Araştırma Makalesi
BibTex RIS Kaynak Göster

Tarım arazileri ve farklı yaşlardaki sarıçam meşçerelerinde (Pinus sylvestris L.) toprak organik karbon ve azot stoklarının değişimi

Yıl 2023, Cilt: 4 Sayı: 1, 19 - 26, 27.06.2023
https://doi.org/10.59751/agacorman.1276573

Öz

Bu çalışmada, Kastamonu ili İnebolu ilçesinde yayılış gösteren sarıçam (Pinus sylvestris L.) meşcereleri ve bitişiği tarım arazilerinde ölü örtü miktarı, toprak organik karbon (TOK) ve toplam azot (TA) stokları üzerinde farklı arazi kullanım şeklinin etkisi araştırılmıştır. Farklı yaşlardaki sarıçam meşcereleri (18- ve 30-yaş) ile en az 40 yıldır orman arazisinden tarım arazisine dönüştürülmüş alanlardan örnekleme yapılmıştır. Toprak örnekleri 5 farklı toprak derinlik kademesinden alınmış ve toprak örneklerinin pH’ı, hacim ağırlığı, alınabilir fosfor, yarayışlı potasyum, organik madde, toprak tekstürü, TOK ve TA miktarları belirlenmiştir. Toplam TOK ve TA stokları ise toprak derinliği, hacim ağırlığı, karbon ve azot miktarı çarpılarak hesaplanmıştır. Sonuçlar, farklı yaşlarda sarıçam meşcereleri ve tarım arazileri arasında ölü örtü miktarı, TOK ve TA stokları arasında önemli farklılıklar olduğunu göstermiştir. Genel olarak, 30 yaşındaki sarıçam meşceresinde TOK stoku en düşük belirlenirken (86.60 t C ha-1), bunu sırasıyla tarım alanı (93.70 t ha-1), ve 18 yaşındaki sarıçam meşceresi (115.0 t ha-1) takip etmiştir. Benzer şekilde, TA stoku ise en fazla 18 yaşındaki sarıçam meşceresinde (7.86 t ha-1), en düşük 30 yaşındaki sarıçam meşceresinde (5.74 t ha-1) tespit edilmiştir. Tarım arazilerinde ölü miktarı en düşük iken, sarıçam meşcerelerinde yaşa bağlı olarak orman katmanında biriken ölü örtü miktarı artış göstermiştir. Sonuç olarak, ölü örtü miktarı, TOK ve TA stokları üzerinde farklı arazi kullanım durumu ile toprak derinlik kademelerinin önemli derecede etkisi olduğu anlaşılmıştır. Bu nedenle, ölü örtü miktarı, TOK ve TA stokları ile ilgili gelecekteki araştırmalarda arazi kullanım türü de dikkate alınmalı ve daha detaylı çalışmalar yürütülmelidir.

