Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of Fe addition on high temperature transformations of specific silica sources

Yıl 2023, Cilt: 9 Sayı: 2, 304 - 309, 31.08.2023

Öz

Alternative sources of silica, most abundant in the earth's crust, are converted into useful high-temperature crystalline phases. In this study, temperature dependent phase transformations of silica sand and rice husk sourced silica with and without the addition of 10 % by weight elemental iron were investigated. For this purpose, firstly, the initial silica sources were calcined at 700 °C for 2 hours, ground into fine powder and placed on a carbon substrate and heat treated in a tube furnace at 1500 °C for 2 hours in argon atmosphere. The phase transformation characteristics of the final material were made by XRD and SEM analysis. A mixture of cristobalite-tridymite and high purity cristobalite were observed in silica sand with and without Fe addition, respectively. In the same order, XRD phase pure tridymite and cristobalite phases were observed in rice husk ash. As a result, XRD phase pure or tailored transformations of these crystalline phases were obtained depending on the Fe addition and silica source.

Kaynakça

  • [1] R. Ratnawulan, A. Fauzi and A. E. S. Hayati, “Characterization of silica sand due to the influence of calcination temperature,” IOP Conference Series: Materials Science and Engineering, vol. 335 no. 1, pp. 012008, 2018. doi:10.1088/1757-899X/335/1/012008.
  • [2] N. Soltani, A. Bahrami, M. I. Pech-Canul and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899-935, 2015. doi:10.1016/j.cej.2014.11.056
  • [3] U. H. Heo, K. Sankar, W. M. Kriven and S. S. Musil, “Rice husk ash as a silica source in geopolymer formulation,” Ceramic Engineering and Science Proceedings, vol. 38, no. 10, pp. 87-102, 2015. doi:10.1002/9781119040293.ch7
  • [4] C. Bagci, K. Karacif, B. Alkan and H. Arik, “The use of rice husk ash-based SiC particles as reinforcement in geopolymer composites,” Journal of Polytechnic, (early view), 2023. doi:10.2339/politeknik.1130886
  • [5] S. S. Hossain, L. Mathur and P. K. Roy, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, vol. 6, no. 4, pp. 299-313, 2018. doi:10.1080/21870764.2018.1539210
  • [6] P. J. Heaney, “Structure and chemistry of the low-pressure silica polymorphs”, silica physical behaviour,” Geochemistry and Materials Applications, vol. 29, pp. 1-32, 1994. doi:10.1515/9781501509698-006
  • [7] T. Demuth, Y. Jeanvoine, J. Hafner and J. G. Angyan, “Polymorphism in silica studied in the local density and generalized-gradient approximations,” J. Phys.: Condens. Matter, vol.11, pp 3833–3874,1999. doi:10.1088/0953-8984/11/19/306
  • [8] K. Mohanta and P. Bhargava, “Effect of milling time on the rheology of highly loaded aqueous-fused silica slurry,” J. Am. Ceram. Soc., vol. 91, no. 2, pp 640–643, 2008. doi:10.1111/j.1551-2916.2007.02153.x
  • [9] X. Yang, D. Lu, B. Zhu, Z. Sun, G. Li, J. Li, Q. Liu and G. Jiang, “Phase transformation of silica particles in coal and biomass combustion processes,” Environmental Pollution, vol. 292, pp. 118312, 2022. doi:10.1016/j.envpol.2021.118312
  • [10] M. J. Kaleli, P. K. Kamweru, J. M. Gichumbi and F. G. Ndiritu, “Characterization of rice husk ash prepared by open air burning and furnace calcination,” Journal of Chemical Engineering and Materials Science, vol. 11, no. 2, pp. 24-30, 2020. doi:10.5897/JCEMS2020.0348
  • [11] K. N. Maamur, U. S. Jais, and S. Y. S. Yahya, “Magnetic phase development of iron oxide‐SiO2 aerogel and xerogel prepared using rice husk ash as precursor,” In AIP Conference Proceedings, vol. 1217, no. 1, pp. 294-301, 2010,. doi:org/10.1063/1.3377832
