Yıl 2019, Cilt 3 , Sayı 2, Sayfalar 66 - 72 2019-12-31

The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis

Emrah SARICA [1] , Vildan BİLGİN [2]


In this work, we aimed to deposit PbS thin films at relatively low temperature and therefore thin films were deposited onto preheated glass substrates at 473 K and 523 K by ultrasonically spraying of equimolar aqueous solution of lead acetate and thiourea. The thickness of deposited thin films was determined by spectroscopic ellipsometry (SE) prior to investigate physical properties of deposited PbS films. In order to investigate structural and morphological properties of PbS thin films, x-ray diffraction (XRD) patterns and Atomic Force Microscopy (AFM) images were obtained. Crystal structure, mean crystallite size, lattice parameters, micro-strain of deposited thin films were evaluated by means of XRD patterns and it was seen that deposited PbS thin films were successfully obtained in polycrystalline form with cubic crystal structure. Also lattice parameter of a  was calculated as 5.866 Å and 5.870 Å for thin films deposited at 473 K and 523 K, respectively. Additionally, the surface roughness of PbS thin films was determined via AFM images as 5.8 nm and 9.9 nm in non-contact mode. The obtained results confirm that deposition of PbS thin films can be successfully achieved at relatively low temperature. 

Ultrasonic Spray Pyrolysis, PbS Thin Films, Structural Properties, Morphological Properties
  • [1] Liu, X., Zhang, M. (2000). Studies on PbS and PbSe detectors for IR system. International journal of Infrared and Millimeter waves, 21(10), 1697-1701.
  • [2] Zhou, R., Niu, H., Ji, F., Wan, L., Mao, X., Guo, H., Xui J., Cao, G., (2016). Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics. Journal of Power Sources, 333, 107-117.
  • [3] Göde, F., Güneri, E., Emen, F. M., Kafadar, V. E., Ünlü, S. (2014). Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films. Journal of Luminescence, 147, 41-48.
  • [4] Sun, Z., Liu, Z., Li, J., Tai, G. A., Lau, S. P., Yan, F., (2012). Infrared photodetectors based on CVD‐grown graphene and PbS quantum dots with ultrahigh responsivity. Advanced materials, 24(43), 5878-5883.
  • [5] Bandyopadhyay, S. (2012). Performance of nanocrystalline PbS gas sensor with improved cross-sensitivity. Particulate Science and Technology, 30(1), 43-54.
  • [6] Ralston, R. W., Walpole, J. N., Calawa, A. R., Harman, T. C., McVittie, J. P. (1974). High cw output power in stripe‐geometry PbS diode lasers. Journal of Applied Physics, 45(3), 1323-1325.
  • [7] Göde, F., Ünlü, S. (2019). Synthesis and characterization of CdS window layers for PbS thin film solar cells. Materials Science in Semiconductor Processing, 90, 92-100.
  • [8] Soetedjo, H., Siswanto, B., Aziz, I. (2018). Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering. Results in physics, 8, 903-907.
  • [9] da Silva Filho, J. M. C., Marques, F. C. (2019). Structural and optical temperature-dependent properties of PbS thin films deposited by radio frequency sputtering. Materials Science in Semiconductor Processing, 91, 188-193.
  • [10] Kumar, S., Sharma, T. P., Zulfequar, M., & Husain, M. (2003). Characterization of vacuum evaporated PbS thin films. Physica B: Condensed Matter, 325, 8-16.
  • [11] Rosario, S. R., Kulandaisamy, I., Kumar, K. D. A., Arulanantham, A. M. S., Valanarasu, S., Youssef, M. A., Awwad, N. S. (2019). Deposition of p-type Al doped PbS thin films for heterostructure solar cell device using feasible nebulizer spray pyrolysis technique. Physica B: Condensed Matter, 411704.
  • [12] Perednis, D., Gauckler, L. J. (2005). Thin film deposition using spray pyrolysis. Journal of electroceramics, 14(2), 103-111.
  • [13] Filipovic, L., Selberherr, S., Mutinati, G. C., Brunet, E., Steinhauer, S., Köck, A., Schrank, F. (2013, July). Modeling spray pyrolysis deposition. In Proceedings of the world congress on engineering (Vol. 2, pp. 987-992).
  • [14] Ardekani, S. R., Aghdam, A. S. R., Nazari, M., Bayat, A., Yazdani, E., Saievar-Iranizad, E. (2019). A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. Journal of Analytical and Applied Pyrolysis, 104631.
  • [15] Sarica E., BilginV., (2017). Study of some physical properties of ultrasonically spray deposited silver doped lead sulphide thin films. Materials Science in Semiconductor Processing, 68, 288-294.
  • [16] Atay F., Bilgin V., Akyuz I., Kose, S., (2003). The effect of In doping on some physical properties of CdS films, Materials Science in Semiconductor Processing, 6, 197-203.
  • [17] Cullity B.D., (1956). Elements of X-ray Diffraction. Addison-Wesley Publishing Company, Inc., USA.
  • [18] Kumar R., Das R., Gupta M., Ganesan V., (2014). Preparation of nanocrystalline Sb doped PbS thin films and their structural, optical, and electrical characterization, Superlattices and microstructures. 75 601-612.
  • [19] Rashad M. M., Fouad O.A., (2014). Solvothermal growth of Ti1−xSnxO2 semiconductor nanopowders. Applied Nanoscience, 4(3), 379-383.
  • [20] Turgut G., (2018) Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis. Journal of Electronic Materials, 47(7), 4149-4155.
  • [21] Mote, V. D., Purushotham, Y., Dole, B. N. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 6.
  • [22] Sarica, E., Bilgin, V., (2017). Effect of Pb: S molar ratio in precursor solution on the properties of lead sulphide thin films by ultrasonic spray pyrolysis. Materials Science in Semiconductor Processing, 71, 42-49.
Birincil Dil en
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Orcid: 0000-0002-9339-5114
Yazar: Emrah SARICA (Sorumlu Yazar)
Kurum: BURSA TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-0937-6763
Yazar: Vildan BİLGİN
Kurum: ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Aralık 2019

