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Abstract 

The classification of radar targets is one of the most important study topics, especially in the defense and 

automotive industries. However, in most of the studies in the literature, raw radar signals are used. Raw radar 

signals may be subject to ambient noise and signal modulation effects. This may make it difficult to classify radar 

targets. In this study, instead of using raw data, Fourier-based features extracted from Radar Cross-sectional Area 

have been used. These extracted features are then input to two types of classifiers, ie, Naive Bayes (NB) and 

Artificial Neural Networks (ANN) for the classification of radar targets. In addition, both classifiers were trained 

with different algorithms and their performances were compared. In the ANN-based classifiers, the best accuracy 
was found that 96.69% with using Bayesian regularization and back propagation training function. On the other 

hand, the best accuracy with the NB classifier was achieved at 93.95% using Epanechnikov Kernel Distribution. 

The result presented here demonstrates that Fourier transform based feature extraction can be used effectively in 

radar target classification applications.  

 

Keywords: Artificial neural networks, naïve bayes classifier, radar cross section, radar target classification. 

 

Radar Hedeflerinin Sınıflandırılması için Yapay Sinir Ağları ve Naïve 

Bayes Tekniklerinin Karşılaştırmalı Bir Çalışması 
 

 

Öz 

Radar hedeflerinin sınıflandırılması, özellikle savunma ve otomotiv endüstrilerinde en önemli çalışma konulardan 

biridir. Ancak, literatürdeki çalışmaların çoğunda ham radar sinyalleri kullanılmaktadır. Ham radar sinyalleri 

ortamdan kaynaklı Gürültü ve sinyal modülasyon etkilerine maruz kalabilmektedir. Bu durum radar hedeflerinin 

sınıflandırılmasını zorlaştırabilir. Bu çalışmada, ham veri kullanmak yerine, Radar Kesit Alanından çıkarılan 
Fourier tabanlı özellikler kullanılmıştır. Bu çıkarılan özellikler daha sonra radar hedeflerinin sınıflandırılması için 

iki tür sınıflandırıcıya, yani Naive Bayes (NB) ve Yapay Sinir Ağlarına (YSA) girdi olarak verilmiştir. Ayrıca, her 

iki sınıflandırıcı farklı algoritmalar ile eğitilmiş ve performansları karşılaştırılmıştır. YSA tabanlı sınıflandırıcıda, 

en iyi doğruluk, Bayesian regülarizasyon ve geri yayılma eğitim fonksiyonu kullanılarak 96.69% olarak 

bulunmuştur. Diğer taraftan, NB sınıflandırıcı ile en iyi doğruluk Epanechnikov çekirdek dağılımı kullanılarak 

93.95% olarak elde edilmiştir. Burada sunulan sonuç, Fourier dönüşüm temelli öznitelik çıkarımının radar hedef 

sınıflandırma uygulamalarında etkili bir şekilde kullanılabileceğini göstermektedir. 

 

Anahtar kelimeler: Yapay sinir ağları, naïve bayes sınıflandırma, radar kesit alanı, radar hedef sınıflandırma. 

 
1. Introduction 

 

In recent years, there is an increasing attention in classification of radar targets over the past few years. 

A vast majority of these researches focus on two fields: automotive industry and defense industry. In 
the automotive market, because of higher safety demand in road traffic, the advanced driving assistance 

systems (ADAS) are becoming inevitable. Radar sensors commonly used in ADAS systems to 

decelerate the vehicle when approaching the obstacles and accelerate current velocity as soon as traffic 
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density allows it. There is a strong relation between ADAS technology and radar targets classification 

because the more accurate classification of obstacles, the more robustness on cruise controls systems. 

