Loading [a11y]/accessibility-menu.js
Review
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 1, 138 - 159, 08.06.2022
https://doi.org/10.38088/jise.953600

Abstract

References

  • 1. Lee SJ, Yoo JJ, Atala A. Biomaterials and tissue engineering. Clinical regenerative medicine in urology: Springer; 2018. p. 17-51.
  • 2. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science. 2010;35(1-2):278-301.
  • 3. KAYA M. Toz metalurjisi ile üretilen NiTi şekil hatırlamalı alaşımların metalurjik ve mekanik karakteristiklerinin incelenmesi/The investigation of the metallurgical and mechanical characteristics of NiTi shape memory alloys produced with powder metallurgy. 2008.
  • 4. Kaya M, Çakmak Ö, Saygılı TY, Atlı KC. Şekil hafızalı alaşımlarda martensitik faz dönüşümü ve şekil hafıza mekanizması. 2016.
  • 5. ALEXANDER H, BRUNSKI JB, COOPER SL, HENCH LL, HERGENROTHER RW, HOFFMAN AS, et al. Classes of materials used in medicine. Biomaterials Science: Elsevier; 1996. p. 37-130.
  • 6. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Materials science and engineering: A. 2005;393(1-2):1-11.
  • 7. Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Advanced materials. 2014;26(12):1846-85.
  • 8. Custódio CA, del Campo A, Reis RL, Mano JF. Smart instructive polymer substrates for tissue engineering. Smart Polymers and their Applications: Elsevier; 2019. p. 411-38.
  • 9. Harrison J, Ounaies Z. Piezoelectric polymers. Encyclopedia of polymer science and technology. 2002;3.
  • 10. Vinogradov A, Su J, Jenkins C, Bar-Cohen Y. State-of-the-art developments in the field of electroactive polymers. 2005.
  • 11. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and regeneration. 2018;38(1):2.
  • 12. Wang TT, Herbert JM, Glass AM. The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK, 1988. 1988.
  • 13. Tressler JF, Alkoy S, Newnham RE. Piezoelectric sensors and sensor materials. Journal of electroceramics. 1998;2(4):257-72.
  • 14. Kapat K, Shubhra QT, Zhou M, Leeuwenburgh S. Piezoelectric Nano‐Biomaterials for Biomedicine and Tissue Regeneration. Advanced Functional Materials. 2020:1909045.
  • 15. Fousek J, Cross L, Litvin D. Possible piezoelectric composites based on the flexoelectric effect. Materials Letters. 1999;39(5):287-91.
  • 16. Halperin C, Mutchnik S, Agronin A, Molotskii M, Urenski P, Salai M, et al. Piezoelectric effect in human bones studied in nanometer scale. Nano Letters. 2004;4(7):1253-6.
  • 17. Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in polymer science. 2018;81:144-62.
  • 18. Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, et al. Mechano‐Informed Biomimetic Polymer Scaffolds by Incorporating Self‐Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function. Small. 2020;16(32):2000796.
  • 19. Martins P, Lopes A, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science. 2014;39(4):683-706.
  • 20. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, et al. Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nature protocols. 2018;13(4):681.
  • 21. Ando Y, Fukada E. Piezoelectric properties and molecular motion of poly (β‐hydroxybutyrate) films. Journal of Polymer Science: Polymer Physics Edition. 1984;22(10):1821-34.
  • 22. Ochiai T, Fukada E. Electromechanical properties of poly-L-lactic acid. Japanese journal of applied physics. 1998;37(6R):3374.
  • 23. Bernard F, Gimeno L, Viala B, Gusarov B, Cugat O, editors. Direct piezoelectric coefficient measurements of PVDF and PLLA under controlled strain and stress. Multidisciplinary Digital Publishing Institute Proceedings; 2017.
  • 24. Newman B, Chen P, Pae K, Scheinbeim J. Piezoelectricity in nylon 11. Journal of Applied Physics. 1980;51(10):5161-4.
  • 25. Fukada E. New piezoelectric polymers. Japanese journal of applied physics. 1998;37(5S):2775.
  • 26. Kepler R, Anderson R. Piezoelectricity and pyroelectricity in polyvinylidene fluoride. Journal of Applied Physics. 1978;49(8):4490-4.
  • 27. Ross G, Watts J, Hill M, Morrissey P. Surface modification of poly (vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer. 2000;41(5):1685-96.
  • 28. Dunn P, Carr S. A Historical Perspective on the Occurrence of Piezoelectricity in Materials. MRS Bulletin. 1989;14(2):22-31.
  • 29. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, et al. Ferroelectric thin films: Review of materials, properties, and applications. Journal of applied physics. 2006;100(5):051606.
  • 30. Damaraju SM, Wu S, Jaffe M, Arinzeh TL. Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials. 2013;8(4):045007.
  • 31. Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama F, Gomes A, et al. Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing. 2015;44:234-41.
  • 32. Vinogradov A, Holloway F. Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics. 1999;226(1):169-81.
  • 33. Ma W, Yuan H, Wang X. The effect of chain structures on the crystallization behavior and membrane formation of poly (vinylidene fluoride) copolymers. Membranes. 2014;4(2):243-56.
  • 34. Ohigashi H, Koga K, Suzuki M, Nakanishi T, Kimura K, Hashimoto N. Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application to ultrasonic transducers. Ferroelectrics. 1984;60(1):263-76.
  • 35. Augustine R, Dan P, Sosnik A, Kalarikkal N, Tran N, Vincent B, et al. Electrospun poly (vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Research. 2017;10(10):3358-76.
