Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine

Yıl 2022, Cilt: 6 Sayı: 2, 175 - 189, 31.12.2022
https://doi.org/10.38088/jise.1102935

Öz

In this study, in which the optical and luminescence properties of aventurine, a silicate-based mineral, were examined, the crystal structure of the mineral was examined by XRD analysis, its rheological properties and the elements it contained were determined by SEM-EDX analysis, and its structural properties were examined by FT-IR analysis. In order to determine the luminescence properties, radioluminescence (RL) and thermoluminescence (TL) methods were used and kinetic parameters were calculated. In the measurements taken in bulk and powder form of Aventurine, it was observed that the powder sample had a much better spectrum intensity, it was observed that the emission around 570 nm became much more pronounced in the powder sample. On the other hand, similar emissions were detected in both samples, though at different intensities. In TL analysis, it was observed that Aventurine was responsive to both X-ray and ultraviolet radiation at three different doses. While after X-ray irradiation, Aventurine exhibited TL glow curves with peaks at maximum temperatures of 90 oC and 250 oC, under UV irradiation the TL glow curves concentrated in the high-temperature region which is around 300 oC observed. Also; the TL kinetic parameters were reported; activation energy (E), the order of kinetics (b), and frequency factor (s) of the first peak have been determined in detail by using Computerized Glow Curve Deconvolution (CGCD) method.

