Yıl 2020, Cilt 4 , Sayı 2, Sayfalar 84 - 95 2020-12-14

TiB2 (titanium diboride) is a transition metal boride with remarkable properties and, its thin-film coatings can be deposited on various substrates to develop the wear resistance properties of substrates. Radiation interaction properties of TiB2 coated glass and HSS are very significant as well for shielding applications and it has not been investigated so far. In this work, linear attenuation coefficient (µ), half-value layer (HVL), tenth-value layer (TVL) and mean free path (MFP) of TiB2 coated glass and HSS (AISI-M2) were measured using a 133Ba radioactive point source at energies 80.8, 276.4, 302.8, 356 and 383.8 keV. A comparison has been made with some radiation shielding concretes with respect to MFP. Energy absorption and exposure buildup factors (EABF and EBF) of composites were also calculated in the experimental energy region 50 – 500 keV. TiB2 coated glass and HSS were found to be better radiation shielding materials than the standard shielding concretes concluding that they can be further developed for radiation shielding applications.
Radiation shielding, thin film coating, TiB2
  • [1] Munro, R. G. (2000). Material Properties of Titanium Diboride, J. Res. Natl. Inst. Stand. Technol.105:709-720.
  • [2] Han, Y., Dai, Y., Shu, D., Wang, J., Sun, B. (2007). Electronic and bonding properties of TiB2. J. Alloys Compd., 438:327-331.
  • [3] Will, G. (2004). Electron deformation density in titanium diboride chemical bonding in TiB2.J. Solid. State Chem., 177:628-631.
  • [4] Telle, R., Sigl, L.S., Takagi, K. (2000). Chapter 7 in Handbook of Ceramic Hard Materials edited by R. Riedel, Wiley-VCH. Weinheim, 879.
  • [5] Pierson, H.O. (1996). Handbook of Refractory Carbides and Nitrides, Noyes Publications. Westwood, New Jersey, 65.
  • [6] Huang, F., Barnard, J.A., Weaver, M.L. (2001). Ultrathin TiB2 protective films. J. Mater. Res.,16(4):945-954.Z., S. Wu, J. Wang, A. Yu and G. Wei, (2019). Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials, 9(7): 1045.
  • [7] Mishra, S. K., Rupa, P.K.P., Pathak, L.C. (2007). Surface and nanoindentation studies on nanocrystalline titanium diboride thin film deposited by magnetron sputtering. Thin Solid Films, 515:6884-6889.
  • [8] Sanchez, C.M.T., Rebollo Plata, B., Maia da Costa, M.E.H., Freire Jr. F.L. (2011). Titanium diboride thin films produced by dc-magnetron sputtering: Structural and mechanical properties.Surface & Coatings Technology, 205:3698-3702.
  • [9] Xia, M-j., Ding, H-y., Zhou, G-h., Zhang, Y. (2013). Improvement of adhesion properties of TiB2 films on 316L stainless steel by Ti interlayer films. Trans. Nonferrous. Met. Soc. China, 23:2957−2961.
  • [10] Zhang, T.F., Gan, B., Park, S-m., Wang, Q.M., Kim, K.H. (2014). Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering. Surface & Coatings Technology, 253:115–122.
  • [11] Ünsal, Zorla, E., Ipbüker, C., Biland, A., Kiisk, M., Kovaljov, S., Tkaczyk, A.H., Gulik, V. (2017). Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Des.,313:306-318.
  • [12] Sharma, A., Reddy, G.R., Varshney, L., Bharathkumar, H., Vaze, K.K., Ghosh, A.K., Kushwaha, H.S., Krishnamoorthy, T.S. (2009). Experimental investigations on mechanical and radiation shielding properties of hybrid lead–steel fiber reinforced concrete. Nucl. Eng.Des., 239:1180-1185.
  • [13] Tekin, H.O., Singh, V.P., Manici, T. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot.,121:122-125.
