Araştırma Makalesi
BibTex RIS Kaynak Göster

Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties

Yıl 2020, Cilt: 4 Sayı: 2, 56 - 68, 14.12.2020
https://doi.org/10.38088/jise.743635

Öz

The chitosan/gelatin/biochar biocomposite beads were prepared via the use of the emulsion crosslinking method in the presence of poly(ethylene) glycol as a cross-linker. The effects of different ratios of biochar (1 and 5%) on the characteristics of the beads were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and swelling studies. The FT-IR results showed the interactions of biochar and polymer matrix. The prepared beads showed good swelling properties and different morphologies. The average diameter of neat chitosan/gelatin beads was almost 725 µm, while the average diameter of 1% and 5% biochar incorporated beads were 726 µm and 597 µm, respectively. The swelling capacity of the beads was decreased from 4671% to 2092% when the biochar incorporation ratio increased from 1% to 5%. This indicated that the preparation of beads with varying properties can be achieved by controlling the biochar amount. The beads may be evaluated in various applications as polymeric carrier systems and adsorbents.

Destekleyen Kurum

Bursa Technical University

Proje Numarası

This study did not receive any specific grant from funding or project.

Teşekkür

The authors of this study would like to express their appreciations to Murat EROĞLU and İbrahim ŞEN (Central Research Laboratory, Bursa Technical University) for their help in SEM and TGA analysis.