  • 36. Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, et al. Enhanced cellular osteogenic differentiation on CoFe2O4/P (VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids and Surfaces B: Biointerfaces. 2020:111473.
  • 37. Genchi GG, Ceseracciu L, Marino A, Labardi M, Marras S, Pignatelli F, et al. P (VDF‐TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH‐SY5Y Neuroblastoma Cells. Advanced healthcare materials. 2016;5(14):1808-20.
  • 38. Chen G, Zhang F, Zhou Z, Li J, Tang Y. A flexible dual‐ion battery based on PVDF‐HFP‐modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials. 2018;8(25):1801219.
  • 39. Thankamony RL, Chu H, Lim S, Yim T, Kim Y-J, Kim T-H. Preparation and characterization of imidazolium-PEO-based Ionene/PVDF (HFP)/LiTFSI as a novel Gel polymer electrolyte. Macromolecular Research. 2015;23(1):38-44.
  • 40. Sousa R, Nunes-Pereira J, Costa C, Silva MM, Lanceros-Méndez S, Hassoun J, et al. Influence of the porosity degree of poly (vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources. 2014;263:29-36.
  • 41. Chaurasia S, Singh R, Chandra S. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. The Journal of Physical Chemistry B. 2013;117(3):897-906.
  • 42. Park JW, Jang J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P (VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon. 2015;87:275-81.
  • 43. Han DJ, Heo HJ, Park IJ, Kang HS, Lee SG, Lee S-B, et al. Fluorinated Methacrylate-Grafted P (VDF-CTFE) and Albumin Layers for Reducing Fibrinogen Adsorption. ACS Applied Polymer Materials. 2019;2(2):178-88.
  • 44. Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S. Fluorinated polymers as smart materials for advanced biomedical applications. Polymers. 2018;10(2):161.
  • 45. Zhang M, Russell TP. Graft copolymers from poly (vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules. 2006;39(10):3531-9.
  • 46. Madison LL, Huisman GW. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiology and molecular biology reviews. 1999;63(1):21-53.
  • 47. Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiology and Molecular Biology Reviews. 1990;54(4):450-72.
  • 48. Singh AK, Sharma L, Srivastava JK, Mallick N, Ansari MI. Microbially originated polyhydroxyalkanoate (PHA) biopolymers: an insight into the molecular mechanism and biogenesis of PHA granules. Sustainable Biotechnology-Enzymatic Resources of Renewable Energy: Springer; 2018. p. 355-98.
  • 49. Mergaert J, Anderson C, Wouters A, Swings J, Kersters K. Biodegradation of polyhydroxyalkanoates. FEMS microbiology reviews. 1992;9(2-4):317-21.
  • 50. Byrom D. Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiology Reviews. 1992;9(2-4):247-50.
  • 51. Daitx TS, Carli LN, Crespo JS, Mauler RS. Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Applied Clay Science. 2015;115:157-64.
  • 52. Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochemical engineering journal. 2003;16(2):97-105.
  • 53. Saito Y, Nakamura S, Hiramitsu M, Doi Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) Polym Int. 1996; 39: 169–174. doi: 10.1002/(SICI) 1097-0126 (199603) 39: 3< 169:: AID-PI453> 3.0. CO.
  • 54. Faisalina A, Sonvico F, Colombo P, Amirul A, Wahab H, Majid MIA. Docetaxel-Loaded Poly (3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials. 2020;10(11):2123.
  • 55. Singhi B, Ford EN, King MW. The effect of wet spinning conditions on the structure and properties of poly‐4‐hydroxybutyrate fibers. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020:e34763.
  • 56. Saito Y, Doi Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. International journal of biological macromolecules. 1994;16(2):99-104.
  • 57. Martin DP, Rizk S, Ahuja A, Williams SF. Polyhydroxyalkanoate medical textiles and fibers. Google Patents; 2011.
  • 58. Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedical Engineering/Biomedizinische Technik. 2013;58(5):439-52.
  • 59. Cuong NT, Barrau S, Dufay M, Tabary N, Da Costa A, Ferri A, et al. On the Nanoscale Mapping of the Mechanical and Piezoelectric Properties of Poly (L-Lactic Acid) Electrospun Nanofibers. Applied Sciences. 2020;10(2):652.
  • 60. Märtson M, Viljanto J, Hurme T, Saukko P. Biocompatibility of cellulose sponge with bone. European surgical research. 1998;30(6):426-32.
  • 61. Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta biomaterialia. 2016;37:131-42.
  • 62. Lu Z, Wang W, Zhang J, Bártolo P, Gong H, Li J. Electrospun highly porous poly (L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Materials Science and Engineering: C. 2020;117:111359.
  • 63. Zuidema JM, Provenza C, Caliendo T, Dutz S, Gilbert RJ. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS chemical neuroscience. 2015;6(11):1781-8.
  • 64. Takahashi Y, Iijima M, Fukada E. Pyroelectricity in poled thin films of aromatic polyurea prepared by vapor deposition polymerization. Japanese journal of applied physics. 1989;28(12A):L2245.
  • 65. Lee J, Takase Y, Newman B, Scheinbeim J. Ferroelectric polarization switching in nylon‐11. Journal of Polymer Science Part B: Polymer Physics. 1991;29(3):273-7.
  • 66. Nalwa HS. Ferroelectric polymers: chemistry: physics, and applications: CRC Press; 1995.