  • [14] Mostafa, A.M.A., Issa, S.A., Sayyed, M.I. (2017). Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3. J. Alloys Compd., 708:294-300.
  • [15] Tas, Ersundu, A.E., Büyükyıldız, M., Çelikbilek Ersundu, M., Şakar, E., Kurudirek, M. (2018). The heavy metal oxide glasses within the WO3 -MoO3 -TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy, 104:280–287.
  • [16] Sayyed, M.A., Shams, A.M., Büyükyıldız, M., Dong, M. (2018). Determination of nuclear radiation shielding properties of some tellurite glasses using. Radiat. Phys. Chem., 150:1-8.
  • [17] Çelikbilek Ersundu, M., Ersundu, A.E., Gedikoğlu, N., Şakar, E, Büyükyıldız, M., Kurudirek, M. (2019). Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2. Glasses. J.Non-Crystal Solids, 524:119648.
  • [18] Akkurt, I., Calik, A., Akyıldırım, H. (2011). The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel. Nucl. Eng. Des., 241:55-58.
  • [19] Büyükyıldız, M., Kurudirek, M., Ekici, M., İçelli, O., Karabul, Y. (2017). Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources. Prog. Nucl. Energ., 100:245-254.
  • [20] Medhat, M.E., Wang, Y. (2015). Investigation on radiation shielding parameters of oxide dispersion strengthened steels used in high temperature nuclear reactor applications. Ann. Nucl. Energy, 80:365-370.
  • [21] Singh, V.P., Badiger, N.M. (2013). Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels. Radioprotection, 48(3):431-443.
  • [22] Büyükyıldız, M. (2018). Effect of current intensity on radiological properties of joined 304L stainless steels for photon interaction. Nucl. Sci. Tech. 29: 1-8.
  • [23] Ipbüker, C. Nulk, H., Gulik, V., Biland, A., Tkaczyk, A.H. (2015). Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications. Nucl. Eng. Des., 284:27-37.
  • [24] Karabul, Y., Susam, L.A., İçelli, O., Eyecioğlu, Ö. (2015). Computation of EABF and EBF for basalt rock samples. Nucl. Instrum. Meth. A, 797:29-36.
  • [25] Jackson, D.F., Hawkes, D.J. (1981). X-ray attenuation coefficients of elements and mixtures,Physics Report. 70:169–233.
  • [26] Kurudirek, M., Topcuoglu, S. (2011). Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor. Nucl. Instrum. Meth. B, 269:1071–1081.
  • [27] İçelli, O., Mann, K.S., Yalçın, Z., Orak, S., Karakaya, V. (2013). Investigation of shielding properties of some boron compounds, Ann. Nucl. Energy, 55:341–350.
  • [28] Singh, V.P., Badiger, N.M. (2014). The gamma-ray and neutron shielding factors of fly-ash brick materials. J. Radiol. Prot., 34:89–101.
  • [29] Gerward, L., Guilbert, N., Jensen, K.B., Levring, H. (2004). WinXCom - A program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem., 71:653-654.
  • [30] Harima, Y. (1993). An historical review and current status of buildup factor calculations and applications. Radiat. Phys. Chem., 41:631-672.
  • [31] Donnet, C., Fontaine, J., Le Mogne, T., Belin, M., Héau, C., Terrat, J.P., Vaux, F., Pont,G. (1999). Diamond-like carbon-based functionally gradient coatings for space tribology. Surf. Coat. Technol., 120-121:548-554.
  • [32] Turan, A., Sahin, F.C., Goller, G., Yucel, O. (2014). Spark plasma sintering of monolithic TiB2 Ceramics. J. Ceram. Process. Res., 15(6):464–468.
  • [33] *Bashter, I.I. (1997). Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24:11389-1401.
Birincil Dil en
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Orcid: 0000-0003-2025-4916
Yazar: Mehmet BÜYÜKYILDIZ (Sorumlu Yazar)
Kurum: BURSA TECHNICAL UNIVERSITY
Ülke: Turkey