Kaynakça

  • [1] Mohammad J. Zohuriaan-Mehr, Kourosh Kabiri (2008). Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal, 17(6):451-477.
  • [2] Cheng, B., Pei, B., Wang Z. and Hu, Q. (2017). Advances in chitosan-based superabsorbent hydrogels, Royal Society of Chemistry Advances, 7:42036–42046.
  • [3] Behera, S. and Mahanwar, P. A. (2019). Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials, 59(4):1-16.
  • [4] Ahmed, E. M. (2015) Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6:105-121.
  • [5] Qu, B. and Luo, Y. (2020). Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. International Journal of Biological Macromolecules, 152:437-448.
  • [6] Pradeep-Kumar, S., Gowda D. V. and Vikas, J. (2020). Recent Development in Sustained Release Beads. International Journal of Research Pharmaceutical Science, 11(1):891-898.
  • [7] Bahram, M., Mohseni, N. and Moghtader, M. (2016). Emerging Concepts in Analysis and Applications of Hydrogels, Edited by Sutapa Biswas Majee, IntechOpen, London, UK. pp. 9-38. ISBN: 978-953-51-2510-5.
  • [8] Trikkaliotis, D. G. Christoforidis, A. K. Mitropoulos, A. C. and Kyzas, G. Z. (2020). Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbonhydrate Polymers, 234:115890.
  • [9] Ngah, W. S. W., Kamari, A., Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II)on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34:155–161.
  • [10] Yuvaraja, G., Pathak, J. L., Weijiang, Z., Yaping, Z. and Jiao, X. (2017). Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). International Journal of Biological Macromolecules, 103, 234-241.
  • [11] Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y. and Feng, M. (2004). Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters, 26:879–883. [12] ArcGIS. https://www.arcgis.com/index.html, Accessed: 02/04/2020.
  • [12] Wu, M., Chen, W., Mao, Q., Bai, Y. and Ma, H. (2019). Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chemical Engineering Research and Design, 144:35–46.
  • [13] Zeinali, A., Sirousazar, M., Hosseini, Z., Kheir, D. and Kheir, F. (2020). Gelatin/Montmorillonite and Gelatin/Polyvinyl Alcohol/Montmorillonite Bionanocomposite Hydrogels: Microstructural, Swelling and Drying Properties. Journal of Macromolecular Science, Part B, https://doi.org/10.1080/00222348.2019.1709714.
  • [14] Saber-Samandari, S., Saber-Samandari, S., Yekta, H. and Mohseni, M. (2016). Adsorption of anionic and cationic dyes from aqueous solution using gelatinbased magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chemical Engineering Journal, 308:1133-1144.
  • [15] Zhang, H., Chang, Q., Han, J., Gao, S., Wu, Z., Hu, J., Yang, Y., Wei, Z., Zhang, De. and Peng, Z. (2019). A facile syntheses of two engineered poly(vinyl alcohol) macroporous hydrogel beads for the application of Cu(II) and Pb(II) removal: batch and fixed bed column. Materials Research Express, 6(9):095315.
  • [16] Terzioğlu, P., Parın, F. N. (2020). Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 24(1):35-42.
  • [17] Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D. and Mlsna, T. (2018). Lead (Pb2+) sorptive removal using chitosan modified biochar: batch and fixed-bed studies. RSC Adv., 8, 25368.
  • [18] Smidt, E., and Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag., 27(2), 268-276.
  • [19] Wu, M., Feng Q., Sun X., Wang H., Gielen G. (2015). Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports., 5:10001, 1-10.
  • [20] Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., and Gerzabek, M. H. (2007). FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 170(4), 522-529.
  • [21] Schwanninger, M., Rodrigues, J. C., Pereira, H., and Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23-40.
  • [22] Zheng, X. F., Lian Q., Yang, H. and Wang X. (2016). Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release. Scientific Reports, 6:21409.
  • [23] Kumar, S. and Koh, J. (2012). Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. International Journal of Molecular Science, 13:6102-6116.
  • [24] Yasmeen, S., Kabiraz, M. K., Saha, B., Qadir, R., Gafur, A. and Masum, S. (2016). Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. International Research Journal of Pure & Applied Chemistry, 10(4):1-14.
  • [25] Cui, L., Xiong, Z., Guo, Y., Liu, Y., Zhao, J., Zhang, C. and Zhu, P. (2015). Fabrication of interpenetrating polymer network chitosan/gelatinporous materials and study on dye adsorption properties. Carbohydrate Polymers, 132:330–337.
  • [26] Nady, N. and Kandil, S. H. (2018). Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications. Membranes, 8:2-18.
  • [27] Mohamed, R.R., Seoudi, R.S. Sabaa, M.W. (2015). Synthesis and Characterization of Crosslinked Polyethylene Glycol/Carboxymethyl Chitosan Hydrogels. Advances in Polymer Technology, 34(1), 21479.
  • [28] El-Hefıan, E. A., Nasef, M. M. and Yahaya, A. H. (2012). Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties. E-Journal of Chemistry, 9(2):510-516.
  • [29] Wu, Z. C., Wang, Z. Z., Liu, J., Yin, J. H. and Kuang, S. P. (2016). Removal of Cu(II) ions from aqueous water by l-arginine modifying magnetic chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499:141-149.
  • [30] Chen, I. H., Chien, C. M., Wang, C. T., Huang, C. L., Wang, C. K. and Kuo, Y. R. (2018). Development for Wound Dressing Based on Blended Chitosan and Gelatin Hydrogels. Key Engineering Materials, 765:119-123.
  • [31] Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W., Goworek, J. (2017). Swelling effects in cross-linked polymers by thermogravimetry. J Therm Anal Calorim, 130:85–93. [20] Senturk, I.F.(2017). A prescient recovery approach for disjoint msns. In 2017 IEEE International Conference on Communications (ICC).
  • [32] Carbinatto, F. M., Castro, A. D., Evangelista, R. C., Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices, Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
  • [33] Yu, O. Y., Raichle, B. and Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil, International Journal of Energy and Environmental Engineering, 4:44.
  • [34] Wan, Y. Z., Wang, Y. L., Yao, K. D. and Cheng, G. X. (2000). Carbon fiber‐reinforced gelatin composites. II. Swelling behaviour. Journal of Applied Polymer Science, 75:994–998.
  • [35] Sharma, C., Dinda, A. K., Potdar, P. D. Chou, C. F. and Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 64:416–427.
Yıl 2020, Cilt: 4 Sayı: 2, 56 - 68, 14.12.2020
https://doi.org/10.38088/jise.743635

Öz

Proje Numarası

This study did not receive any specific grant from funding or project.