  • [12] N. P. Hoolikantimath, K. G. Guptha, R. K. Rao and P. A. Ghorpade, “Effect of temperature on sodium silicate bonded sand and its phase transformations to cristobalite in metal casting industry,” JOM, vol. 74, no. 2, pp. 465-473, 2022. doi:10.1007/s11837-021-05056-4
  • [13] N. P. Hoolikantimath, S. Dodamani, K. G. Guptha, R. K. Rao and P. A. Ghorpade, “Influence of metal casting temperature and cations on phase transformation of silica sand to cristobalite,” International Journal of Metalcasting, pp. 1-12. 2022. doi:1007/s40962-022-00921-7
  • [14] S. A. Saad, A. N. Jamaluddin, S. A. Masjuki, S., Beddu and N. Shafiq, “Influences of grinding process on the physical and morphological characteristics of ultrafine treated rice husk ash,” Geomate Journal, vol. 23, no. 97, pp. 74-81, 2022. doi:10.21660/2022.97.3117
  • [15] Y. Shinohara and N. Kohyama “Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating,” Industrial health, vol. 42, no. 2, pp. 277-285, 2004. doi:10.2486/indhealth.42.277
  • [16] U. Nurbaiti and S. Pratapa, “Synthesis of cristobalite from silica sands of Tuban and Tanah Laut,” In Journal of Physics: Conference Series, vol. 983, no. 1, pp. 012014, 2018. doi:10.1088/1742-6596/983/1/012014
  • [17] R. D. Febo, L. Casas, Á. A. del Campo, J. Rius, O. Vallcorba, J. C. Melgarejo and C. Capelli, “Recognizing and understanding silica-polymorph microcrystals in ceramic glazes,” Journal of the European Ceramic Society, vol. 40, no. 15, pp. 6188-6199, 2020. doi:10.1016/j.jeurceramsoc.2020.05.063
  • [18] A. T. Vu, T. N. Xuan and C. H. Lee, “Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes,” Journal of Water Process Engineering, vol. 28, pp.169-180, 2019. doi:10.1016/J.JWPE.2019.01.019
  • [19] V. Erofeev, A. Yusupova and A. Bobrishev, “Activation of sulfur and opal-cristobalite-tridymite phase in sulfur concrete technology,” IOP Conference Series: Materials Science and Engineering, vol. 463, no. 4, pp. 042033, 2018. doi:10.1088/1757-899X/463/4/042033
  • [20] S. Pukird, P. Chamninok, S. Samran, P. Kasian, K. Noipa and L. Chow, “Synthesis and characterization of SiO2 nanowires prepared from rice husk ash,” Journal of Metals, Materials and Minerals, vol. 19, no. 2, pp. 33-37, 2009.
  • [21] A. Gupta, V. Pandey, M. K. Yadav, K. Mohanta and M. R. Majhi, “A comparative study on physio-mechanical properties of silica compacts fabricated using rice husk ash derived amorphous and crystalline silica,” Ceramics International, vol. 48, no. 23, pp. 35750-35758, 2022. doi:10.1016/j.ceramint.2022.07.098
  • [22] F. Z. Sobrosa, N. P. Stochero, E. Marangon and M. D. Tier, “Development of refractory ceramics from residual silica derived from rice husk ash,” Ceramics International, vol. 43, no. 9, pp. 7142-7146, 2017. doi:10.1016/j.ceramint.2017.02.147
  • [23] Zainuri, M. “Synthesis of SiO nanopowders containing quartz and cristobalite phases from silica sands,” Materials Science-Poland, vol. 33, no. 1, pp. 47-55, 2015. doi:10.1515/msp-2015-0008
  • [24] S. Kwon, Y. Kim and Y. Roh, “Effective cesium removal from Cs-containing water using chemically activated opaline mudstone mainly composed of opal-cristobalite/tridymite (opal-CT),” Scientific Reports, vol. 11, no. 1, pp. 1-15, 2021. doi:10.1038/s41598-021-94832-y
  • [25] X. H. Zhang, Y. Li, Z. H. Tian, Y. Sun, C. H. Ma and Q. Y. Zheng, “Transformation mechanisms of cemented silica and crystalline silica to tridymite in silica bricks,” Interceram-International Ceramic Review, vol. 71, no. 3, pp. 20-29, 2022. doi:10.1007/s42411-022-0505-0