  • 67. Hattori T, Takahashi Y, Iijima M, Fukada E. Piezoelectric and ferroelectric properties of polyurea‐5 thin films prepared by vapor deposition polymerization. Journal of applied physics. 1996;79(3):1713-21.
  • 68. Rocas P, Cusco C, Rocas J, Albericio F. On the importance of polyurethane and polyurea nanosystems for future drug delivery. Current drug delivery. 2018;15(1):37-43.
  • 69. Schlegel I, Renz P, Simon J, Lieberwirth I, Pektor S, Bausbacher N, et al. Highly loaded semipermeable nanocapsules for magnetic resonance imaging. Macromolecular bioscience. 2018;18(4):1700387.
  • 70. Lee DJ, Cavasin MA, Rocker AJ, Soranno DE, Meng X, Shandas R, et al. An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. Journal of biological engineering. 2019;13(1):6.
  • 71. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces. 2015;136:46-55.
  • 72. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, et al. Smart Textile‐Integrated Microelectronic Systems for Wearable Applications. Advanced Materials. 2020;32(5):1901958.
  • 73. Lai YC, Hsiao YC, Wu HM, Wang ZL. Waterproof fabric‐based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‐powered sensors. Advanced Science. 2019;6(5):1801883.
  • 74. Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures. 2014;23(3):033001.
  • 75. Patel I, Siores E, Shah T. Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sensors and Actuators A: Physical. 2010;159(2):213-8.
  • 76. Krajewski AS, Magniez K, Helmer RJ, Schrank V. Piezoelectric force response of novel 2D textile based PVDF sensors. IEEE Sensors Journal. 2013;13(12):4743-8.
  • 77. Lu L, Yang B, Zhai Y, Liu J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy. 2020;76:104966.
  • 78. Yuan X, Gao X, Yang J, Shen X, Li Z, You S, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy & Environmental Science. 2020;13(1):152-61.
  • 79. Liu Z, Li H, Shi B, Fan Y, Wang ZL, Li Z. Wearable and implantable triboelectric nanogenerators. Advanced Functional Materials. 2019;29(20):1808820.
  • 80. Tajitsu Y. Development of e-textile sewn together with embroidered fabric having motion-sensing function using piezoelectric braided cord for embroidery. IEEE Transactions on Dielectrics and Electrical Insulation. 2020;27(5):1644-9.
  • 81. GÖK MO, KARADÖL İ, ŞEKKELİ M. PİEZO UYGULAMALI AKILLI TEKSTİL UYGULAMASI. Mühendislik Bilimleri ve Tasarım Dergisi. 2019;7(2):369-80.
  • 82. Harito C, Utari L, Putra BR, Yuliarto B, Purwanto S, Zaidi SZ, et al. The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of The Electrochemical Society. 2020;167(3):037566.
  • 83. Dong K, Peng X, Wang ZL. Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Advanced Materials. 2020;32(5):1902549.
  • 84. Moghadam BH, Hasanzadeh M, Simchi A. Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Applied Nano Materials. 2020;3(9):8742-52.
  • 85. Chen X, Shao J, Tian H, Li X, Wang C, Luo Y, et al. Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity‐Enhanced Micropillars for Dynamic Tactile Sensing. Advanced Materials Technologies. 2020:2000046.
  • 86. Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Applied Materials & Interfaces. 2019;12(1):1597-605.
  • 87. AlMohimeed I, Ono Y. Ultrasound measurement of skeletal muscle contractile parameters using flexible and wearable single-element ultrasonic sensor. Sensors. 2020;20(13):3616.
  • 88. Zhang J, Wang H, Blanloeuil P, Li G, Sha Z, Wang D, et al. Enhancing the triboelectricity of stretchable electrospun piezoelectric polyvinylidene fluoride/boron nitride nanosheets composite nanofibers. Composites Communications. 2020;22:100535.
  • 89. Jiang J, Tu S, Fu R, Li J, Hu F, Yan B, et al. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane. ACS Applied Materials & Interfaces. 2020;12(30):33989-98.
  • 90. Oh HJ, Kim D-K, Choi YC, Lim S-J, Jeong JB, Ko JH, et al. Fabrication of piezoelectric poly (l-lactic acid)/BaTiO 3 fibre by the melt-spinning process. Scientific Reports. 2020;10(1):1-12.
  • 91. Ponnamma D, Chamakh MM, Alahzm AM, Salim N, Hameed N, AlMaadeed MAA. Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators. Polymers. 2020;12(10):2344.
  • 92. Mokhtari F, Shamshirsaz M, Latifi M, Foroughi J. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies. Polymers. 2020;12(11):2697.
  • 93. Viola G, Chang J, Maltby T, Steckler F, Jomaa M, Sun J, et al. Bioinspired Multiresonant Acoustic Devices Based on Electrospun Piezoelectric Polymeric Nanofibers. ACS Applied Materials & Interfaces. 2020;12(31):34643-57.
  • 94. Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PR, Asadi K. Piezoelectric Nylon‐11 Fibers for Electronic Textiles, Energy Harvesting and Sensing. Advanced Functional Materials. 2020:2004326.
  • 95. Mushtaq F, Torlakcik H, Hoop M, Jang B, Carlson F, Grunow T, et al. Motile piezoelectric nanoeels for targeted drug delivery. Advanced Functional Materials. 2019;29(12):1808135.
  • 96. Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Advanced Materials. 2017;29(8):1605458.
  • 97. Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, et al. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery. Adv Mater. 2017;29(8).
