeker, U. (2003). Ni ve Cu ile alaşımlandırılmış küresel grafitli dökme demirlerin işlenebilirliliğinin kesme kuvvetleri ve yüzey kaliteleri açısından değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Fakültesi, Mühendislik Bilimleri Dergisi, 9(2): 191-199.
  • [20] Avishan,,B. Yazdani, S. and Jalali, Vahid D. (2009). The influence of depth of cut on the machinability of an alloyed austempered ductile iron, Materials Science and Engineering A, 523: 93-98.
  • [21] Saraswati, P.K. Sahoo, S. Parida S.P. and Jena P.C. (2019). Fabrication, characterization and drilling operation of natural fiber reinforced hybrid composite with filler (Fly-Ash/Graphene), International Journal of Innovative Technology and Exploring Engineering, 8 (10): 1653-1659.
  • [22] Pradhan, S., Das, S.R., Jena, P.C. and Dhupal, D. (2021). Machining performance evaluation under recently developed sustainable HAJM process of zirconia ceramic using hot SiC abrasives: An experimental and simulation approach, Proceedings of Institute Mechanical Engineering Part C: J Mechanical Engineering Science, 1–27.
  • [23] Mahapatra, S., Das, A., Jena, P. C. and Das S.R. (2023). Turning of hardened AISI H13 steel with recently developed S3P-AlTiSiN coated carbide tool using MWCNT mixed nanofluid under minimum quantity lubrication, Proceedings of Institute Mechanical Engineering Part C: J Mechanical Engineering Science, 237(4): 843-864.
  • [24] Pradhan, S., Das, S.R., Jena P.C. and Dhupal, D. (2021). Investigations on surface integrity in hard turning of functionally graded specimen under nano fluid assisted minimum quantity lubrication, Advances in Materials and Processing Technologies, 8: 1714-1729.
  • [25] Jena, J., Panda, A., Behera, A. K., Jena, P. C., Das, S.R. and Dhupal, D. (2019). Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, Innovation in Materials Science and Engineering, 151-160.
  • [26] Pradhan, S., Dhupal, D., Das, S.R. and Jena P.C. (2021). Experimental investigation and optimization on machined surface of Si3N4 ceramic using hot SiC abrasive in HAJM, Materials Today: Proceedings, 44: 1877-1887.
  • [27] Canıyılmaz, E. ve Kutay, F. (2003). Taguchi metodunda varyans analizine alternatif bir yaklaşım, Gazi Üniv. Müh. Mim. Fak. Der., 18(3): 51-63.
  • [28] Taylan, F. (2009). Sert malzemelerin frezelenmesinde takım aşınma davranışlarının belirlenmesi, Doktora Tezi, Süleymen Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, Türkiye.
  • [29] WIDIA Cutting tool company (2020). Advances catalog, WIDIA press, Germany.
  • [30] WIDIA Cutting tool company (2017). Master Catalog, WIDIA press, Germany.
  • [31] Kara F.(2018). Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel, Materiali in tehnologije/Materials and technology, 52(2): 195–200.
  • [32] Samtaş, G. ve Korucu, S. (2019). Kriyojenik işlem görmüş EN AW 5754 (AlMg3) alüminyum alaşımının frezelenmesinde yüzey pürüzlülüğü için kesme parametrelerinin optimizasyonu, Politeknik Dergisi, 22(3): 665-673.
  • [33] Doncaster, C. P. (2022). Terminology of analysis of variance, Accessed: March 18, 2022 [Online]. Available: http://www.southampton.ac.uk/~cpd/term.html.
  • [34] Samtaş, G. and Korucu, S. (2021). Multiple optimization of cutting parameters in milling of cryogenically treated Aluminium 6061-T651 alloy with cryogenic and normal cutting inserts, Surface Topography: Metrology and Properties, 9(4): 1-10.
  • [35] Kara, F. and Öztürk, B. (2019). Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel, Sensor Review, 39(1): 24-33.
  • [36] Kıvak T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50: 19-28.
  • [37] Samtaş G. (2015). Optimization of cutting parameters during the face milling of AA5083-H111 with coated and uncoated inserts using Taguchi method, Int. J. Machining and Machinability of Materials, 17(3/4): 211-232.
  • [38] Samtaş, G. ve Korucu, S. (2019). Temperlenmiş alüminyum 5754 alaşımının frezelenmesinde kesme parametrelerinin Taguchi Metodu kullanılarak optimizasyonu, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1): 45-60.

Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron

Yıl 2024, Cilt: 8 Sayı: 1, 63 - 77, 07.06.2024
https://doi.org/10.38088/jise.1195520

Öz

Spheroidal graphite cast irons have increased ductility, tensile strength, and toughness compared to other cast irons. Additionally, it can be mentioned that choosing spheroidal graphite cast iron over steel material has a better machining feature. In this study, Face milling operations were carried out using GGG60 material and different inserts, feed, and depth of cut. The Taguchi method was used for the experimental design, and 27 experiments were carried out. During the experiments, a thermal camera measured the temperature from the cutting zone. Experimental results were evaluated with analysis of variance and graphics, and cutting parameters were optimized. As a result of the optimization, optimum parameters for minimum temperature, TiAlN coated insert, 300 m/min cutting speed, 0.30 mm/tooth feed rate, and 0.5 mm depth of cut were found. According to the results obtained from the study, the most influential parameter affecting the temperature was the cutting speed. In addition, the TiAlN-coated insert has been observed as the most suitable coating type for minimum temperature.

Kaynakça

  • [1] Çelik, Ö. (2001). Küresel Grafitli dökme demirlerin aşınma davranışları, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • [2] Murthy, V.S.R. and Kishore, Seshan, S., (1984). Characteristics of compacted Graphite Cast Iron, Transactions of the American Foundrymen's Society, 92: 373-380.
  • [3] Makine Eğitimi, Küresel grafitli dökme demirler, Erişim Tarihi: Mart 17, 2022 [Online]. Erişim: https://www.makinaegitimi.com/kuresel-grafitli-dokme-demirler/.
  • [4] Coelho, R.T., Souza, A.F., Roger, A.R., Rigatti A.M.Y. and Riberio, A.A (2010). Mechanistic approach to predict real machining time for milling free-form geometries applying high feed rate, International Journal of Advanced Manufacturing Technology, 46: 1103–1111.
  • [5] Hsu, C.H., Chen, M.L. and Hu, C.J. (2007) Microstructure and mechanical properties of 4% cobalt and nickel alloyed ductile irons, Materials Science and Engineering A, 444: 339–346.
  • [6] Şeker, U., Çiftçi İ. and Hasirci, H. (2003) The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron, Materials and Design, 24: 47–51.
  • [7] Ucun, I. and Aslantas, K. (2009). The performance of ceramic and cermet cutting tools for the machining of austempered ductile iron, International Journal of Advanced Manufacturing Technology, 41: 642–650.
  • [8] Ghani, A.K. and Choudhury, Husni I.A. (2002). Study of tool life, surface roughness and vibration in machining nodular cast iron with seramic tool, Journal of Materials Processing Technology, 127: 17–22.
  • [9] Klocke, F. Klöpper, C. Lung, D. and Essig, C. (2007). Fundamental wear mechanisms when machining austempered ductile iron (ADI), Annals of the CIRP., 56(1): 73-76.
  • [10] Cakir, M.C., Bayram A., Isik, Y. and Salar, B. (2005). The effects of austempering temperature and time onto the machinability of austempered ductile iron, Materials Science and Engineering A, 407: 147–153.
  • [11] Çetin, M. ve Gül, F. (2006). Östemperlenmiş küresel grafitli dökme demirin abrasiv aşınma davranışına östemperleme işleminde soğutmanın etkisi, Gazi Üniv. Müh. Mim. Fak. Der., 21(2): 359-366.
  • [12] Moncada, O.J., Spicacci, R.H. and Sikora, J.A. (1998). Machinability of austempered ductile iron, AFS Trans, 106: 39–45.
  • [13] Çakır, M.C. (2018). Modern Talaşlı İmalatın Esasları, Dora yayınları, 155-239. ISBN: 978-6052470053.
  • [14] Marwanga, R.O., Voigt, R.C. and Cohen, P.H. (2000). Influence of graphite morphology and matrix structure on chip formation during machining of continuously cast ductile irons, AFS Transactions, 108: 651, 2000.
  • [15] Yardımeden, A., Aksoy, M. ve İnan, A. (2004). Lamel grafitli dökme demirlerin işlenmesinde kale mile parça arasında meydana gelen gerilime, işleme şartları ve malzeme yapısının etkisi, 11. Uluslararası Makina Tasarım ve İmalat Kongresi, Antalya, Türkiye.
  • [16] Kaçal, A. Çelik, B. ve Sertsöz, Ş. (2019). GGG70 sfero dökme demirin frezelenmesinde yüzey pürüzlülüğü ve takım aşınmasının incelenmesi, IMCOFE 2019, Antalya, Türkiye, 308-315.
  • [17] Kahraman, Y., Uzun, G. ve Korkut, İ. (2015). Vermiküler grafitli dökme demirlerin frezelenmesinde östemperleme sıcaklığı ve süresinin yüzey pürüzlülüğüne etkisi, 6. Ulusal Talaşlı İmalat Sempozyumu (UTİS 2015), İstanbul, Türkiye, 178-188.