Global status report on road safety, published by World Health Organization, emphasized that the 
amount of road traffic deaths has reached 1.35 million [1]. For that reason, the classification of radar 

targets correctly is important. Machine learning based algorithms are commonly used to distinguish 

from pedestrian to vehicle and predict the vehicle category because these algorithms show high 
classification performances. In 2017, Capobianco et al. [2] used a Convolutional Neural Networks 

(CNN)-based method called DeepRadarNet to classify 6 different vehicles using frequency-modulated 

continuous wave (FM-CW) radar signals. They reached 96.1% accuracy in classifying the vehicle 

categories on the highway. Choi et al. [3] compared Naive Bayes (NB) and support vector machine 
(SVM) methods in terms of radar target classification. They obtained data from four humans, four 

bicycles and four cars. The recognition success rate of NB and SVM is achieved in [3] respectively 85% 

and 92%. In a similar vein, Nanzer and Rogers describe a Bayesian expression for the classification of 
humans and vehicles using micro-Doppler signals from a scanning Beam Radar and it has been reached 

near or above 90% accuracy [4]. Severino et al. [5] offered a micro Doppler-based method for 

identifying pedestrian in near field (0 - 15m) using radar sensors. SVM method was used to differentiate 
pedestrian and non-pedestrian targets. In addition, SVM's classification performance and speed were 

compared using three different kernel functions (gauss, polynomial and linear), and the best 

classification result was 99.5% with the Polynomial kernel.  

 Classification of targets from radar cross section is also an important study topic for defense 
applications specially dealing with airborne weapon systems. Military application radars are used in 

aircrafts as an airborne warning and control systems, investigating the enemy aircraft and tracking them. 

The classification of the target class has notable effect on threat estimation. 
 The neural networks and probabilistic based methods are commonly used in most modern radar 

systems. Kim et al. [6] use the convolutional neural networks model with combined Doppler images and 

obtain 94.7% accuracy. Zaied et al. [7] applied Deep learning techniques to classify Synthetic aperture 

radar (SAR) and Inverse Synthetic aperture radar (ISAR) images with the weights given by auto-
encoder. They also evaluated the effect of the addition of convolution layers and hidden layers on the 

performance of the network. They acquire 97.65% as a classification percentage for a training time of 

47 seconds with the ISAR database. Zhou et al. proposed a method based on deep convolution neural 
networks (DCNN) to classify the polarimetric SAR image [8]. In the classification of the Synthetic 

Aperture Radar (AIRSAR) data set, 92.46% accuracy was achieved by DCNN method. 

 On the other hand, there are some works recommended probabilistic approaches such as Hidden 
Markov Model (HMM) and Naïve Bayes based methods in the literature [9,10]. Kouemou and Ortiz 

compare three kinds of HMM methods using radar signals from five classes of real targets and the best 

mean classification rate is achieved on HMM with discrete outputs (DHMM) methods [10]. Leung and 

Wu find that the percentage of true track classified by the Bayesian and Dempster-Shafer approaches is 
85.37 and 92.68, respectively [10]. 

 As in the studies [2-10] mentioned above, most of the works in the literature use raw radar 

signals. However, raw signals are sampled in a dynamic process where numerous factors such as noise 
and signal modulation effect are combined. Therefore, it may not be appropriate to classify radar targets 

directly obtained by raw signals. Feature selection is one of the methods used to remove irrelevant or 

unnecessary information. It is also often used as it increases accuracy in classification problems. 
 The aim of this study is to identify and classify targets by using features extracted from Radar 

Cross Section (RCS) information in two different machine learning methods such as Naive Bayes and 

Artificial Neural Networks (ANN). In this study, unlike other studies in the literature, the features 

derived from the RCS information by Fourier Transform will be used for the first time to classify radar 
targets. The aim of using Fourier Transform is to design angle-independence classification system. 

 

2. Material and Method 
 

In this section, the theoretical background of machine learning algorithms such as Artificial Neural 

Networks (ANN) and Naive Bayes (NB) is briefly explained. 
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2.1. Artificial Neural Networks 

 

Artificial neural networks, in the most general form, is a method constructed to imitate the way the brain 
performs a particular task or function. The ANN is commonly applied by using electronic components 

or is simulated in software in computer [11]. ANN consists of input, output and hidden layers. The ANN 

network proposed in this study has 3 hidden layers. Hyperbolic tangent sigmoid function was chosen as 
the activation function in the hidden layers and Softmax function was chosen as the activation function 

in the output layer. 

 There are several learning algorithms to train ANN networks. In this study, Scaled Conjugate 

Gradient (SCG), Levenberg-Marquardt (LM) and Bayesian Regularization Backpropagation (BRB) 
learning algorithms were used to train ANN. These learning methods differ in the way they use the 

gradient to update the weights of the constructed ANN and are known as variations of the 

Backpropagation algorithm. 
 SCG algorithm is based on second order information from the network and updates its weights 

and biases along the conjugate gradient direction using a step size scaling mechanism [12]. 