  • 98. Xie C, Ding R, Wang X, Hu C, Yan J, Zhang W, et al. A disulfiram-loaded electrospun poly (vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanot. 2020;31(11):115101.
  • 99. Wang A, Fang W, Zhang J, Gao S, Zhu Y, Jin J. Zwitterionic Nanohydrogels–Decorated Microporous Membrane with Ultrasensitive Salt Responsiveness for Controlled Water Transport. Small. 2020;16(9):1903925.
  • 100. Wulf K, Arbeiter D, Matschegewski C, Teske M, Huling J, Schmitz K-P, et al. Smart releasing electrospun nanofibers—poly: L. lactide fibers as dual drug delivery system for biomedical application. Biomedical Materials. 2020;16(1):015022.
  • 101. Ghaeini-Hesaroeiye S, Boddohi S, Vasheghani-Farahani E. Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. International Journal of Biological Macromolecules. 2020;143:297-304.
  • 102. Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, et al. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale. 2020;12(19):10799-808.
  • 103. Messerli MA, Graham DM. Extracellular electrical fields direct wound healing and regeneration. The Biological Bulletin. 2011;221(1):79-92.
  • 104. Abazari MF, Soleimanifar F, Amini Faskhodi M, Mansour RN, Amini Mahabadi J, Sadeghi S, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. Journal of Cellular Physiology. 2020;235(2):1155-64.
  • 105. Chernozem RV, Surmeneva MA, Surmenev RA. Hybrid biodegradable scaffolds of piezoelectric polyhydroxybutyrate and conductive polyaniline: Piezocharge constants and electric potential study. Materials Letters. 2018;220:257-60.
  • 106. Das R, Curry EJ, Le TT, Awale G, Liu Y, Li S, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy. 2020;76:105028.
  • 107. Jekhan A, Chernozem RV, Mukhortova YR, Surmeneva MA, Skirtach A, Surmenev RA, editors. Study of the morphology and structure of hybrid biodegradable 3d scaffolds based on piezoelectric Poly (l-lactic acid) and rGO/GO for bone tissue engineering. Перспективные материалы конструкционного и функционального назначения: сборник научных трудов Международной научно-технической молодежной конференции, Томск, 21–25 сентября 2020 г; 2020: Томский политехнический университет.
  • 108. Naderi P, Zarei M, Karbasi S, Salehi H. Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: Potential application in bone tissue engineering. European Polymer Journal. 2020;124:109502.
  • 109. Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, et al. Aloe Vera–Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. Asaio Journal. 2020;66(8):966-73.
  • 110. Parvizifard M, Karbasi S. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. International Journal of Biological Macromolecules. 2020.
  • 111. Zhao F, Zhang C, Liu J, Liu L, Cao X, Chen X, et al. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chemical Engineering Journal. 2020;402:126203.
  • 112. Rodrigues PJ, de MV Elias C, Viana BC, de Hollanda LM, Stocco TD, de Vasconcellos LM, et al. Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds. Journal of Materials Research. 2020;35(23):3265-75.
  • 113. Kim JI, Hwang TI, Lee JC, Park CH, Kim CS. Regulating Electrical Cue and Mechanotransduction in Topological Gradient Structure Modulated Piezoelectric Scaffolds to Predict Neural Cell Response. Advanced Functional Materials. 2020;30(3):1907330.
  • 114. Cheng Y, Xu Y, Qian Y, Chen X, Ouyang Y, Yuan W-E. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy. 2020;69:104411.
  • 115. Danti S, Azimi B, Candito M, Fusco A, Sorayani Bafqi MS, Ricci C, et al. Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases. 2020;15(3):031004.
  • 116. Ribeiro S, Puckert C, Ribeiro C, Gomes A, Higgins M, Lanceros-Méndez S. Surface Charge-Mediated Cell-Surface Interaction on Piezoelectric Materials. ACS applied materials & interfaces. 2020;12(1):191.
  • 117. Fernandez-Yague M, Trotier A, Abbah SA, Larrañaga A, Thirumaran A, Stapleton A, et al. Self-powered piezo-bioelectronic device mediates tendon repair through modulation of mechanosensitive ion channels. bioRxiv; 2020.
  • 118. Du S, Zhou N, Gao Y, Xie G, Du H, Jiang H, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Research. 2020;13(9):2525-33.
  • 119. Azimi B, Sorayani Bafqi MS, Fusco A, Ricci C, Gallone G, Bagherzadeh R, et al. Electrospun ZnO/poly (vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering. Tissue Engineering Part A. 2020.

Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview

Year 2022, Volume: 6 Issue: 1, 138 - 159, 08.06.2022
https://doi.org/10.38088/jise.953600

Abstract

Smart materials that can reverse one or more of their functional or structural properties according to the external stimulus are the most trending topic of our time. Many fields, including medicine, benefit from smart polymers, which are one of these smart materials. In this review, we will talk about synthetic piezoelectric polymers, which are members of the smart polymer family, and give an overview of their use in different medical fields and examine the points where they are most popular. In this study, our aim is to collect only synthetic piezoelectric polymers in a text and sample these most up-to-date studies in detail, unlike the reviews written in this field.

References

  • 1. Lee SJ, Yoo JJ, Atala A. Biomaterials and tissue engineering. Clinical regenerative medicine in urology: Springer; 2018. p. 17-51.
  • 2. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science. 2010;35(1-2):278-301.
