Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 3 Sayı: 2, 73 - 85, 31.12.2019
https://doi.org/10.38088/jise.638568

Öz

Kaynakça

  • [1] Balanis, A. C.(1997). Antenna theory (New York, John wiley & sons, Inc 1997).
  • [2] Zhou, R., Niu, H., Ji, F., Wan, L., Mao, X., Guo, H., Xui J., Cao, G., (2016). Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics. Journal of Power Sources, 333:107-117.
  • [3] Yang, N., Caloz, C., Wu, K. (2009). Fixed-beam frequency-tunable phase-reversal coplanar stripline antenna array. Antennas and Propagation, IEEE Transactions on, 57(3):671–681.
  • [4] Yang, N., Caloz, C., & Wu, K. (2010). High-efficiency balanced phase-reversal antennas: Principle, bandwidth enhancement, frequency tuning, and beam scanning. In Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference (ANTEM-AMEREM), 2010 14th International Symposium.
  • [5] Bala, B.D; Muhammad, B; Abdu, A.M.; Iliyasu, A.Y; and Tijjani, A.(2017). Microstrip patch antenna array with gain enhancement for wlan applications. Bayero Journal Of Engineering And Technology(Bjet) 12(2):18-25.
  • [6] Kumari, N., Kumar , A..S. Modified Design of Microstrip Patch Antenna for WiMAX Communication System.
  • [7] Yang, N., Caloz, C.,Wu, K. (2008). Substrate integrated waveguide power divider based on multimode interference imaging. In Microwave Symposium Digest, 2008 IEEE MTT-S International, pp. 883–886.
  • [8] RajeshwarLalDua, Himanshu Singh, (2012). 2.45 GHz Microstrip Patch Antenna with Defected Ground Structure for Bluetooth‖, IJSCE, ISSN: 2231-2307, Volume-1.
  • [9] MouloudChallal, A.A., MokraneDehmas. (2011). Rectangular Patch Antenna Performances Improvement Employing Slotted Rectangular shaped for WLAN Applications‖, IJCSI, Vol. 8, Issue 3, No. 1, May.
  • [10] Khraisat, Y. S. H. (2012). Design of 4 Elements Rectangular Microstrip Patch Antenna with High Gain for 2.4 GHz Applications. Modern Applied Science, 6(1), pp.68–74. doi:10.5539/mas. 6(1):68.
  • [11] Venkateswaran, A. (2009). Analysis of Planar EBG Structures Using Transmission Line Models, McGill University, Montreal Canada.
  • [12] Sounas, D. L., Caloz, C. (2011). Graphene-based non-reciprocal metasurface. In Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on Antennas and Propagation. IEEE, pp. 2419–2422.
  • [13] Ali, M.T., Jaafar, H., Subahir, S., Yusof, A. L.(2012) “Gain enhancement of air substrate at 5.8 GHz for microstrip antenna array” IEEE conference 978-1-4577-1559-4112.
  • [15] Horng-Dean, C., Chow-Yen-Desmond, S., Jun-Yi, W., Tsung-Wen, C.(2012). Broadband High-Gain Microstrip Array Antennas for WiMAX Base Station. IEEE transactions on antennas and propagation,vol. 60, no. 8, august.
  • [16] Iriarte, J. C., Ederra, I., Gonzalo, R., Gosh, A., Laurin, J. J.,Caloz,C.De Maagt, P. (2006). EBG superstrate for gain enhancement of a circularly polarized patch antenna. In Antennas and Propagation Society International Symposium 2006, IEEE,pp. 2993–2996.
  • [17] Hammerstad, E., Jensen, O.(1980). Accurate Models for Microstrip Computer Aided Design. 1980 IEEE MTT S International Microwave Symposium, Digest, (Washington), pp. 407-409.
  • [14] Wang, H., Huang, X.B., Sang, D.G.( 2008). A single layer wideband U-slot microstrip patch antenna array. IEEE antennas and wireless propagation letters, vol. 7.

Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications

Yıl 2019, Cilt: 3 Sayı: 2, 73 - 85, 31.12.2019
https://doi.org/10.38088/jise.638568

Öz

An octagonal microstrip
patch antenna is presented in this paper. A small sized microstrip patch
antenna with a high gain has been the focusing point of so many researches over
the years. Microstrip patch antenna is basically known to have a low gain as a
result various techniques are carried out in order to enhance the gain. In this
work, a single patch octagonal microstrip patch antenna and a 1x2 octagonal
patch antenna array are designed and the effects are studied. The structure is
designed on four different substrates FR4, Duroid, Arlon and Rogers substrate
materials. Copper is used as the patch and ground material. The antenna is
designed on a small substrate material and it is probe fed. The simulated
results of the array reveals a gain increase of 6.25dB from 3.6dB of the single
patch on the FR4 substrate. The simulated results of the antenna in terms of
reflection coefficients, voltage standing wave ratio (VSWR) and gains realized
showed that the antenna has prospective applications for 4.6 and 5.9GHz
applications. Conclusively, the antenna with the FR4 substrate shows the best
antenna performance in terms of Gain and Return loss and its operating
frequency falls under the WiMAX and WLAN range compared to the other
substrates. The tool used for the design and simulation is the Computer
Simulation Technology (CST) microwave studio.