Destekleyen Kurum

Kastamonu Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

KUBAP03/2015-1

Kaynakça

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., …&…Yurtsever, A. vd., 2011. 1:1.250 000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Albrektson, A., 1988. Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3(1-4), 333-342. Atalay, İ., 2006. Toprak Oluşumu, Sınıflandırılması ve Coğrafyası. 3. Baskı, Ağaçlandırma ve Erozyon Kontrolü Genel Müdürlüğü Yayını.
  • Augusto, L., Bakker, M.R., Morel, C., Meredieu, C., Trichet, P., Badeau, V., ... & Ranger, J. 2010. Is ‘grey literature’a reliable source of data to characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern France. European Journal of Soil Science, 61(6), 807-822.
  • Binkley, D., 1986. Forest Nutrition Management. John Wiley & Sons.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Bolin, B., Sukumar, R., 2000. Global Perspective. In: Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. (Eds.), Land use, Land-use Change, and Forestry. Special Report of the IPCC. Cambridge University Press, Cambridge, UK, Pp. 23–51.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5):464-465.
  • Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic and available forms phosphorus in soils. Soil Science, 59:45-49.
  • Bruun, T.B., Elberling, B., de Neergaard, A., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development, 26(3):272-283.
  • Çepel, N., 1977. Türkiye'nin önemli yetişme bölgelerindeki saf sarıçam ormanlarının gelişimi ile bazı edafik ve fizyografik etkenler arasındaki ilişkiler. İstanbul Üniversitesi Orman Fakültesi Dergisi, 26(2):25-64. Çepel, N., 1996. Toprak İlmi Ders Kitabı -Orman topraklarının karakteristikleri, toprakların oluşumu, özellikleri ve ekolojik bakımdan değerlendirilmesi. İstanbul Üniversitesi Yayın No, 3945, Orman Fakültesi Yayın No, 438, İstanbul.
  • Çepel, N., Dündar, M., Özdemir, T., Neyişçi, T., 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa verilen besin maddeleri miktarları, Ormancılık Araştırma Enstitüsü Yayınları.
  • de Moraes, J.F.L., Volkoff, B., Cerri, C.C., Bernoux, M., 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondonia, Brazil. Geoderma 70: 63-81.
  • Deng, L., Zhu, G.Y., Tang, Z.S., Shangguan, Z.P., 2016. Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5: 127–138.
  • Desjardins, T., Barros, E., Sarrazin, M., Girardin, C., Mariotti, A., 2004. Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agriculture, Ecosystems & Environment, 103(2):365-373.
  • Díaz-Pinés, E., Rubio, A., Van Miegroet, H., Montes, F., Benito, M., 2011. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?. Forest Ecology and Management, 262(10):1895-1904.
  • DMİ, 2016. Devlet Meteoroloji İşleri Gn. Md., Kastamonu Meteoroloji İl Müdürlüğü, Kastamonu ve İnebolu Meteoroloji İstasyonu Verileri, 1960- 2015. Kastamonu.
  • Durán Zuazo, V.H., Rodriguez Pleguezuelo, C.R., Cuadros Tavira, S., Francia Martínez, J.R., 2014. Linking soil organic carbon stocks to land-use types in a mediterranean agroforestry landscape. Journal of Agricultural Science and Technology, 16(3):667-679.
  • Erickson, H., Keller, M., Davidson, E.A., 2001. Nitrogen oxide fluxes and nitrogen cycling during postagricultural succession and forest fertilization in the humid tropics. Ecosystems, 4:64-84.
  • FAO (Food and Agriculture Organization of the United Nations), 2015. Major Soil Groups of the World (FGGD) (GeoLayer).
  • FAO 1998. World Reference Base for Soil Resources, by ISSS–ISRIC–FAO.
  • Fearnside, P.M., Barbosa, R.I., 1998. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 108 (1-2):147-166. Grünzweig, J.M., Sparrow, S.D., Yakır, D., Chapin, F.S., 2004. Impact of agricultural land-use change on carbon storage in Boreal Alaska. Global Change Biology 10(4):452-472.
  • Güner, Ş.T., 2006. Türkmen Dağı (Eskişehir, Kütahya) Sarıçam (Pinus sylvestris ssp. hamata) ormanlarının yükseltiye bağlı büyüme beslenme ilişkilerinin belirlenmesi. Doktora tezi, Eskişehir.
  • Houghton, R.A., 1999. The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990. Tellus, 51B:298-313.
  • IPCC, 2013. Summary for Policymakers. in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.
  • IUSS Working Group, 2014. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO, Rome.
  • Jackson, M.L., 1962. Soil Chemical Analysis. (Constable and Company, Ltd: London).
  • John, B., Yamashita, T., Ludwig, B., Flessa, H., 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128:63-79.
  • Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140(2):227-238.
  • Kantarcı, M., 2000. Toprak İlmi. İstanbul Ün. Orman Fak. Yayınları No:462, s:420, İstanbul.
  • Knudsen, D., Peterson, G.A., Pratt, P.F. 1982. Lithium, Sodium, and Potassium. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), Pp. 225-246.
  • Köhler, L., Hölscher, D., Leuschner, C., 2008. High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecology, 199(2):163-173. Koolen, A. J., & Kuipers, H., (1983). Agricultural soil mechanics. Springer.
  • Landsberg, J.J., Gower, S.T., 1997. Applications of Physiological Ecology to Forest Management. Elsevier.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134(3-4):251-256.
  • Makineci, E., 1999. Araştırma ormanındaki baltalıkların koruya dönüştürülmesi işlemlerinin ölü örtü ve topraktaki azot değişimine etkileri, Doktora Tezi, İstanbul Üniversitesi, 213s.
  • McGrath, D.A., Smith, C.K., Gholz, H.L., de Assis Oliveira, F., 2001. Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4(7):625-645.
  • Murty, D., Kirschbaum, M.U., Mcmurtrie, R.E., Mcgilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2):105-123.
  • Neill, C., Melillo, J.M., Steudler, P.A., Cerri, C.C., de Moraes, J.F.L., Piccolo, M.C., Brito, M., 1997a. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Eco Appl., 7(4):1216–25.
  • Neill, C., Piccolo, M.C., Cerri, C.C., Steudler, P.A., Melillo, J. M., Brito, M., 1997b. Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia, 110:243–52.
  • OGM 2020. Türkiye Orman Varlığı, Orman Genel Müdürlüğü Yayınları, Ankara.
  • Parfitt, R.L., Theng, B.K.G., Whitton, J.S., Shepherd, T.G., 1997. Effects of clay minerals and land use on organic matter pools. Geoderma, 75(1-2):1-12.
  • Paul, E.A., 1984. Dynamics of soil organic matter. Plant Soil, 76:275–285.
  • Perin, E., Ceretta, C.A., Klamt, E., 2003. Time of agricultural use and chemical properties of two Ferralsols in the Planalto Médio region of the State of Rio Grande do Sul, Brazil. Revista Brasileira de Ciência do Solo, 27:665-674.
  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B., Schumacher, J., Gensior, A., 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Global Change Biology, 17(7):2415–2427.
  • Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land‐use change: processes and potential. Global Change Biology, 6(3):317-327.
  • Ranger, J., Gerard, F., Lindemann, M., Gelhaye, D., Gelhaye, L., 2003. Dynamics of litterfall in a chronosequence of Douglas-fir (Pseudotsuga menziesii Franco) stands in the Beaujolais mounts (France). Annals of Forest Science, 60(6):475-488. Rhoades, C.C., Eckert, G.E., Coleman, D.C., 2000. Soil carbon differences among forest, agriculture and secondary vegetation in lower Montane Ecuador. Ecological Applications, 10-2:497-505.
  • Sariyildiz, T., Savaci, G., Kravkaz, I.S., 2015. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1):165.
  • Savacı, G., 2017. Farklı arazi kullanım türleri ve ağaç yaşının bazı toprak özellikleri, karbon ve azot depolamasına etkileri. Doktora Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, s.179. Kastamonu, Türkiye.
  • Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., Francaviglia, R., 2019. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 177:227-237.
  • Tahmaz, C., 2016. Mineral toprak ve orman yüzeyindeki (ölü örtü) depolanan karbona ağaç türlerinin etkisi. Yüksek Lisans Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü. Kastamonu, Türkiye.
  • Thomas, G.W., 1982. Exchangeable Cations. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), Pp.159-165.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1):55-94.
  • Tolunay, D., 1992. Aladağ (Bolu) Kartalkaya bölgesinde Büyüksaha siperinde yetiştirilmiş sarıçam meşcerelerinin toprak özellikleri üzerine araştırmalar. Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü. 142 s., İstanbul.
  • Tolunay, D., 2015. Türkiye’de ormansızlaşma ile kaybedilen karbon miktarları. 6. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 7-9 Ekim, pp:441-452, İzmir.
  • Tolunay, D., Çömez, A., 2007. Orman topraklarında karbon depolanması ve Türkiye’deki durum. Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar Sempozyumu, 13-14 Aralık, İstanbul.
  • Walker, S.M., Desanker, P.V., 2004. The impact of land use on soil carbon in Miombo Woodlands of Malawi. Forest Ecology and Management, 203(1-3):345-360.
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.