  • 3. KAYA M. Toz metalurjisi ile üretilen NiTi şekil hatırlamalı alaşımların metalurjik ve mekanik karakteristiklerinin incelenmesi/The investigation of the metallurgical and mechanical characteristics of NiTi shape memory alloys produced with powder metallurgy. 2008.
  • 4. Kaya M, Çakmak Ö, Saygılı TY, Atlı KC. Şekil hafızalı alaşımlarda martensitik faz dönüşümü ve şekil hafıza mekanizması. 2016.
  • 5. ALEXANDER H, BRUNSKI JB, COOPER SL, HENCH LL, HERGENROTHER RW, HOFFMAN AS, et al. Classes of materials used in medicine. Biomaterials Science: Elsevier; 1996. p. 37-130.
  • 6. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Materials science and engineering: A. 2005;393(1-2):1-11.
  • 7. Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Advanced materials. 2014;26(12):1846-85.
  • 8. Custódio CA, del Campo A, Reis RL, Mano JF. Smart instructive polymer substrates for tissue engineering. Smart Polymers and their Applications: Elsevier; 2019. p. 411-38.
  • 9. Harrison J, Ounaies Z. Piezoelectric polymers. Encyclopedia of polymer science and technology. 2002;3.
  • 10. Vinogradov A, Su J, Jenkins C, Bar-Cohen Y. State-of-the-art developments in the field of electroactive polymers. 2005.
  • 11. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and regeneration. 2018;38(1):2.
  • 12. Wang TT, Herbert JM, Glass AM. The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK, 1988. 1988.
  • 13. Tressler JF, Alkoy S, Newnham RE. Piezoelectric sensors and sensor materials. Journal of electroceramics. 1998;2(4):257-72.
  • 14. Kapat K, Shubhra QT, Zhou M, Leeuwenburgh S. Piezoelectric Nano‐Biomaterials for Biomedicine and Tissue Regeneration. Advanced Functional Materials. 2020:1909045.
  • 15. Fousek J, Cross L, Litvin D. Possible piezoelectric composites based on the flexoelectric effect. Materials Letters. 1999;39(5):287-91.
  • 16. Halperin C, Mutchnik S, Agronin A, Molotskii M, Urenski P, Salai M, et al. Piezoelectric effect in human bones studied in nanometer scale. Nano Letters. 2004;4(7):1253-6.
  • 17. Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in polymer science. 2018;81:144-62.
  • 18. Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, et al. Mechano‐Informed Biomimetic Polymer Scaffolds by Incorporating Self‐Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function. Small. 2020;16(32):2000796.
  • 19. Martins P, Lopes A, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science. 2014;39(4):683-706.
  • 20. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, et al. Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nature protocols. 2018;13(4):681.
  • 21. Ando Y, Fukada E. Piezoelectric properties and molecular motion of poly (β‐hydroxybutyrate) films. Journal of Polymer Science: Polymer Physics Edition. 1984;22(10):1821-34.
  • 22. Ochiai T, Fukada E. Electromechanical properties of poly-L-lactic acid. Japanese journal of applied physics. 1998;37(6R):3374.
  • 23. Bernard F, Gimeno L, Viala B, Gusarov B, Cugat O, editors. Direct piezoelectric coefficient measurements of PVDF and PLLA under controlled strain and stress. Multidisciplinary Digital Publishing Institute Proceedings; 2017.
  • 24. Newman B, Chen P, Pae K, Scheinbeim J. Piezoelectricity in nylon 11. Journal of Applied Physics. 1980;51(10):5161-4.
  • 25. Fukada E. New piezoelectric polymers. Japanese journal of applied physics. 1998;37(5S):2775.
  • 26. Kepler R, Anderson R. Piezoelectricity and pyroelectricity in polyvinylidene fluoride. Journal of Applied Physics. 1978;49(8):4490-4.
  • 27. Ross G, Watts J, Hill M, Morrissey P. Surface modification of poly (vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer. 2000;41(5):1685-96.
  • 28. Dunn P, Carr S. A Historical Perspective on the Occurrence of Piezoelectricity in Materials. MRS Bulletin. 1989;14(2):22-31.
  • 29. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, et al. Ferroelectric thin films: Review of materials, properties, and applications. Journal of applied physics. 2006;100(5):051606.
  • 30. Damaraju SM, Wu S, Jaffe M, Arinzeh TL. Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials. 2013;8(4):045007.
  • 31. Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama F, Gomes A, et al. Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing. 2015;44:234-41.
  • 32. Vinogradov A, Holloway F. Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics. 1999;226(1):169-81.
  • 33. Ma W, Yuan H, Wang X. The effect of chain structures on the crystallization behavior and membrane formation of poly (vinylidene fluoride) copolymers. Membranes. 2014;4(2):243-56.
  • 34. Ohigashi H, Koga K, Suzuki M, Nakanishi T, Kimura K, Hashimoto N. Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application to ultrasonic transducers. Ferroelectrics. 1984;60(1):263-76.
  • 35. Augustine R, Dan P, Sosnik A, Kalarikkal N, Tran N, Vincent B, et al. Electrospun poly (vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Research. 2017;10(10):3358-76.
  • 36. Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, et al. Enhanced cellular osteogenic differentiation on CoFe2O4/P (VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids and Surfaces B: Biointerfaces. 2020:111473.
  • 37. Genchi GG, Ceseracciu L, Marino A, Labardi M, Marras S, Pignatelli F, et al. P (VDF‐TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH‐SY5Y Neuroblastoma Cells. Advanced healthcare materials. 2016;5(14):1808-20.