Kaynakça

  • [1] Balanis, A. C.(1997). Antenna theory (New York, John wiley & sons, Inc 1997).
  • [2] Zhou, R., Niu, H., Ji, F., Wan, L., Mao, X., Guo, H., Xui J., Cao, G., (2016). Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics. Journal of Power Sources, 333:107-117.
  • [3] Yang, N., Caloz, C., Wu, K. (2009). Fixed-beam frequency-tunable phase-reversal coplanar stripline antenna array. Antennas and Propagation, IEEE Transactions on, 57(3):671–681.
  • [4] Yang, N., Caloz, C., & Wu, K. (2010). High-efficiency balanced phase-reversal antennas: Principle, bandwidth enhancement, frequency tuning, and beam scanning. In Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference (ANTEM-AMEREM), 2010 14th International Symposium.
  • [5] Bala, B.D; Muhammad, B; Abdu, A.M.; Iliyasu, A.Y; and Tijjani, A.(2017). Microstrip patch antenna array with gain enhancement for wlan applications. Bayero Journal Of Engineering And Technology(Bjet) 12(2):18-25.
  • [6] Kumari, N., Kumar , A..S. Modified Design of Microstrip Patch Antenna for WiMAX Communication System.
  • [7] Yang, N., Caloz, C.,Wu, K. (2008). Substrate integrated waveguide power divider based on multimode interference imaging. In Microwave Symposium Digest, 2008 IEEE MTT-S International, pp. 883–886.
  • [8] RajeshwarLalDua, Himanshu Singh, (2012). 2.45 GHz Microstrip Patch Antenna with Defected Ground Structure for Bluetooth‖, IJSCE, ISSN: 2231-2307, Volume-1.
  • [9] MouloudChallal, A.A., MokraneDehmas. (2011). Rectangular Patch Antenna Performances Improvement Employing Slotted Rectangular shaped for WLAN Applications‖, IJCSI, Vol. 8, Issue 3, No. 1, May.
  • [10] Khraisat, Y. S. H. (2012). Design of 4 Elements Rectangular Microstrip Patch Antenna with High Gain for 2.4 GHz Applications. Modern Applied Science, 6(1), pp.68–74. doi:10.5539/mas. 6(1):68.
  • [11] Venkateswaran, A. (2009). Analysis of Planar EBG Structures Using Transmission Line Models, McGill University, Montreal Canada.
  • [12] Sounas, D. L., Caloz, C. (2011). Graphene-based non-reciprocal metasurface. In Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on Antennas and Propagation. IEEE, pp. 2419–2422.
  • [13] Ali, M.T., Jaafar, H., Subahir, S., Yusof, A. L.(2012) “Gain enhancement of air substrate at 5.8 GHz for microstrip antenna array” IEEE conference 978-1-4577-1559-4112.
  • [15] Horng-Dean, C., Chow-Yen-Desmond, S., Jun-Yi, W., Tsung-Wen, C.(2012). Broadband High-Gain Microstrip Array Antennas for WiMAX Base Station. IEEE transactions on antennas and propagation,vol. 60, no. 8, august.
  • [16] Iriarte, J. C., Ederra, I., Gonzalo, R., Gosh, A., Laurin, J. J.,Caloz,C.De Maagt, P. (2006). EBG superstrate for gain enhancement of a circularly polarized patch antenna. In Antennas and Propagation Society International Symposium 2006, IEEE,pp. 2993–2996.
  • [17] Hammerstad, E., Jensen, O.(1980). Accurate Models for Microstrip Computer Aided Design. 1980 IEEE MTT S International Microwave Symposium, Digest, (Washington), pp. 407-409.
  • [14] Wang, H., Huang, X.B., Sang, D.G.( 2008). A single layer wideband U-slot microstrip patch antenna array. IEEE antennas and wireless propagation letters, vol. 7.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Abdullahi Auwal Gabari

Zainab Yunusa 0000-0002-2843-3145

Mohd Nizar Hamidon

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019Cilt: 3 Sayı: 2

Kaynak Göster

APA Gabari, A. A., Yunusa, Z., & Hamidon, M. N. (2019). Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications. Journal of Innovative Science and Engineering, 3(2), 73-85. https://doi.org/10.38088/jise.638568
AMA Gabari AA, Yunusa Z, Hamidon MN. Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications. JISE. Aralık 2019;3(2):73-85. doi:10.38088/jise.638568
Chicago Gabari, Abdullahi Auwal, Zainab Yunusa, ve Mohd Nizar Hamidon. “Octagonal Microstrip Patch Antenna Array With Gain Enhancement for WiMAX and WLAN Applications”. Journal of Innovative Science and Engineering 3, sy. 2 (Aralık 2019): 73-85. https://doi.org/10.38088/jise.638568.
EndNote Gabari AA, Yunusa Z, Hamidon MN (01 Aralık 2019) Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications. Journal of Innovative Science and Engineering 3 2 73–85.
IEEE A. A. Gabari, Z. Yunusa, ve M. N. Hamidon, “Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications”, JISE, c. 3, sy. 2, ss. 73–85, 2019, doi: 10.38088/jise.638568.
ISNAD Gabari, Abdullahi Auwal vd. “Octagonal Microstrip Patch Antenna Array With Gain Enhancement for WiMAX and WLAN Applications”. Journal of Innovative Science and Engineering 3/2 (Aralık 2019), 73-85. https://doi.org/10.38088/jise.638568.
JAMA Gabari AA, Yunusa Z, Hamidon MN. Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications. JISE. 2019;3:73–85.
MLA Gabari, Abdullahi Auwal vd. “Octagonal Microstrip Patch Antenna Array With Gain Enhancement for WiMAX and WLAN Applications”. Journal of Innovative Science and Engineering, c. 3, sy. 2, 2019, ss. 73-85, doi:10.38088/jise.638568.
Vancouver Gabari AA, Yunusa Z, Hamidon MN. Octagonal Microstrip Patch antenna array with gain enhancement for WiMAX and WLAN Applications. JISE. 2019;3(2):73-85.

Cited By


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.