  • [18] Çakıroğlu, R. ve Uzun, G. (2021). Yüksek ilerleme ile frezeleme işlemi esnasında oluşan kesme kuvvetinin ve iş parçası yüzey pürüzlülüğünün Yapay Sinir Ağları ile modellenmesi, Gazi Mühendislik Bilimleri Dergisi, 7(1): 58-66.
  • [19] Aşkun, Y., Hasırcı, H. ve Şeker, U. (2003). Ni ve Cu ile alaşımlandırılmış küresel grafitli dökme demirlerin işlenebilirliliğinin kesme kuvvetleri ve yüzey kaliteleri açısından değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Fakültesi, Mühendislik Bilimleri Dergisi, 9(2): 191-199.
  • [20] Avishan,,B. Yazdani, S. and Jalali, Vahid D. (2009). The influence of depth of cut on the machinability of an alloyed austempered ductile iron, Materials Science and Engineering A, 523: 93-98.
  • [21] Saraswati, P.K. Sahoo, S. Parida S.P. and Jena P.C. (2019). Fabrication, characterization and drilling operation of natural fiber reinforced hybrid composite with filler (Fly-Ash/Graphene), International Journal of Innovative Technology and Exploring Engineering, 8 (10): 1653-1659.
  • [22] Pradhan, S., Das, S.R., Jena, P.C. and Dhupal, D. (2021). Machining performance evaluation under recently developed sustainable HAJM process of zirconia ceramic using hot SiC abrasives: An experimental and simulation approach, Proceedings of Institute Mechanical Engineering Part C: J Mechanical Engineering Science, 1–27.
  • [23] Mahapatra, S., Das, A., Jena, P. C. and Das S.R. (2023). Turning of hardened AISI H13 steel with recently developed S3P-AlTiSiN coated carbide tool using MWCNT mixed nanofluid under minimum quantity lubrication, Proceedings of Institute Mechanical Engineering Part C: J Mechanical Engineering Science, 237(4): 843-864.
  • [24] Pradhan, S., Das, S.R., Jena P.C. and Dhupal, D. (2021). Investigations on surface integrity in hard turning of functionally graded specimen under nano fluid assisted minimum quantity lubrication, Advances in Materials and Processing Technologies, 8: 1714-1729.
  • [25] Jena, J., Panda, A., Behera, A. K., Jena, P. C., Das, S.R. and Dhupal, D. (2019). Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, Innovation in Materials Science and Engineering, 151-160.
  • [26] Pradhan, S., Dhupal, D., Das, S.R. and Jena P.C. (2021). Experimental investigation and optimization on machined surface of Si3N4 ceramic using hot SiC abrasive in HAJM, Materials Today: Proceedings, 44: 1877-1887.
  • [27] Canıyılmaz, E. ve Kutay, F. (2003). Taguchi metodunda varyans analizine alternatif bir yaklaşım, Gazi Üniv. Müh. Mim. Fak. Der., 18(3): 51-63.
  • [28] Taylan, F. (2009). Sert malzemelerin frezelenmesinde takım aşınma davranışlarının belirlenmesi, Doktora Tezi, Süleymen Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, Türkiye.
  • [29] WIDIA Cutting tool company (2020). Advances catalog, WIDIA press, Germany.
  • [30] WIDIA Cutting tool company (2017). Master Catalog, WIDIA press, Germany.
  • [31] Kara F.(2018). Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel, Materiali in tehnologije/Materials and technology, 52(2): 195–200.
  • [32] Samtaş, G. ve Korucu, S. (2019). Kriyojenik işlem görmüş EN AW 5754 (AlMg3) alüminyum alaşımının frezelenmesinde yüzey pürüzlülüğü için kesme parametrelerinin optimizasyonu, Politeknik Dergisi, 22(3): 665-673.
  • [33] Doncaster, C. P. (2022). Terminology of analysis of variance, Accessed: March 18, 2022 [Online]. Available: http://www.southampton.ac.uk/~cpd/term.html.
  • [34] Samtaş, G. and Korucu, S. (2021). Multiple optimization of cutting parameters in milling of cryogenically treated Aluminium 6061-T651 alloy with cryogenic and normal cutting inserts, Surface Topography: Metrology and Properties, 9(4): 1-10.
  • [35] Kara, F. and Öztürk, B. (2019). Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel, Sensor Review, 39(1): 24-33.
  • [36] Kıvak T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50: 19-28.
  • [37] Samtaş G. (2015). Optimization of cutting parameters during the face milling of AA5083-H111 with coated and uncoated inserts using Taguchi method, Int. J. Machining and Machinability of Materials, 17(3/4): 211-232.
  • [38] Samtaş, G. ve Korucu, S. (2019). Temperlenmiş alüminyum 5754 alaşımının frezelenmesinde kesme parametrelerinin Taguchi Metodu kullanılarak optimizasyonu, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1): 45-60.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Research Articles
Yazarlar