 Similar to the SCG algorithm, LM uses second order information from the network, but acts as 
the steepest descent (SD) or Gauss-Newton (GN) method, depending on the value of the mediating 

factor. When the value of the mediation factor (the distance between the predicted and the experimental 

result) is zero, the LM algorithm becomes the GN method using the approximate Hessian matrix. When 

the value of the mediation factor is large, the LM algorithm becomes the SD algorithm with a small step 
size [13]. 

 In BRB algorithm, in order to decrease the adverse effects of large weights on the network 

output and to provide a softer response, the penalty term consisting of the squares of all network weights 
is added to the objective function. That is, the BRB algorithm lessens a combination of squared errors 

and weights, then determines the right combination in order to generate a network that generalizes well 

[14]. 

 

2.2. Naïve Bayes Method 

 

A naïve Bayes classifier is a probabilistic machine learning model that’s used for classification task. 
The principle of this classifier is based on the Bayes’ theorem. Bayes’ theorem is expressed 

mathematically as the equation (1) [15]. 

 

𝑃(𝐴𝑖|𝐵) =  
𝑃(B|𝐴𝑖)𝑃(𝐴𝑖)

𝑃(B|𝐴1)𝑃(𝐴1) + ⋯ + 𝑃(B|𝐴𝑛)𝑃(𝐴𝑛)
 (1) 

 

where A1, A2, … , An are set of mutually exclusive events together form the sample space S and B is 

any event from the sample space, such that P(B) > 0. 
 The reason of this classifier called naïve is that a naïve Bayes classifier assumes that the presence 

of a particular feature of class is unrelated to the presence of any other feature. When modelling a 

probability distribution with a naïve Bayes classifier, we are faced with the problem of how to deal with 
continuous variables. One approach is assuming the continuous values are distributed according to a 

Gaussian distribution. Other approach is using kernel density estimation for modelling each conditional 

distribution [16]. Kernel density estimation, also termed the Parzen-Rosenblatt window method is a 

statistical technique that create a smooth curve given a set of data. 
 Let x1, x2, …, xn be n independent observations from the random variable X. The aim of density 

estimation is to approximate the probability density function f of X. The kernel density estimator 𝑓ℎ(𝑥)  
for the estimation of the density value f(x) at point x is defined as: 

 

𝑓ℎ(𝑥) =  
1

𝑛ℎ
∑ 𝐾(

𝑥𝑖 − 𝑥

ℎ
)

𝑛

𝑖=1

 (2) 

 

where K denoting a kernel function 
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 Apart from the Gaussian kernel, two types of kernel functions are used in this study. 

Epanechnikov kernel function and triangular kernel function are expressed respectively in equation (3) 

and in equation (4) 
 

𝐾(𝑢) =
3

4
(1 − 𝑢2)𝐼(|𝑢| ≤ 1) (3) 

 

𝐾(𝑢) = (1 − |𝑢|)𝐼(|𝑢| ≤ 1) (4) 

 

3. Generation of Training and Test Sets 
 

3.1. Synthetization of RCS Data 

 

Radar Cross Section (RCS) term is defined by IEEE standard radar definitions that a measure of the 
reflective strength of radar target [17]. RCS of a specified target can be described as a function of target 

aspect angle (except for a sphere). Change of RCS over aspect angle was modelled in this paper using 

physical optic methods. While synthesizing RCS data, three different geometric shaped objects were 
used as targets. 

 These 3 targets evaluated from: 

• Circular Plate Targets (CPT) with radii varying from 10cm to 40 cm 
• Rectangular Plate Targets (RPT) with area varying from 0.08 m2 to 0.60 m2  

• Truncated Cone Plate Targets (TCPT) with heights (the distance from the noise to the tail) from 10 cm 

to 20 cm, top surface radii from 10 cm to 30 cm and base surface radii from 20 cm to 60 cm. 

 The RCS models for targets were adapted from [18] and [19]. The RCS model of circular thin 
plate target used in this work when viewing nearly broadside condition is showed in equation (5). 

 

𝜎 =
4𝜋𝐴2

𝜆2
 (5) 

 

where σ is RCS of target, A is physical area of the plate, λ is wavenumer. The RCS of a circular plate 
other than broadside aspects was computed using equation (6). 