Kaynakça

  • [1] B. Karasu, B. Sarıcaoğlu, Aventurin Sırlarına Genel Bir Bakış, El-Cezeri Fen ve Mühendislik Derg. 2019 (2019) 140–155. doi:10.31202/ecjse.460093.
  • [2] M.J.O. Donoghue, eJournal of Gemmology Gemmologıcal Assocıatıon Of Great Brıtaın, 20 (1986).
  • [3] A. Gozalbo, M.J. Orts, S. Mestre, P. Agut, F. Lucas, A. Belda, C. Blanco, Ceramic Glazes With Aventurine Effect, Cycle. (2006) 189–202.
  • [4] M.D. Shcheglova, M e c h a n i s m of a v e n t u r i n e f o r m a t i o n 1~ c o p p e r - c o n t a i n i n g a l k a l i - l e a d silicate glass, Glas. Ceram. 53 (1996) 14–17.
  • [5] M.I. Kati, M. Türemis, I.C. Keskin, B. Tastekin, R. Kibar, A. Çetin, N. Can, Luminescence behaviour of beryl (aquamarine variety) from Turkey, J. Lumin. 132 (2012). doi:10.1016/j.jlumin.2012.03.058.
  • [6] İ.Ç. Keskin, M.İ. Katı, M. Türemiş, A. Çetin, Y. Tuncer Arslanlar, R. Kibar, Determination of Thermoluminescence Kinetic Parameters of White and Blue Chalcedony Exposed to X-ray Irradiation, Radiat. Phys. Chem. (2018). doi:10.1016/j.radphyschem.2018.05.031.
  • [7] M.I. Teixeira, D.N. Souza, L.V.E. Caldas, Onyx as radiation detector for high doses, Radiat. Meas. 46 (2011) 1894–1896. doi:10.1016/j.radmeas.2011.07.021.
  • [8] S. Gültekin, S. Yıldırım, O. Yılmaz, İ.Ç. Keskin, M.İ. Katı, E. Çelik, Structural and optical properties of SrAl2O4: Eu2+/Dy3+ phosphors synthesized by flame spray pyrolysis technique, J. Lumin. 206 (2019) 59–69. doi:10.1016/j.jlumin.2018.10.011.
  • [9] R. Ullah, B.K. Deb, M. Yousuf, A. Mollah, Synthesis and Characterization of Silica Coated Iron-Oxide Composites of Different Ratios, Int. J. Compos. Mater. 4 (2014) 135–145. doi:10.5923/j.cmaterials.20140402.13.
  • [10] V. Ramasamy, P. Rajkumar, V. Ponnusamy, Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies, Indian J. Phys. 83 (2009) 1295–1308. doi:10.1007/s12648-009-0110-3.
  • [11] C. Pagonis, Vasilis, Kitis, George, Furetta, Numerical and Practical Exercises in Thermoluminescence, Springer New York, New York, NY, 2006. doi:10.1007/0-387-30090-2.
  • [12] T. Sakurai, R.K. Gartia, Method of computerized glow curve deconvolution for analysing thermoluminescence, J. Phys. D. Appl. Phys. 36 (2003) 2719–2724. doi:10.1088/0022-3727/36/21/020.
  • [13] N.D. Sang, N. Van Hung, T. Van Hung, N.Q. Hien, Using the computerized glow curve deconvolution method and the R package tgcd to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 394 (2017) 113–120. doi:10.1016/j.nimb.2017.01.012.
  • [14] M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation, J. Therm. Anal. 17 (1979) 319–332. doi:10.1007/BF01914023.
  • [15] H.G. Balian, N.W. Eddy, Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks, Nucl. Instruments Methods. 145 (1977) 389–395. doi:10.1016/0029-554X(77)90437-2.
  • [16] S.K. Misra, N.W. Eddy, IFOM, a formula for universal assessment of goodness-of-fit of gamma ray spectra, Nucl. Instruments Methods. 166 (1979) 537–540. doi:10.1016/0029-554X(79)90546-9.
  • [17] A.T.Y. Arslanlar Tuncer Y., Kibar R., Çetin A., Canımoğlu A., Radioluminescence Properties of Copper- and Terbium-Implanted Strontium Titanate Radioluminescence Properties of Copper- and Terbium-Implanted Strontium Titanate, Lett. Spectrosc. (2013) 364–366. doi:10.1080/00387010.2012.738278.
  • [18] Y. Rodríguez-Lazcano, V. Correcher, J. Garcia-Guinea, Thermo- and cathodoluminescence properties of lepidolite, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 113 (2013) 281–285. doi:10.1016/j.saa.2013.04.107.
  • [19] Y. Tuncer Arslanlar, J. Garcia-Guinea, R. Kibar, A. Çetin, M. Ayvacikli, N. Can, Luminescence behavior and Raman characterization of jade from Turkey, Appl. Radiat. Isot. 69 (2011) 1299–1306. doi:10.1016/j.apradiso.2011.05.011.
  • [20] A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, Springer US, Boston, MA, 1968. doi:10.1007/978-1-4757-6610-3.
  • [21] Y.T. Arslanlar, Doğal Taşların Ve Sentetiklerinin Karakteristik Ve Optik Özelliklerinin İncelenmesi Doktora Tezi Yasemin Tuncer Arslanlar, Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, 2011.
  • [22] T.C. Vanoy, A.M. Levert, G.L. McPherson, Luminescence spectra of crystals of RbMnCl 3 , Rb 2 MnCl 4 and CsMnBr 3 doped with Cr 2+ : exciton trapping at luminescent Cr 2+ centres, J. Phys. C Solid State Phys. 21 (1988) 2969–2979. doi:10.1088/0022-3719/21/15/027.
  • [23] L. Zhang, S. Zhang, Z. Hao, X. Zhang, G. Pan, Y. Luo, H. Wu, J. Zhang, A high efficiency broad-band near-infrared Ca 2 LuZr 2 Al 3 O 12 :Cr 3+ garnet phosphor for blue LED chips, J. Mater. Chem. C. 6 (2018) 4967–4976. doi:10.1039/C8TC01216D.
  • [24] D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, M.C. Paul, Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers, Phys. Status Solidi. 212 (2015) 1836–1844. doi:10.1002/pssa.201532017.

Yıl 2022, Cilt: 6 Sayı: 2, 175 - 189, 31.12.2022
https://doi.org/10.38088/jise.1102935