Belirli Silika Kaynaklarının Yüksek Sıcaklık Dönüşümlerinde Fe İlavesinin Etkisi

Yıl 2023, Cilt: 9 Sayı: 2, 304 - 309, 31.08.2023

Öz

Alternatif silika kaynakları yer kabuğunda bol bulunduklarından, yararlı yüksek sıcaklıkta kristal fazlara dönüştürülürler. Bu çalışmada, ağırlıkça % 10 elemental demir katkılı ve katkısız silis kumu ve pirinç kabuğu esaslı silislerin sıcaklığa bağlı faz dönüşümleri incelenmiştir. Bu amaçla, ilk olarak başlangıç silika kaynakları 700 °C' de 2 saat kalsine edilmiş, ince toz haline getirilmiş ve bir karbon altlık üzerine yerleştirildikten sonra argon atmosferinde 1500 °C'de bir tüp fırında 2 saat ısıl işleme tabi tutulmuştur. Nihai malzemenin faz dönüşüm karakteristikleri XRD ve SEM analizi ile yapılmıştır. Fe katkili ve katkisiz silis kumunda sırasıyla bir kristobalit-tridimit karışımı ve yüksek saflıkta kristobalit gözlenmistir. Aynı sıra ile pirinç kabuğu külünde XRD faz saf tridimit ve kristobalit fazları gözlenmiştir. Sonuç olarak, Fe katkisina ve silis kaynağına bağlı olarak bu kristal fazların XRD faz saf veya uyarlanmış dönüşümleri elde edilmistir.