  • 38. Chen G, Zhang F, Zhou Z, Li J, Tang Y. A flexible dual‐ion battery based on PVDF‐HFP‐modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials. 2018;8(25):1801219.
  • 39. Thankamony RL, Chu H, Lim S, Yim T, Kim Y-J, Kim T-H. Preparation and characterization of imidazolium-PEO-based Ionene/PVDF (HFP)/LiTFSI as a novel Gel polymer electrolyte. Macromolecular Research. 2015;23(1):38-44.
  • 40. Sousa R, Nunes-Pereira J, Costa C, Silva MM, Lanceros-Méndez S, Hassoun J, et al. Influence of the porosity degree of poly (vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources. 2014;263:29-36.
  • 41. Chaurasia S, Singh R, Chandra S. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. The Journal of Physical Chemistry B. 2013;117(3):897-906.
  • 42. Park JW, Jang J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P (VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon. 2015;87:275-81.
  • 43. Han DJ, Heo HJ, Park IJ, Kang HS, Lee SG, Lee S-B, et al. Fluorinated Methacrylate-Grafted P (VDF-CTFE) and Albumin Layers for Reducing Fibrinogen Adsorption. ACS Applied Polymer Materials. 2019;2(2):178-88.
  • 44. Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S. Fluorinated polymers as smart materials for advanced biomedical applications. Polymers. 2018;10(2):161.
  • 45. Zhang M, Russell TP. Graft copolymers from poly (vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules. 2006;39(10):3531-9.
  • 46. Madison LL, Huisman GW. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiology and molecular biology reviews. 1999;63(1):21-53.
  • 47. Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiology and Molecular Biology Reviews. 1990;54(4):450-72.
  • 48. Singh AK, Sharma L, Srivastava JK, Mallick N, Ansari MI. Microbially originated polyhydroxyalkanoate (PHA) biopolymers: an insight into the molecular mechanism and biogenesis of PHA granules. Sustainable Biotechnology-Enzymatic Resources of Renewable Energy: Springer; 2018. p. 355-98.
  • 49. Mergaert J, Anderson C, Wouters A, Swings J, Kersters K. Biodegradation of polyhydroxyalkanoates. FEMS microbiology reviews. 1992;9(2-4):317-21.
  • 50. Byrom D. Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiology Reviews. 1992;9(2-4):247-50.
  • 51. Daitx TS, Carli LN, Crespo JS, Mauler RS. Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Applied Clay Science. 2015;115:157-64.
  • 52. Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochemical engineering journal. 2003;16(2):97-105.
  • 53. Saito Y, Nakamura S, Hiramitsu M, Doi Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) Polym Int. 1996; 39: 169–174. doi: 10.1002/(SICI) 1097-0126 (199603) 39: 3< 169:: AID-PI453> 3.0. CO.
  • 54. Faisalina A, Sonvico F, Colombo P, Amirul A, Wahab H, Majid MIA. Docetaxel-Loaded Poly (3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials. 2020;10(11):2123.
  • 55. Singhi B, Ford EN, King MW. The effect of wet spinning conditions on the structure and properties of poly‐4‐hydroxybutyrate fibers. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020:e34763.
  • 56. Saito Y, Doi Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. International journal of biological macromolecules. 1994;16(2):99-104.
  • 57. Martin DP, Rizk S, Ahuja A, Williams SF. Polyhydroxyalkanoate medical textiles and fibers. Google Patents; 2011.
  • 58. Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedical Engineering/Biomedizinische Technik. 2013;58(5):439-52.
  • 59. Cuong NT, Barrau S, Dufay M, Tabary N, Da Costa A, Ferri A, et al. On the Nanoscale Mapping of the Mechanical and Piezoelectric Properties of Poly (L-Lactic Acid) Electrospun Nanofibers. Applied Sciences. 2020;10(2):652.
  • 60. Märtson M, Viljanto J, Hurme T, Saukko P. Biocompatibility of cellulose sponge with bone. European surgical research. 1998;30(6):426-32.
  • 61. Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta biomaterialia. 2016;37:131-42.
  • 62. Lu Z, Wang W, Zhang J, Bártolo P, Gong H, Li J. Electrospun highly porous poly (L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Materials Science and Engineering: C. 2020;117:111359.
  • 63. Zuidema JM, Provenza C, Caliendo T, Dutz S, Gilbert RJ. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS chemical neuroscience. 2015;6(11):1781-8.
  • 64. Takahashi Y, Iijima M, Fukada E. Pyroelectricity in poled thin films of aromatic polyurea prepared by vapor deposition polymerization. Japanese journal of applied physics. 1989;28(12A):L2245.
  • 65. Lee J, Takase Y, Newman B, Scheinbeim J. Ferroelectric polarization switching in nylon‐11. Journal of Polymer Science Part B: Polymer Physics. 1991;29(3):273-7.
  • 66. Nalwa HS. Ferroelectric polymers: chemistry: physics, and applications: CRC Press; 1995.
  • 67. Hattori T, Takahashi Y, Iijima M, Fukada E. Piezoelectric and ferroelectric properties of polyurea‐5 thin films prepared by vapor deposition polymerization. Journal of applied physics. 1996;79(3):1713-21.
  • 68. Rocas P, Cusco C, Rocas J, Albericio F. On the importance of polyurethane and polyurea nanosystems for future drug delivery. Current drug delivery. 2018;15(1):37-43.
  • 69. Schlegel I, Renz P, Simon J, Lieberwirth I, Pektor S, Bausbacher N, et al. Highly loaded semipermeable nanocapsules for magnetic resonance imaging. Macromolecular bioscience. 2018;18(4):1700387.