Bibtex @araştırma makalesi { jise641810, journal = {Journal of Innovative Science and Engineering}, issn = {}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Teknik Üniversitesi}, year = {2019}, volume = {3}, pages = {66 - 72}, doi = {10.38088/jise.641810}, title = {The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis}, key = {cite}, author = {Sarıca, Emrah and Bilgin, Vildan} }
APA Sarıca, E , Bilgin, V . (2019). The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis . Journal of Innovative Science and Engineering , 3 (2) , 66-72 . DOI: 10.38088/jise.641810
MLA Sarıca, E , Bilgin, V . "The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis" . Journal of Innovative Science and Engineering 3 (2019 ): 66-72 <http://jise.btu.edu.tr/tr/pub/issue/50983/641810>
Chicago Sarıca, E , Bilgin, V . "The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis". Journal of Innovative Science and Engineering 3 (2019 ): 66-72
RIS TY - JOUR T1 - The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis AU - Emrah Sarıca , Vildan Bilgin Y1 - 2019 PY - 2019 N1 - doi: 10.38088/jise.641810 DO - 10.38088/jise.641810 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 66 EP - 72 VL - 3 IS - 2 SN - -2602-4217 M3 - doi: 10.38088/jise.641810 UR - https://doi.org/10.38088/jise.641810 Y2 - 2019 ER -
EndNote %0 Journal of Innovative Science and Engineering The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis %A Emrah Sarıca , Vildan Bilgin %T The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis %D 2019 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 3 %N 2 %R doi: 10.38088/jise.641810 %U 10.38088/jise.641810
ISNAD Sarıca, Emrah , Bilgin, Vildan . "The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis". Journal of Innovative Science and Engineering 3 / 2 (Aralık 2019): 66-72 . https://doi.org/10.38088/jise.641810
AMA Sarıca E , Bilgin V . The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis. JISE. 2019; 3(2): 66-72.
Vancouver Sarıca E , Bilgin V . The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis. Journal of Innovative Science and Engineering. 2019; 3(2): 66-72.
IEEE E. Sarıca ve V. Bilgin , "The Effect of Substrate Temperature on The Structure and Morphologies of PbS Thin Films Deposited by Ultrasonic Spray Pyrolysis", Journal of Innovative Science and Engineering, c. 3, sayı. 2, ss. 66-72, Ara. 2020, doi:10.38088/jise.641810