Öz

Kaynakça

  • [1] B. Karasu, B. Sarıcaoğlu, Aventurin Sırlarına Genel Bir Bakış, El-Cezeri Fen ve Mühendislik Derg. 2019 (2019) 140–155. doi:10.31202/ecjse.460093.
  • [2] M.J.O. Donoghue, eJournal of Gemmology Gemmologıcal Assocıatıon Of Great Brıtaın, 20 (1986).
  • [3] A. Gozalbo, M.J. Orts, S. Mestre, P. Agut, F. Lucas, A. Belda, C. Blanco, Ceramic Glazes With Aventurine Effect, Cycle. (2006) 189–202.
  • [4] M.D. Shcheglova, M e c h a n i s m of a v e n t u r i n e f o r m a t i o n 1~ c o p p e r - c o n t a i n i n g a l k a l i - l e a d silicate glass, Glas. Ceram. 53 (1996) 14–17.
  • [5] M.I. Kati, M. Türemis, I.C. Keskin, B. Tastekin, R. Kibar, A. Çetin, N. Can, Luminescence behaviour of beryl (aquamarine variety) from Turkey, J. Lumin. 132 (2012). doi:10.1016/j.jlumin.2012.03.058.
  • [6] İ.Ç. Keskin, M.İ. Katı, M. Türemiş, A. Çetin, Y. Tuncer Arslanlar, R. Kibar, Determination of Thermoluminescence Kinetic Parameters of White and Blue Chalcedony Exposed to X-ray Irradiation, Radiat. Phys. Chem. (2018). doi:10.1016/j.radphyschem.2018.05.031.
  • [7] M.I. Teixeira, D.N. Souza, L.V.E. Caldas, Onyx as radiation detector for high doses, Radiat. Meas. 46 (2011) 1894–1896. doi:10.1016/j.radmeas.2011.07.021.
  • [8] S. Gültekin, S. Yıldırım, O. Yılmaz, İ.Ç. Keskin, M.İ. Katı, E. Çelik, Structural and optical properties of SrAl2O4: Eu2+/Dy3+ phosphors synthesized by flame spray pyrolysis technique, J. Lumin. 206 (2019) 59–69. doi:10.1016/j.jlumin.2018.10.011.
  • [9] R. Ullah, B.K. Deb, M. Yousuf, A. Mollah, Synthesis and Characterization of Silica Coated Iron-Oxide Composites of Different Ratios, Int. J. Compos. Mater. 4 (2014) 135–145. doi:10.5923/j.cmaterials.20140402.13.
  • [10] V. Ramasamy, P. Rajkumar, V. Ponnusamy, Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies, Indian J. Phys. 83 (2009) 1295–1308. doi:10.1007/s12648-009-0110-3.
  • [11] C. Pagonis, Vasilis, Kitis, George, Furetta, Numerical and Practical Exercises in Thermoluminescence, Springer New York, New York, NY, 2006. doi:10.1007/0-387-30090-2.
  • [12] T. Sakurai, R.K. Gartia, Method of computerized glow curve deconvolution for analysing thermoluminescence, J. Phys. D. Appl. Phys. 36 (2003) 2719–2724. doi:10.1088/0022-3727/36/21/020.
  • [13] N.D. Sang, N. Van Hung, T. Van Hung, N.Q. Hien, Using the computerized glow curve deconvolution method and the R package tgcd to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 394 (2017) 113–120. doi:10.1016/j.nimb.2017.01.012.
  • [14] M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation, J. Therm. Anal. 17 (1979) 319–332. doi:10.1007/BF01914023.
  • [15] H.G. Balian, N.W. Eddy, Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks, Nucl. Instruments Methods. 145 (1977) 389–395. doi:10.1016/0029-554X(77)90437-2.
  • [16] S.K. Misra, N.W. Eddy, IFOM, a formula for universal assessment of goodness-of-fit of gamma ray spectra, Nucl. Instruments Methods. 166 (1979) 537–540. doi:10.1016/0029-554X(79)90546-9.
  • [17] A.T.Y. Arslanlar Tuncer Y., Kibar R., Çetin A., Canımoğlu A., Radioluminescence Properties of Copper- and Terbium-Implanted Strontium Titanate Radioluminescence Properties of Copper- and Terbium-Implanted Strontium Titanate, Lett. Spectrosc. (2013) 364–366. doi:10.1080/00387010.2012.738278.
  • [18] Y. Rodríguez-Lazcano, V. Correcher, J. Garcia-Guinea, Thermo- and cathodoluminescence properties of lepidolite, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 113 (2013) 281–285. doi:10.1016/j.saa.2013.04.107.
  • [19] Y. Tuncer Arslanlar, J. Garcia-Guinea, R. Kibar, A. Çetin, M. Ayvacikli, N. Can, Luminescence behavior and Raman characterization of jade from Turkey, Appl. Radiat. Isot. 69 (2011) 1299–1306. doi:10.1016/j.apradiso.2011.05.011.
  • [20] A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, Springer US, Boston, MA, 1968. doi:10.1007/978-1-4757-6610-3.
  • [21] Y.T. Arslanlar, Doğal Taşların Ve Sentetiklerinin Karakteristik Ve Optik Özelliklerinin İncelenmesi Doktora Tezi Yasemin Tuncer Arslanlar, Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, 2011.
  • [22] T.C. Vanoy, A.M. Levert, G.L. McPherson, Luminescence spectra of crystals of RbMnCl 3 , Rb 2 MnCl 4 and CsMnBr 3 doped with Cr 2+ : exciton trapping at luminescent Cr 2+ centres, J. Phys. C Solid State Phys. 21 (1988) 2969–2979. doi:10.1088/0022-3719/21/15/027.
  • [23] L. Zhang, S. Zhang, Z. Hao, X. Zhang, G. Pan, Y. Luo, H. Wu, J. Zhang, A high efficiency broad-band near-infrared Ca 2 LuZr 2 Al 3 O 12 :Cr 3+ garnet phosphor for blue LED chips, J. Mater. Chem. C. 6 (2018) 4967–4976. doi:10.1039/C8TC01216D.
  • [24] D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, M.C. Paul, Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers, Phys. Status Solidi. 212 (2015) 1836–1844. doi:10.1002/pssa.201532017.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