Kaynakça

  • [1] Mohammad J. Zohuriaan-Mehr, Kourosh Kabiri (2008). Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal, 17(6):451-477.
  • [2] Cheng, B., Pei, B., Wang Z. and Hu, Q. (2017). Advances in chitosan-based superabsorbent hydrogels, Royal Society of Chemistry Advances, 7:42036–42046.
  • [3] Behera, S. and Mahanwar, P. A. (2019). Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials, 59(4):1-16.
  • [4] Ahmed, E. M. (2015) Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6:105-121.
  • [5] Qu, B. and Luo, Y. (2020). Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. International Journal of Biological Macromolecules, 152:437-448.
  • [6] Pradeep-Kumar, S., Gowda D. V. and Vikas, J. (2020). Recent Development in Sustained Release Beads. International Journal of Research Pharmaceutical Science, 11(1):891-898.
  • [7] Bahram, M., Mohseni, N. and Moghtader, M. (2016). Emerging Concepts in Analysis and Applications of Hydrogels, Edited by Sutapa Biswas Majee, IntechOpen, London, UK. pp. 9-38. ISBN: 978-953-51-2510-5.
  • [8] Trikkaliotis, D. G. Christoforidis, A. K. Mitropoulos, A. C. and Kyzas, G. Z. (2020). Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbonhydrate Polymers, 234:115890.
  • [9] Ngah, W. S. W., Kamari, A., Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II)on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34:155–161.
  • [10] Yuvaraja, G., Pathak, J. L., Weijiang, Z., Yaping, Z. and Jiao, X. (2017). Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). International Journal of Biological Macromolecules, 103, 234-241.
  • [11] Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y. and Feng, M. (2004). Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters, 26:879–883. [12] ArcGIS. https://www.arcgis.com/index.html, Accessed: 02/04/2020.
  • [12] Wu, M., Chen, W., Mao, Q., Bai, Y. and Ma, H. (2019). Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chemical Engineering Research and Design, 144:35–46.
  • [13] Zeinali, A., Sirousazar, M., Hosseini, Z., Kheir, D. and Kheir, F. (2020). Gelatin/Montmorillonite and Gelatin/Polyvinyl Alcohol/Montmorillonite Bionanocomposite Hydrogels: Microstructural, Swelling and Drying Properties. Journal of Macromolecular Science, Part B, https://doi.org/10.1080/00222348.2019.1709714.
  • [14] Saber-Samandari, S., Saber-Samandari, S., Yekta, H. and Mohseni, M. (2016). Adsorption of anionic and cationic dyes from aqueous solution using gelatinbased magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chemical Engineering Journal, 308:1133-1144.
  • [15] Zhang, H., Chang, Q., Han, J., Gao, S., Wu, Z., Hu, J., Yang, Y., Wei, Z., Zhang, De. and Peng, Z. (2019). A facile syntheses of two engineered poly(vinyl alcohol) macroporous hydrogel beads for the application of Cu(II) and Pb(II) removal: batch and fixed bed column. Materials Research Express, 6(9):095315.
  • [16] Terzioğlu, P., Parın, F. N. (2020). Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 24(1):35-42.
  • [17] Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D. and Mlsna, T. (2018). Lead (Pb2+) sorptive removal using chitosan modified biochar: batch and fixed-bed studies. RSC Adv., 8, 25368.
  • [18] Smidt, E., and Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag., 27(2), 268-276.
  • [19] Wu, M., Feng Q., Sun X., Wang H., Gielen G. (2015). Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports., 5:10001, 1-10.
  • [20] Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., and Gerzabek, M. H. (2007). FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 170(4), 522-529.
  • [21] Schwanninger, M., Rodrigues, J. C., Pereira, H., and Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23-40.
  • [22] Zheng, X. F., Lian Q., Yang, H. and Wang X. (2016). Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release. Scientific Reports, 6:21409.
  • [23] Kumar, S. and Koh, J. (2012). Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. International Journal of Molecular Science, 13:6102-6116.
  • [24] Yasmeen, S., Kabiraz, M. K., Saha, B., Qadir, R., Gafur, A. and Masum, S. (2016). Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. International Research Journal of Pure & Applied Chemistry, 10(4):1-14.
  • [25] Cui, L., Xiong, Z., Guo, Y., Liu, Y., Zhao, J., Zhang, C. and Zhu, P. (2015). Fabrication of interpenetrating polymer network chitosan/gelatinporous materials and study on dye adsorption properties. Carbohydrate Polymers, 132:330–337.
  • [26] Nady, N. and Kandil, S. H. (2018). Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications. Membranes, 8:2-18.
  • [27] Mohamed, R.R., Seoudi, R.S. Sabaa, M.W. (2015). Synthesis and Characterization of Crosslinked Polyethylene Glycol/Carboxymethyl Chitosan Hydrogels. Advances in Polymer Technology, 34(1), 21479.
  • [28] El-Hefıan, E. A., Nasef, M. M. and Yahaya, A. H. (2012). Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties. E-Journal of Chemistry, 9(2):510-516.
  • [29] Wu, Z. C., Wang, Z. Z., Liu, J., Yin, J. H. and Kuang, S. P. (2016). Removal of Cu(II) ions from aqueous water by l-arginine modifying magnetic chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499:141-149.
  • [30] Chen, I. H., Chien, C. M., Wang, C. T., Huang, C. L., Wang, C. K. and Kuo, Y. R. (2018). Development for Wound Dressing Based on Blended Chitosan and Gelatin Hydrogels. Key Engineering Materials, 765:119-123.
  • [31] Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W., Goworek, J. (2017). Swelling effects in cross-linked polymers by thermogravimetry. J Therm Anal Calorim, 130:85–93. [20] Senturk, I.F.(2017). A prescient recovery approach for disjoint msns. In 2017 IEEE International Conference on Communications (ICC).
  • [32] Carbinatto, F. M., Castro, A. D., Evangelista, R. C., Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices, Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
  • [33] Yu, O. Y., Raichle, B. and Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil, International Journal of Energy and Environmental Engineering, 4:44.
  • [34] Wan, Y. Z., Wang, Y. L., Yao, K. D. and Cheng, G. X. (2000). Carbon fiber‐reinforced gelatin composites. II. Swelling behaviour. Journal of Applied Polymer Science, 75:994–998.
  • [35] Sharma, C., Dinda, A. K., Potdar, P. D. Chou, C. F. and Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 64:416–427.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Fatma Nur Parın 0000-0003-2048-2951