  • 70. Lee DJ, Cavasin MA, Rocker AJ, Soranno DE, Meng X, Shandas R, et al. An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. Journal of biological engineering. 2019;13(1):6.
  • 71. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces. 2015;136:46-55.
  • 72. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, et al. Smart Textile‐Integrated Microelectronic Systems for Wearable Applications. Advanced Materials. 2020;32(5):1901958.
  • 73. Lai YC, Hsiao YC, Wu HM, Wang ZL. Waterproof fabric‐based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‐powered sensors. Advanced Science. 2019;6(5):1801883.
  • 74. Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures. 2014;23(3):033001.
  • 75. Patel I, Siores E, Shah T. Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sensors and Actuators A: Physical. 2010;159(2):213-8.
  • 76. Krajewski AS, Magniez K, Helmer RJ, Schrank V. Piezoelectric force response of novel 2D textile based PVDF sensors. IEEE Sensors Journal. 2013;13(12):4743-8.
  • 77. Lu L, Yang B, Zhai Y, Liu J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy. 2020;76:104966.
  • 78. Yuan X, Gao X, Yang J, Shen X, Li Z, You S, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy & Environmental Science. 2020;13(1):152-61.
  • 79. Liu Z, Li H, Shi B, Fan Y, Wang ZL, Li Z. Wearable and implantable triboelectric nanogenerators. Advanced Functional Materials. 2019;29(20):1808820.
  • 80. Tajitsu Y. Development of e-textile sewn together with embroidered fabric having motion-sensing function using piezoelectric braided cord for embroidery. IEEE Transactions on Dielectrics and Electrical Insulation. 2020;27(5):1644-9.
  • 81. GÖK MO, KARADÖL İ, ŞEKKELİ M. PİEZO UYGULAMALI AKILLI TEKSTİL UYGULAMASI. Mühendislik Bilimleri ve Tasarım Dergisi. 2019;7(2):369-80.
  • 82. Harito C, Utari L, Putra BR, Yuliarto B, Purwanto S, Zaidi SZ, et al. The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of The Electrochemical Society. 2020;167(3):037566.
  • 83. Dong K, Peng X, Wang ZL. Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Advanced Materials. 2020;32(5):1902549.
  • 84. Moghadam BH, Hasanzadeh M, Simchi A. Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Applied Nano Materials. 2020;3(9):8742-52.
  • 85. Chen X, Shao J, Tian H, Li X, Wang C, Luo Y, et al. Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity‐Enhanced Micropillars for Dynamic Tactile Sensing. Advanced Materials Technologies. 2020:2000046.
  • 86. Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Applied Materials & Interfaces. 2019;12(1):1597-605.
  • 87. AlMohimeed I, Ono Y. Ultrasound measurement of skeletal muscle contractile parameters using flexible and wearable single-element ultrasonic sensor. Sensors. 2020;20(13):3616.
  • 88. Zhang J, Wang H, Blanloeuil P, Li G, Sha Z, Wang D, et al. Enhancing the triboelectricity of stretchable electrospun piezoelectric polyvinylidene fluoride/boron nitride nanosheets composite nanofibers. Composites Communications. 2020;22:100535.
  • 89. Jiang J, Tu S, Fu R, Li J, Hu F, Yan B, et al. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane. ACS Applied Materials & Interfaces. 2020;12(30):33989-98.
  • 90. Oh HJ, Kim D-K, Choi YC, Lim S-J, Jeong JB, Ko JH, et al. Fabrication of piezoelectric poly (l-lactic acid)/BaTiO 3 fibre by the melt-spinning process. Scientific Reports. 2020;10(1):1-12.
  • 91. Ponnamma D, Chamakh MM, Alahzm AM, Salim N, Hameed N, AlMaadeed MAA. Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators. Polymers. 2020;12(10):2344.
  • 92. Mokhtari F, Shamshirsaz M, Latifi M, Foroughi J. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies. Polymers. 2020;12(11):2697.
  • 93. Viola G, Chang J, Maltby T, Steckler F, Jomaa M, Sun J, et al. Bioinspired Multiresonant Acoustic Devices Based on Electrospun Piezoelectric Polymeric Nanofibers. ACS Applied Materials & Interfaces. 2020;12(31):34643-57.
  • 94. Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PR, Asadi K. Piezoelectric Nylon‐11 Fibers for Electronic Textiles, Energy Harvesting and Sensing. Advanced Functional Materials. 2020:2004326.
  • 95. Mushtaq F, Torlakcik H, Hoop M, Jang B, Carlson F, Grunow T, et al. Motile piezoelectric nanoeels for targeted drug delivery. Advanced Functional Materials. 2019;29(12):1808135.
  • 96. Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Advanced Materials. 2017;29(8):1605458.
  • 97. Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, et al. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery. Adv Mater. 2017;29(8).
  • 98. Xie C, Ding R, Wang X, Hu C, Yan J, Zhang W, et al. A disulfiram-loaded electrospun poly (vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanot. 2020;31(11):115101.
  • 99. Wang A, Fang W, Zhang J, Gao S, Zhu Y, Jin J. Zwitterionic Nanohydrogels–Decorated Microporous Membrane with Ultrasensitive Salt Responsiveness for Controlled Water Transport. Small. 2020;16(9):1903925.