İlker Çetin KESKİN
MANİSA CELÂL BAYAR ÜNİVERSİTESİ
0000-0003-2743-766X
Türkiye

Erken Görünüm Tarihi 11 Ekim 2022
Yayımlanma Tarihi 31 Aralık 2022
Yayınlandığı Sayı Yıl 2022Cilt: 6 Sayı: 2

Kaynak Göster

Bibtex @araştırma makalesi { jise1102935, journal = {Journal of Innovative Science and Engineering}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Teknik Üniversitesi}, year = {2022}, volume = {6}, number = {2}, pages = {175 - 189}, doi = {10.38088/jise.1102935}, title = {The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine}, key = {cite}, author = {Keskin, İlker Çetin} }
APA Keskin, İ. Ç. (2022). The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine . Journal of Innovative Science and Engineering , 6 (2) , 175-189 . DOI: 10.38088/jise.1102935
MLA Keskin, İ. Ç. "The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine" . Journal of Innovative Science and Engineering 6 (2022 ): 175-189 <http://jise.btu.edu.tr/tr/pub/issue/72956/1102935>
Chicago Keskin, İ. Ç. "The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine". Journal of Innovative Science and Engineering 6 (2022 ): 175-189
RIS TY - JOUR T1 - The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine AU - İlker ÇetinKeskin Y1 - 2022 PY - 2022 N1 - doi: 10.38088/jise.1102935 DO - 10.38088/jise.1102935 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 175 EP - 189 VL - 6 IS - 2 SN - -2602-4217 M3 - doi: 10.38088/jise.1102935 UR - https://doi.org/10.38088/jise.1102935 Y2 - 2022 ER -
EndNote %0 Journal of Innovative Science and Engineering The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine %A İlker Çetin Keskin %T The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine %D 2022 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 6 %N 2 %R doi: 10.38088/jise.1102935 %U 10.38088/jise.1102935
ISNAD Keskin, İlker Çetin . "The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine". Journal of Innovative Science and Engineering 6 / 2 (Aralık 2022): 175-189 . https://doi.org/10.38088/jise.1102935
AMA Keskin İ. Ç. The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine. JISE. 2022; 6(2): 175-189.
Vancouver Keskin İ. Ç. The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine. Journal of Innovative Science and Engineering. 2022; 6(2): 175-189.
IEEE İ. Ç. Keskin , "The Structural Characterization, Radioluminescence Results, and Thermoluminescence Kinetic Parameters of Aventurine", Journal of Innovative Science and Engineering, c. 6, sayı. 2, ss. 175-189, Ara. 2022, doi:10.38088/jise.1102935


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.