Kenan Yıldırım 0000-0002-1640-6035

Pınar Terzioğlu 0000-0003-4114-7044

Proje Numarası This study did not receive any specific grant from funding or project.
Yayımlanma Tarihi 14 Aralık 2020
Yayımlandığı Sayı Yıl 2020Cilt: 4 Sayı: 2

Kaynak Göster

APA Parın, F. N., Yıldırım, K., & Terzioğlu, P. (2020). Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties. Journal of Innovative Science and Engineering, 4(2), 56-68. https://doi.org/10.38088/jise.743635
AMA Parın FN, Yıldırım K, Terzioğlu P. Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties. JISE. Aralık 2020;4(2):56-68. doi:10.38088/jise.743635
Chicago Parın, Fatma Nur, Kenan Yıldırım, ve Pınar Terzioğlu. “Biochar Loaded chitosan/gelatin/Poly(ethylene Glycol) Biocomposite Beads: Morphological, Thermal and Swelling Properties”. Journal of Innovative Science and Engineering 4, sy. 2 (Aralık 2020): 56-68. https://doi.org/10.38088/jise.743635.
EndNote Parın FN, Yıldırım K, Terzioğlu P (01 Aralık 2020) Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties. Journal of Innovative Science and Engineering 4 2 56–68.
IEEE F. N. Parın, K. Yıldırım, ve P. Terzioğlu, “Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties”, JISE, c. 4, sy. 2, ss. 56–68, 2020, doi: 10.38088/jise.743635.
ISNAD Parın, Fatma Nur vd. “Biochar Loaded chitosan/gelatin/Poly(ethylene Glycol) Biocomposite Beads: Morphological, Thermal and Swelling Properties”. Journal of Innovative Science and Engineering 4/2 (Aralık 2020), 56-68. https://doi.org/10.38088/jise.743635.
JAMA Parın FN, Yıldırım K, Terzioğlu P. Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties. JISE. 2020;4:56–68.
MLA Parın, Fatma Nur vd. “Biochar Loaded chitosan/gelatin/Poly(ethylene Glycol) Biocomposite Beads: Morphological, Thermal and Swelling Properties”. Journal of Innovative Science and Engineering, c. 4, sy. 2, 2020, ss. 56-68, doi:10.38088/jise.743635.
Vancouver Parın FN, Yıldırım K, Terzioğlu P. Biochar loaded chitosan/gelatin/poly(ethylene glycol) biocomposite beads: Morphological, thermal and swelling properties. JISE. 2020;4(2):56-68.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.