Variation in Soil Organic Carbon and Total Nitrogen Stocks under Agricultural Fields and Different Stand Age of Scots pine (Pinus sylvestris L.)

Yıl 2023, Cilt: 4 Sayı: 1, 19 - 26, 27.06.2023
https://doi.org/10.59751/agacorman.1276573

Öz

In this study, the effect of different land use type on the amount of litter, soil organic carbon (TOC) and total nitrogen (TA) stocks in Scots pine (Pinus sylvestris L.) stands and adjacent agricultural lands in the Inebolu district of Kastamonu province of the Black Sea Region were investigated. Samplings were carried out from Scots pine stands of different ages (18- and 30-) and adjacent agricultural lands which were converted from forest land at least 40 year ago. Mineral soil samples were taken from 5 different soil depths (0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm and 20-30 cm) and analysed for pH, bulk density, available phosphorus, available potassium, soil texture, organic matter, organic carbon and total nitrogen contents. Total soil organic carbon and total nitrogen stocks were calculated by multiplying soil depth, bulk density, soil organic carbon and nitrogen contents. The results showed that there were significant differences in soil surface litter, TOC and TN stocks between the Scots pine stands and agricultural lands. In general, the lowest organic carbon stock was found in the 30-year-old Scots pine stand (86.60 t C ha-1), followed by agricultural land (93.70 t C ha-1), and 18-year-old Scots pine stand (115.0 t C ha-1). Similarly, total nitrogen stock was highest in the 18-year-old Scots pine stand (7.86 t N ha-1), while the lowest in the 30-year-old Scots pine stand (5.74 t N ha-1). The amount of litter was the lowest in the agricultural lands. The amount of litter on the forest floor increased with increasing stand age. As a result, it has been shown that different land use types and soil depths can have a significant influence on forest floor litter, soil organic carbon and total nitrogen stocks. So, in future studies, the land use types should also take into account to determine the litter amount, TOC and TN stocks and more detailed studies are in need.