Orcid: 0000-0002-7578-1089
Yazar: Ahmet TURAN
Kurum: YALOVA UNIVERSITY
Ülke: Turkey


Orcid: 0000-0003-2084-6508
Yazar: Tolga TAVŞANOĞLU
Kurum: Muğla Sıtkı Koçman University
Ülke: Turkey


Orcid: 0000-0002-1359-4464
Yazar: Erdem ŞAKAR
Kurum: ATATÜRK ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-3879-0410
Yazar: Onuralp YÜCEL
Kurum: ISTANBUL TECHNICAL UNIVERSITY
Ülke: Turkey


Orcid: 0000-0002-1626-7629
Yazar: Murat KURUDİREK
Kurum: ATATÜRK ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 14 Aralık 2020

Bibtex @araştırma makalesi { jise731126, journal = {Journal of Innovative Science and Engineering}, issn = {}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Teknik Üniversitesi}, year = {2020}, volume = {4}, pages = {84 - 95}, doi = {10.38088/jise.731126}, title = {TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology}, key = {cite}, author = {Büyükyıldız, Mehmet and Turan, Ahmet and Tavşanoğlu, Tolga and Şakar, Erdem and Yücel, Onuralp and Kurudi̇rek, Murat} }
APA Büyükyıldız, M , Turan, A , Tavşanoğlu, T , Şakar, E , Yücel, O , Kurudi̇rek, M . (2020). TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology . Journal of Innovative Science and Engineering , 4 (2) , 84-95 . DOI: 10.38088/jise.731126
MLA Büyükyıldız, M , Turan, A , Tavşanoğlu, T , Şakar, E , Yücel, O , Kurudi̇rek, M . "TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology" . Journal of Innovative Science and Engineering 4 (2020 ): 84-95 <http://jise.btu.edu.tr/tr/pub/issue/56253/731126>
Chicago Büyükyıldız, M , Turan, A , Tavşanoğlu, T , Şakar, E , Yücel, O , Kurudi̇rek, M . "TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology". Journal of Innovative Science and Engineering 4 (2020 ): 84-95
RIS TY - JOUR T1 - TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology AU - Mehmet Büyükyıldız , Ahmet Turan , Tolga Tavşanoğlu , Erdem Şakar , Onuralp Yücel , Murat Kurudi̇rek Y1 - 2020 PY - 2020 N1 - doi: 10.38088/jise.731126 DO - 10.38088/jise.731126 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 84 EP - 95 VL - 4 IS - 2 SN - -2602-4217 M3 - doi: 10.38088/jise.731126 UR - https://doi.org/10.38088/jise.731126 Y2 - 2020 ER -
EndNote %0 Journal of Innovative Science and Engineering TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology %A Mehmet Büyükyıldız , Ahmet Turan , Tolga Tavşanoğlu , Erdem Şakar , Onuralp Yücel , Murat Kurudi̇rek %T TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology %D 2020 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 4 %N 2 %R doi: 10.38088/jise.731126 %U 10.38088/jise.731126
ISNAD Büyükyıldız, Mehmet , Turan, Ahmet , Tavşanoğlu, Tolga , Şakar, Erdem , Yücel, Onuralp , Kurudi̇rek, Murat . "TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology". Journal of Innovative Science and Engineering 4 / 2 (Aralık 2020): 84-95 . https://doi.org/10.38088/jise.731126
AMA Büyükyıldız M , Turan A , Tavşanoğlu T , Şakar E , Yücel O , Kurudi̇rek M . TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology. JISE. 2020; 4(2): 84-95.
Vancouver Büyükyıldız M , Turan A , Tavşanoğlu T , Şakar E , Yücel O , Kurudi̇rek M . TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology. Journal of Innovative Science and Engineering. 2020; 4(2): 84-95.
IEEE M. Büyükyıldız , A. Turan , T. Tavşanoğlu , E. Şakar , O. Yücel ve M. Kurudi̇rek , "TiB2 Thin Film Coated Glass and High Speed Steel (HSS) in Applications of Radiation Shielding Technology", Journal of Innovative Science and Engineering, c. 4, sayı. 2, ss. 84-95, Ara. 2020, doi:10.38088/jise.731126