  • 100. Wulf K, Arbeiter D, Matschegewski C, Teske M, Huling J, Schmitz K-P, et al. Smart releasing electrospun nanofibers—poly: L. lactide fibers as dual drug delivery system for biomedical application. Biomedical Materials. 2020;16(1):015022.
  • 101. Ghaeini-Hesaroeiye S, Boddohi S, Vasheghani-Farahani E. Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. International Journal of Biological Macromolecules. 2020;143:297-304.
  • 102. Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, et al. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale. 2020;12(19):10799-808.
  • 103. Messerli MA, Graham DM. Extracellular electrical fields direct wound healing and regeneration. The Biological Bulletin. 2011;221(1):79-92.
  • 104. Abazari MF, Soleimanifar F, Amini Faskhodi M, Mansour RN, Amini Mahabadi J, Sadeghi S, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. Journal of Cellular Physiology. 2020;235(2):1155-64.
  • 105. Chernozem RV, Surmeneva MA, Surmenev RA. Hybrid biodegradable scaffolds of piezoelectric polyhydroxybutyrate and conductive polyaniline: Piezocharge constants and electric potential study. Materials Letters. 2018;220:257-60.
  • 106. Das R, Curry EJ, Le TT, Awale G, Liu Y, Li S, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy. 2020;76:105028.
  • 107. Jekhan A, Chernozem RV, Mukhortova YR, Surmeneva MA, Skirtach A, Surmenev RA, editors. Study of the morphology and structure of hybrid biodegradable 3d scaffolds based on piezoelectric Poly (l-lactic acid) and rGO/GO for bone tissue engineering. Перспективные материалы конструкционного и функционального назначения: сборник научных трудов Международной научно-технической молодежной конференции, Томск, 21–25 сентября 2020 г; 2020: Томский политехнический университет.
  • 108. Naderi P, Zarei M, Karbasi S, Salehi H. Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: Potential application in bone tissue engineering. European Polymer Journal. 2020;124:109502.
  • 109. Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, et al. Aloe Vera–Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. Asaio Journal. 2020;66(8):966-73.
  • 110. Parvizifard M, Karbasi S. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. International Journal of Biological Macromolecules. 2020.
  • 111. Zhao F, Zhang C, Liu J, Liu L, Cao X, Chen X, et al. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chemical Engineering Journal. 2020;402:126203.
  • 112. Rodrigues PJ, de MV Elias C, Viana BC, de Hollanda LM, Stocco TD, de Vasconcellos LM, et al. Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds. Journal of Materials Research. 2020;35(23):3265-75.
  • 113. Kim JI, Hwang TI, Lee JC, Park CH, Kim CS. Regulating Electrical Cue and Mechanotransduction in Topological Gradient Structure Modulated Piezoelectric Scaffolds to Predict Neural Cell Response. Advanced Functional Materials. 2020;30(3):1907330.
  • 114. Cheng Y, Xu Y, Qian Y, Chen X, Ouyang Y, Yuan W-E. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy. 2020;69:104411.
  • 115. Danti S, Azimi B, Candito M, Fusco A, Sorayani Bafqi MS, Ricci C, et al. Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases. 2020;15(3):031004.
  • 116. Ribeiro S, Puckert C, Ribeiro C, Gomes A, Higgins M, Lanceros-Méndez S. Surface Charge-Mediated Cell-Surface Interaction on Piezoelectric Materials. ACS applied materials & interfaces. 2020;12(1):191.
  • 117. Fernandez-Yague M, Trotier A, Abbah SA, Larrañaga A, Thirumaran A, Stapleton A, et al. Self-powered piezo-bioelectronic device mediates tendon repair through modulation of mechanosensitive ion channels. bioRxiv; 2020.
  • 118. Du S, Zhou N, Gao Y, Xie G, Du H, Jiang H, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Research. 2020;13(9):2525-33.
  • 119. Azimi B, Sorayani Bafqi MS, Fusco A, Ricci C, Gallone G, Bagherzadeh R, et al. Electrospun ZnO/poly (vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering. Tissue Engineering Part A. 2020.
There are 119 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Hilal Yılmaz 0000-0003-3326-4873

Early Pub Date February 22, 2022
Publication Date June 8, 2022
Published in Issue Year 2022Volume: 6 Issue: 1

Cite

APA Yılmaz, H. (2022). Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview. Journal of Innovative Science and Engineering, 6(1), 138-159. https://doi.org/10.38088/jise.953600
AMA Yılmaz H. Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview. JISE. June 2022;6(1):138-159. doi:10.38088/jise.953600
Chicago Yılmaz, Hilal. “Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview”. Journal of Innovative Science and Engineering 6, no. 1 (June 2022): 138-59. https://doi.org/10.38088/jise.953600.
EndNote Yılmaz H (June 1, 2022) Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview. Journal of Innovative Science and Engineering 6 1 138–159.
IEEE H. Yılmaz, “Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview”, JISE, vol. 6, no. 1, pp. 138–159, 2022, doi: 10.38088/jise.953600.
ISNAD Yılmaz, Hilal. “Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview”. Journal of Innovative Science and Engineering 6/1 (June 2022), 138-159. https://doi.org/10.38088/jise.953600.
JAMA Yılmaz H. Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview. JISE. 2022;6:138–159.
MLA Yılmaz, Hilal. “Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview”. Journal of Innovative Science and Engineering, vol. 6, no. 1, 2022, pp. 138-59, doi:10.38088/jise.953600.
Vancouver Yılmaz H. Medical Uses of Synthetic Piezoelectric Polymers; 2020-2021 Overview. JISE. 2022;6(1):138-59.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.