 

𝜎 =
4𝜋2𝐴2𝑐𝑜𝑠𝜃2

𝜆2
[2

𝐽1(𝑘𝑑𝑠𝑖𝑛𝜃)

𝑘𝑑𝑠𝑖𝑛𝜃
]

2

 (6) 

 

where J1 is first order Bessel function, d is diameter of circular plate, k is wavenumber and equal to 
2π/λ. 

 For the rectangular plate, formula of normal-incidence RCS is same as circular one, equation 

(5). When aspect angle not equal to zero, equation (7) is used for computing RCS of rectangular plate 
target [18]. 

 

𝜎𝑡𝑜𝑡𝑎𝑙 =
𝑏2

𝜋
|𝜎1 − 𝜎2 [

1

𝑐𝑜𝑠𝜃
+

𝜎2

4
(𝜎3 + 𝜎4)] 𝜎5

−1|
2

 (7) 

 

where σtotal is total RCS of rectangular plate target and b is the half of the short edge. σtotal term is derived 

from σ1, σ2, σ3, σ4 and σ5. Computation of these terms is showed in equation (8). 
 

𝜎1 =𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑘𝑎𝑠𝑖𝑛𝜃)  − 𝑗
𝑠𝑖𝑛 (𝑘𝑎 𝑠𝑖𝑛𝜃)

𝑠𝑖𝑛𝜃
 

𝜎2 =  
𝑒𝑗(𝑘𝑎−

𝜋
4

)

√2𝜋(𝑘𝑎)
3
2

 

(8) 
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𝜎3 =  
(1 + 𝑠𝑖𝑛𝜃)𝑒−𝑗𝑘𝑎𝑠𝑖𝑛𝜃

(1 − 𝑠𝑖𝑛𝜃)2
 

𝜎4 =  
(1 − 𝑠𝑖𝑛𝜃)𝑒𝑗𝑘𝑎𝑠𝑖𝑛𝜃

(1 + 𝑠𝑖𝑛𝜃)2
 

𝜎5 = 1 −
𝑒𝑗(2𝑘𝑎−

𝜋
2

)

8𝜋(𝑘𝑎)3
 

 

where a is the half of the long edge and k is wavenumber. 
 

Geometry of truncated cone target is showed in Figure 1. 

 

 
Figure 1. Geometry of Truncated Cone 

 

In the Figure 1, α is lateral tilt angle and tangent of lateral tilt angle is computed using equation (9). 

 

𝑡𝑎𝑛 𝛼 =
(𝑟2 − 𝑟1)

𝐻
 (9) 

 
In the normal incidence case, equation (10) is used when computing RCS of truncated cone targets. 

 

σ𝑁 =
8𝜋 (𝑧2

3/2
− 𝑧1

3/2)
2

𝑠𝑖𝑛𝛼

9𝜆(𝑐𝑜𝑠𝛼)4
 (10) 

 

where z2 is z-coordinate value of top surface of truncated cone and z1 is z-coordinate value of bottom 
one. 

 

For aspect angle other than zero, RCS of truncated cone target was modelled in this paper using equation 

(11). 
 

𝜎 =
𝜆𝑧𝑡𝑎𝑛𝛼

8𝜋𝑠𝑖𝑛𝜃
(

𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝛼

𝑠𝑖𝑛𝜃𝑡𝑎𝑛𝛼 + 𝑐𝑜𝑠𝜃
)

2

 (11) 

 
After modelling these targets, random noise was added in accordance with equation (12). 

 

𝑛 = 𝑎 ∗ 𝑟 ∗ √𝑆 (12) 

 

where n is noise, S is standard deviation, α is scale factor and r is random number vector scaling between 

0 and 0.01. When computing standard deviation, equation (13) was used. 
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𝑆 = √
1

𝑁 − 1
∑|𝜎𝑖 − 𝜇|2

𝑁

𝑖=1

 (13) 

 

where N is number of the element and μ is mean value of the set. 

 

3.2. Feature Extraction and Dataset Creation from RCS Models 

 

After defining the targets that are going to be combined into data sets, these models were used in order 
to generate simulated radar data. In Table 1, all features used in this paper are specified. 