Proje Numarası

KUBAP03/2015-1

Kaynakça

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., …&…Yurtsever, A. vd., 2011. 1:1.250 000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Albrektson, A., 1988. Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3(1-4), 333-342. Atalay, İ., 2006. Toprak Oluşumu, Sınıflandırılması ve Coğrafyası. 3. Baskı, Ağaçlandırma ve Erozyon Kontrolü Genel Müdürlüğü Yayını.
  • Augusto, L., Bakker, M.R., Morel, C., Meredieu, C., Trichet, P., Badeau, V., ... & Ranger, J. 2010. Is ‘grey literature’a reliable source of data to characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern France. European Journal of Soil Science, 61(6), 807-822.
  • Binkley, D., 1986. Forest Nutrition Management. John Wiley & Sons.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Bolin, B., Sukumar, R., 2000. Global Perspective. In: Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. (Eds.), Land use, Land-use Change, and Forestry. Special Report of the IPCC. Cambridge University Press, Cambridge, UK, Pp. 23–51.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5):464-465.
  • Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic and available forms phosphorus in soils. Soil Science, 59:45-49.
  • Bruun, T.B., Elberling, B., de Neergaard, A., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development, 26(3):272-283.
  • Çepel, N., 1977. Türkiye'nin önemli yetişme bölgelerindeki saf sarıçam ormanlarının gelişimi ile bazı edafik ve fizyografik etkenler arasındaki ilişkiler. İstanbul Üniversitesi Orman Fakültesi Dergisi, 26(2):25-64. Çepel, N., 1996. Toprak İlmi Ders Kitabı -Orman topraklarının karakteristikleri, toprakların oluşumu, özellikleri ve ekolojik bakımdan değerlendirilmesi. İstanbul Üniversitesi Yayın No, 3945, Orman Fakültesi Yayın No, 438, İstanbul.
  • Çepel, N., Dündar, M., Özdemir, T., Neyişçi, T., 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa verilen besin maddeleri miktarları, Ormancılık Araştırma Enstitüsü Yayınları.
  • de Moraes, J.F.L., Volkoff, B., Cerri, C.C., Bernoux, M., 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondonia, Brazil. Geoderma 70: 63-81.
  • Deng, L., Zhu, G.Y., Tang, Z.S., Shangguan, Z.P., 2016. Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5: 127–138.
  • Desjardins, T., Barros, E., Sarrazin, M., Girardin, C., Mariotti, A., 2004. Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agriculture, Ecosystems & Environment, 103(2):365-373.
  • Díaz-Pinés, E., Rubio, A., Van Miegroet, H., Montes, F., Benito, M., 2011. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?. Forest Ecology and Management, 262(10):1895-1904.
  • DMİ, 2016. Devlet Meteoroloji İşleri Gn. Md., Kastamonu Meteoroloji İl Müdürlüğü, Kastamonu ve İnebolu Meteoroloji İstasyonu Verileri, 1960- 2015. Kastamonu.
  • Durán Zuazo, V.H., Rodriguez Pleguezuelo, C.R., Cuadros Tavira, S., Francia Martínez, J.R., 2014. Linking soil organic carbon stocks to land-use types in a mediterranean agroforestry landscape. Journal of Agricultural Science and Technology, 16(3):667-679.
  • Erickson, H., Keller, M., Davidson, E.A., 2001. Nitrogen oxide fluxes and nitrogen cycling during postagricultural succession and forest fertilization in the humid tropics. Ecosystems, 4:64-84.
  • FAO (Food and Agriculture Organization of the United Nations), 2015. Major Soil Groups of the World (FGGD) (GeoLayer).
  • FAO 1998. World Reference Base for Soil Resources, by ISSS–ISRIC–FAO.
  • Fearnside, P.M., Barbosa, R.I., 1998. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 108 (1-2):147-166. Grünzweig, J.M., Sparrow, S.D., Yakır, D., Chapin, F.S., 2004. Impact of agricultural land-use change on carbon storage in Boreal Alaska. Global Change Biology 10(4):452-472.
  • Güner, Ş.T., 2006. Türkmen Dağı (Eskişehir, Kütahya) Sarıçam (Pinus sylvestris ssp. hamata) ormanlarının yükseltiye bağlı büyüme beslenme ilişkilerinin belirlenmesi. Doktora tezi, Eskişehir.
  • Houghton, R.A., 1999. The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990. Tellus, 51B:298-313.
  • IPCC, 2013. Summary for Policymakers. in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.
  • IUSS Working Group, 2014. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO, Rome.
  • Jackson, M.L., 1962. Soil Chemical Analysis. (Constable and Company, Ltd: London).
  • John, B., Yamashita, T., Ludwig, B., Flessa, H., 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128:63-79.
  • Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140(2):227-238.
  • Kantarcı, M., 2000. Toprak İlmi. İstanbul Ün. Orman Fak. Yayınları No:462, s:420, İstanbul.
  • Knudsen, D., Peterson, G.A., Pratt, P.F. 1982. Lithium, Sodium, and Potassium. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), Pp. 225-246.