Raşit Düzce 0000-0002-0947-7695

Gürcan Samtaş 0000-0002-4111-7059

Erken Görünüm Tarihi 5 Haziran 2024
Yayımlanma Tarihi 7 Haziran 2024
Yayımlandığı Sayı Yıl 2024Cilt: 8 Sayı: 1

Kaynak Göster

APA Düzce, R., & Samtaş, G. (2024). Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron. Journal of Innovative Science and Engineering, 8(1), 63-77. https://doi.org/10.38088/jise.1195520
AMA Düzce R, Samtaş G. Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron. JISE. Haziran 2024;8(1):63-77. doi:10.38088/jise.1195520
Chicago Düzce, Raşit, ve Gürcan Samtaş. “Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron”. Journal of Innovative Science and Engineering 8, sy. 1 (Haziran 2024): 63-77. https://doi.org/10.38088/jise.1195520.
EndNote Düzce R, Samtaş G (01 Haziran 2024) Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron. Journal of Innovative Science and Engineering 8 1 63–77.
IEEE R. Düzce ve G. Samtaş, “Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron”, JISE, c. 8, sy. 1, ss. 63–77, 2024, doi: 10.38088/jise.1195520.
ISNAD Düzce, Raşit - Samtaş, Gürcan. “Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron”. Journal of Innovative Science and Engineering 8/1 (Haziran 2024), 63-77. https://doi.org/10.38088/jise.1195520.
JAMA Düzce R, Samtaş G. Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron. JISE. 2024;8:63–77.
MLA Düzce, Raşit ve Gürcan Samtaş. “Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron”. Journal of Innovative Science and Engineering, c. 8, sy. 1, 2024, ss. 63-77, doi:10.38088/jise.1195520.
Vancouver Düzce R, Samtaş G. Evaluation of Cutting Temperature and Optimization in Milling of GGG60 Cast Iron. JISE. 2024;8(1):63-77.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.