 
Table 1. Feature List 

Elements of Feature Vector 

1. Second-Order Term Coefficient 

2. First-Order Term Coefficient 

3. Second-Order Term Coefficient (in Fourier Domain) 

4. First-Order Term Coefficient (in Fourier Domain) 
5. Variance of Dataset Element (in Fourier Domain) 

6. Index of Greatest Value at Dataset Element (in Fourier Domain) 

 

 First step of feature extracting process is generating second order function to change of RCS 

over aspect angle. When generating second-order function, least squares fitting method was used. 

Coefficients of unknown terms were constituted first two element of feature vector. Fourier transform 
of dataset elements were calculated with fast Fourier transform algorithm. Then, second order function 

of these Fourier domain values was created. Coefficients of second order and first order terms of this 

function were forming third and fourth elements of feature vectors. Fifth element of feature vector is 
variance of Fourier domain values. Index of greatest value at RCS Dataset in Fourier Domain was used 

as sixth element of feature vector. 

 After defining feature vectors, these vectors were merged under the RCS dataset. Each sample 

of RCS dataset contains features extracted from RCS data coverage to 30-degree aspect angle.  Sampling 
interval of RCS values was selected 0.5 degree. Starting aspect angle of RCS values corresponding to 

each sample was chosen different than each other. RCS Dataset contains 2040 circular plate targets 

sample, 1998 rectangular plate targets sample and 2160 truncated cone targets sample. 
 

4. Results and Comparison of the Methods 

 
This section shows various experimental results for classifying radar targets using two different machine 

learning methods. The performance of the ANN-based method is compared using three different 

learning algorithms (SCG, LM and BRB). In NB method, performance comparison is made using three 

different kernel (Gaussian, Epanechnikov and triangular) distribution functions. To provide same 
conditions for models, the computer experiments were carried out in MATLAB 2017a environment on 

a PC with Intel Core I5 processors 2.30 GHz with 4 GB RAM and 64-bit Windows 10 operation system. 

10-fold cross validation was applied to dataset before training and testing classifiers. In 10-fold cross-
validation, the dataset is randomly separated into 10 mutually exclusive subsets (folds) of almost equal 

size. The performance of each classifier was computed with taking average of each folds’ classification 

accuracy. 
 Classification accuracies obtained from ANN based classifiers are indicated in Table 2. It can 

be seen from the Table 2 that the best classification accuracy is found % 96.69 with BRB algorithm. 

Although LM algorithm obtains four percent lesser classification accuracy than BRB classifier, it is 

observed during training phase of those classifiers that classification speed of LM classifier is faster than 
BRB classifier. Furthermore, as shown in Table 2, the accuracy of classification is much worse than 

other neural networks-based classifiers, although the speed of the SCG algorithm is highest. 

 



D.T. Arık, Ö. Karal, A.B. Şahin / BEÜ Fen Bilimleri Dergisi 9 (4), 1779-1788, 2020 

1785 

 Accuracy is a great measure but only when our datasets are distributed symmetrically. 

Therefore, other confusion metrics are also used to evaluate the performances of the classifiers. As 

shown in Table 3 and Table 4, all ANN based classifiers obtain good results to distinguish rectangular 
plate targets. Furthermore, we can observe from these tables, Truncated Cone Target and Circular Plate 

Target classification performance of BRB classifier is greater than those of LM classifier. This causes 

difference in classification accuracy of LM classifier and BRB classifier. 
 

Table 2. Classification Accuracies and Time of ANN Based Classifiers 

 BRB SCG LM 

Classification Accuracies % 96.69 % 77.54 % 92.30 

Training Time (second) 4.467 2.465 3.758 

 
Table 3. Classification Precisions of ANN Based Classifiers  

 BRB SCG LM 

TCPT % 96.20 % 48.70 % 88.84 

RPT % 99.80 % 99.80 % 99.55 

CPT % 94.17 % 86.67 % 88.87 

 
Table 4. Classification Recalls of ANN Based Classifiers  

 BRB SCG LM 

TCPT % 96.43 % 79.70 % 89.50 

RPT % 99.90 % 99.40 % 98.37 

CPT % 98.36 % 61.28 % 89.22 

 

 The resulting classification accuracies of NB based classifiers with Gaussian, Triangular and 
Epanechnikov kernel distributions are tabled in Table 5. The results clearly show that using kernel 

Triangular and Epanechnikov kernel with NB classifier affects positively on performance while 

classifying radar targets. In addition, considering the classification accuracy in Table 6 and the 
classification recall in Table 7, it can be seen that there is no significant difference between NB 

classification results having Epanechnikov kernel distribution and triangular kernel distribution. On the 

other hand, NB with Gaussian kernel distribution demonstrates the lowest sensitivity (44.54%) for the 

Truncated Cone Target as seen in Table 6, as well as the lowest recall (61.22%) for the Circular Plate 
Target as seen in Table 7. 

 The confusion matrix results of ANN-based classifier trained with three different learning rules 

are shown in Tables 8, 9 and 10, respectively, while the confusion matrix results of NB-based classifier 
with three different kernel distributions are illustrated in Tables 11, 12 and 13, respectively. 

 It can be seen that the best confusion matrix values for TCPT, RPT and CPT datasets are 

obtained by BRB algorithm (207.8, 199.4, and 192.1) in ANN-based model (Table 8) and Epanechnikov 
kernel distribution (199, 196, and 187.3) in NB-based model (Table 12). 

 
Table 5. Classification Accuracies of NB Based Classifiers  

 BRB SCG LM 

 NB with Gaussian 

Kernel 

NB with Triangular 

Kernel  

NB with Epanechnikov 

Kernel  

Classification Accuracies % 78.96 % 93.73 % 93.95 

Training Time (second) 1.6 3.943 2.721 

 
Table 6. Classification Precisions of NB Based Classifiers 

 NB with Gaussian 

Kernel 

NB with Triangular 

Kernel 

NB with Epanechnikov 

Kernel 

TCPT % 44.54 % 92.36 % 92.13 

RPT % 96.30 % 98.10 % 98.10 

CPT % 98.43 % 90.88 % 91.81 
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Table 7. Classification Recalls of NB Based Classifiers 

 NB with Gaussian 

Kernel 

NB with Triangular 

Kernel  

NB with Epanechnikov 

Kernel  

TCPT % 96.78 % 90.76 % 91.50 

RPT % 100.00 % 100.00 % 100.00 

CPT % 61.22 % 90.88 % 90.80 

 
Table 8. Confusion Matrix of ANN Based Classifier used BRB Training Algorithm 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 207.8 0 8.2 

RPT 0.1 199.4 0.3 

CPT 11.7 0.2 192.1 

 
Table 9. Confusion Matrix of ANN Based Classifier used SCG Training Algorithm 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 105.2 0 110.8 

RPT 0 199.4 0.4 

CPT 26.8 1.2 176 

 
Table 10. Confusion Matrix of ANN Based Classifier used LM Training Algorithm 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 191.9 2.5 21.6 

RPT 0.6 198.9 0.3 

CPT 21.9 0.8 181.3 

 
Table 11. Confusion Matrix of NB Classifier with Gaussian Kernel Distribution 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 96.2 0 119.8 

RPT 0 192.4 7.4 

CPT 3.2 0 200.8 

 
Table 12. Confusion Matrix of NB Classifier with Epanechnikov Kernel Distribution 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 199 0 17 

RPT 1.8 196 2 

CPT 16.7 0 187.3 

 
Table 13. Confusion Matrix of NB Classifier with Triangular Kernel Distribution 

  Predicted 

  TCPT RPT CPT 

A
ct

u
al

 TCPT 199.5 0 16.5 

RPT 1.7 196 2.1 

CPT 18.6 0 185.4 

 

5. Conclusion 

 

Different versions of two machine learning algorithms are compared in terms of radar target 

classification performances. The findings of this study indicate that using BRB training function gives 
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better performance than using LM and SCG training functions with ANN based classifiers. Also, the 

results obtained from NB algorithm-based classifiers highlight the importance of using Epanechnikov 

kernel distribution on classification accuracy. 
 Computational complexity of machine learning algorithms is especially important issue when 

working with real time applications. In the future works, in order to compare convenience for real time 

applications of different kind of classifiers, some comparison metrics state the computational complexity 
of algorithms will be used. Three types of neural networks training algorithms are investigated in this 

paper. Future research could examine performances of other neural networks training algorithms. Also, 

we implement two different kernel functions with NB classifier. Future studies might apply other kernel 

functions and compare their result with this work. 
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