  • Köhler, L., Hölscher, D., Leuschner, C., 2008. High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecology, 199(2):163-173. Koolen, A. J., & Kuipers, H., (1983). Agricultural soil mechanics. Springer.
  • Landsberg, J.J., Gower, S.T., 1997. Applications of Physiological Ecology to Forest Management. Elsevier.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134(3-4):251-256.
  • Makineci, E., 1999. Araştırma ormanındaki baltalıkların koruya dönüştürülmesi işlemlerinin ölü örtü ve topraktaki azot değişimine etkileri, Doktora Tezi, İstanbul Üniversitesi, 213s.
  • McGrath, D.A., Smith, C.K., Gholz, H.L., de Assis Oliveira, F., 2001. Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4(7):625-645.
  • Murty, D., Kirschbaum, M.U., Mcmurtrie, R.E., Mcgilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2):105-123.
  • Neill, C., Melillo, J.M., Steudler, P.A., Cerri, C.C., de Moraes, J.F.L., Piccolo, M.C., Brito, M., 1997a. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Eco Appl., 7(4):1216–25.
  • Neill, C., Piccolo, M.C., Cerri, C.C., Steudler, P.A., Melillo, J. M., Brito, M., 1997b. Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia, 110:243–52.
  • OGM 2020. Türkiye Orman Varlığı, Orman Genel Müdürlüğü Yayınları, Ankara.
  • Parfitt, R.L., Theng, B.K.G., Whitton, J.S., Shepherd, T.G., 1997. Effects of clay minerals and land use on organic matter pools. Geoderma, 75(1-2):1-12.
  • Paul, E.A., 1984. Dynamics of soil organic matter. Plant Soil, 76:275–285.
  • Perin, E., Ceretta, C.A., Klamt, E., 2003. Time of agricultural use and chemical properties of two Ferralsols in the Planalto Médio region of the State of Rio Grande do Sul, Brazil. Revista Brasileira de Ciência do Solo, 27:665-674.
  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B., Schumacher, J., Gensior, A., 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Global Change Biology, 17(7):2415–2427.
  • Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land‐use change: processes and potential. Global Change Biology, 6(3):317-327.
  • Ranger, J., Gerard, F., Lindemann, M., Gelhaye, D., Gelhaye, L., 2003. Dynamics of litterfall in a chronosequence of Douglas-fir (Pseudotsuga menziesii Franco) stands in the Beaujolais mounts (France). Annals of Forest Science, 60(6):475-488. Rhoades, C.C., Eckert, G.E., Coleman, D.C., 2000. Soil carbon differences among forest, agriculture and secondary vegetation in lower Montane Ecuador. Ecological Applications, 10-2:497-505.
  • Sariyildiz, T., Savaci, G., Kravkaz, I.S., 2015. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1):165.
  • Savacı, G., 2017. Farklı arazi kullanım türleri ve ağaç yaşının bazı toprak özellikleri, karbon ve azot depolamasına etkileri. Doktora Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, s.179. Kastamonu, Türkiye.
  • Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., Francaviglia, R., 2019. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 177:227-237.
  • Tahmaz, C., 2016. Mineral toprak ve orman yüzeyindeki (ölü örtü) depolanan karbona ağaç türlerinin etkisi. Yüksek Lisans Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü. Kastamonu, Türkiye.
  • Thomas, G.W., 1982. Exchangeable Cations. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), Pp.159-165.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1):55-94.
  • Tolunay, D., 1992. Aladağ (Bolu) Kartalkaya bölgesinde Büyüksaha siperinde yetiştirilmiş sarıçam meşcerelerinin toprak özellikleri üzerine araştırmalar. Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü. 142 s., İstanbul.
  • Tolunay, D., 2015. Türkiye’de ormansızlaşma ile kaybedilen karbon miktarları. 6. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 7-9 Ekim, pp:441-452, İzmir.
  • Tolunay, D., Çömez, A., 2007. Orman topraklarında karbon depolanması ve Türkiye’deki durum. Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar Sempozyumu, 13-14 Aralık, İstanbul.
  • Walker, S.M., Desanker, P.V., 2004. The impact of land use on soil carbon in Miombo Woodlands of Malawi. Forest Ecology and Management, 203(1-3):345-360.
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Gamze Savacı 0000-0003-4685-2797

Temel Sarıyıldız 0000-0003-3451-3229

Proje Numarası KUBAP03/2015-1
Erken Görünüm Tarihi 21 Haziran 2023
Yayımlanma Tarihi 27 Haziran 2023
Kabul Tarihi 5 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 1

Kaynak Göster

APA Savacı, G., & Sarıyıldız, T. (2023). Tarım arazileri ve farklı yaşlardaki sarıçam meşçerelerinde (Pinus sylvestris L.) toprak organik karbon ve azot stoklarının değişimi. Ağaç Ve Orman, 4(1), 19-26. https://doi.org/10.59751/agacorman.1276573