Kaynakça

  • [1] R. Ratnawulan, A. Fauzi and A. E. S. Hayati, “Characterization of silica sand due to the influence of calcination temperature,” IOP Conference Series: Materials Science and Engineering, vol. 335 no. 1, pp. 012008, 2018. doi:10.1088/1757-899X/335/1/012008.
  • [2] N. Soltani, A. Bahrami, M. I. Pech-Canul and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899-935, 2015. doi:10.1016/j.cej.2014.11.056
  • [3] U. H. Heo, K. Sankar, W. M. Kriven and S. S. Musil, “Rice husk ash as a silica source in geopolymer formulation,” Ceramic Engineering and Science Proceedings, vol. 38, no. 10, pp. 87-102, 2015. doi:10.1002/9781119040293.ch7
  • [4] C. Bagci, K. Karacif, B. Alkan and H. Arik, “The use of rice husk ash-based SiC particles as reinforcement in geopolymer composites,” Journal of Polytechnic, (early view), 2023. doi:10.2339/politeknik.1130886
  • [5] S. S. Hossain, L. Mathur and P. K. Roy, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, vol. 6, no. 4, pp. 299-313, 2018. doi:10.1080/21870764.2018.1539210
  • [6] P. J. Heaney, “Structure and chemistry of the low-pressure silica polymorphs”, silica physical behaviour,” Geochemistry and Materials Applications, vol. 29, pp. 1-32, 1994. doi:10.1515/9781501509698-006
  • [7] T. Demuth, Y. Jeanvoine, J. Hafner and J. G. Angyan, “Polymorphism in silica studied in the local density and generalized-gradient approximations,” J. Phys.: Condens. Matter, vol.11, pp 3833–3874,1999. doi:10.1088/0953-8984/11/19/306
  • [8] K. Mohanta and P. Bhargava, “Effect of milling time on the rheology of highly loaded aqueous-fused silica slurry,” J. Am. Ceram. Soc., vol. 91, no. 2, pp 640–643, 2008. doi:10.1111/j.1551-2916.2007.02153.x
  • [9] X. Yang, D. Lu, B. Zhu, Z. Sun, G. Li, J. Li, Q. Liu and G. Jiang, “Phase transformation of silica particles in coal and biomass combustion processes,” Environmental Pollution, vol. 292, pp. 118312, 2022. doi:10.1016/j.envpol.2021.118312
  • [10] M. J. Kaleli, P. K. Kamweru, J. M. Gichumbi and F. G. Ndiritu, “Characterization of rice husk ash prepared by open air burning and furnace calcination,” Journal of Chemical Engineering and Materials Science, vol. 11, no. 2, pp. 24-30, 2020. doi:10.5897/JCEMS2020.0348
  • [11] K. N. Maamur, U. S. Jais, and S. Y. S. Yahya, “Magnetic phase development of iron oxide‐SiO2 aerogel and xerogel prepared using rice husk ash as precursor,” In AIP Conference Proceedings, vol. 1217, no. 1, pp. 294-301, 2010,. doi:org/10.1063/1.3377832
  • [12] N. P. Hoolikantimath, K. G. Guptha, R. K. Rao and P. A. Ghorpade, “Effect of temperature on sodium silicate bonded sand and its phase transformations to cristobalite in metal casting industry,” JOM, vol. 74, no. 2, pp. 465-473, 2022. doi:10.1007/s11837-021-05056-4
  • [13] N. P. Hoolikantimath, S. Dodamani, K. G. Guptha, R. K. Rao and P. A. Ghorpade, “Influence of metal casting temperature and cations on phase transformation of silica sand to cristobalite,” International Journal of Metalcasting, pp. 1-12. 2022. doi:1007/s40962-022-00921-7
  • [14] S. A. Saad, A. N. Jamaluddin, S. A. Masjuki, S., Beddu and N. Shafiq, “Influences of grinding process on the physical and morphological characteristics of ultrafine treated rice husk ash,” Geomate Journal, vol. 23, no. 97, pp. 74-81, 2022. doi:10.21660/2022.97.3117
  • [15] Y. Shinohara and N. Kohyama “Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating,” Industrial health, vol. 42, no. 2, pp. 277-285, 2004. doi:10.2486/indhealth.42.277
  • [16] U. Nurbaiti and S. Pratapa, “Synthesis of cristobalite from silica sands of Tuban and Tanah Laut,” In Journal of Physics: Conference Series, vol. 983, no. 1, pp. 012014, 2018. doi:10.1088/1742-6596/983/1/012014
  • [17] R. D. Febo, L. Casas, Á. A. del Campo, J. Rius, O. Vallcorba, J. C. Melgarejo and C. Capelli, “Recognizing and understanding silica-polymorph microcrystals in ceramic glazes,” Journal of the European Ceramic Society, vol. 40, no. 15, pp. 6188-6199, 2020. doi:10.1016/j.jeurceramsoc.2020.05.063
  • [18] A. T. Vu, T. N. Xuan and C. H. Lee, “Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes,” Journal of Water Process Engineering, vol. 28, pp.169-180, 2019. doi:10.1016/J.JWPE.2019.01.019
  • [19] V. Erofeev, A. Yusupova and A. Bobrishev, “Activation of sulfur and opal-cristobalite-tridymite phase in sulfur concrete technology,” IOP Conference Series: Materials Science and Engineering, vol. 463, no. 4, pp. 042033, 2018. doi:10.1088/1757-899X/463/4/042033
  • [20] S. Pukird, P. Chamninok, S. Samran, P. Kasian, K. Noipa and L. Chow, “Synthesis and characterization of SiO2 nanowires prepared from rice husk ash,” Journal of Metals, Materials and Minerals, vol. 19, no. 2, pp. 33-37, 2009.
  • [21] A. Gupta, V. Pandey, M. K. Yadav, K. Mohanta and M. R. Majhi, “A comparative study on physio-mechanical properties of silica compacts fabricated using rice husk ash derived amorphous and crystalline silica,” Ceramics International, vol. 48, no. 23, pp. 35750-35758, 2022. doi:10.1016/j.ceramint.2022.07.098
  • [22] F. Z. Sobrosa, N. P. Stochero, E. Marangon and M. D. Tier, “Development of refractory ceramics from residual silica derived from rice husk ash,” Ceramics International, vol. 43, no. 9, pp. 7142-7146, 2017. doi:10.1016/j.ceramint.2017.02.147
  • [23] Zainuri, M. “Synthesis of SiO nanopowders containing quartz and cristobalite phases from silica sands,” Materials Science-Poland, vol. 33, no. 1, pp. 47-55, 2015. doi:10.1515/msp-2015-0008
  • [24] S. Kwon, Y. Kim and Y. Roh, “Effective cesium removal from Cs-containing water using chemically activated opaline mudstone mainly composed of opal-cristobalite/tridymite (opal-CT),” Scientific Reports, vol. 11, no. 1, pp. 1-15, 2021. doi:10.1038/s41598-021-94832-y
  • [25] X. H. Zhang, Y. Li, Z. H. Tian, Y. Sun, C. H. Ma and Q. Y. Zheng, “Transformation mechanisms of cemented silica and crystalline silica to tridymite in silica bricks,” Interceram-International Ceramic Review, vol. 71, no. 3, pp. 20-29, 2022. doi:10.1007/s42411-022-0505-0
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Cengiz Bagcı 0000-0001-9931-0778

Murat Zengin 0000-0002-3980-1062

Burak Kaya 0000-0002-6218-7021

Özgür Güven 0000-0002-2969-2085

Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 7 Şubat 2023
Kabul Tarihi 16 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE C. Bagcı, M. Zengin, B. Kaya, ve Ö. Güven, “The effect of Fe addition on high temperature transformations of specific silica sources”, GMBD, c. 9, sy. 2, ss. 304–309, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg