24(4):723-729 (2011)

A Note on Permuting Tri-Derivation In Near Ring

Mehmet Ali ÖZTÜRK ${ }^{1}$, Hasret YAZARLI ${ }^{2 \wedge}$
${ }^{1}$ Adiyaman University, Faculty of Science and Art, Department of Mathematics, 02040, Adiyaman, Turkey
${ }^{2}$ Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey

Received: 01.11.2010 Revised: 10.12.2010 Accepted:03.03.2011

Abstract

In this paper, we introduce a permuting tri- (σ, τ)-derivation and permuting tri-generalized derivation in a near ring and generalize some of the results in [4], [6], [8] .

Key Words: Permuting, Tri-deviation, Near ring

1. INTRODUCTION

The concept of a permuting tri-derivation has been introduced Öztürk in [5]. Some recent results on properties of prime rings, semi-prime rings and near rings with derivations have been investigated in several ways [2-5, 8]. In [6], Kyoo-Hong Park and Yong-Soo Jung have introduced the concept of a permuting triderivation of a near ring and investigated the conditions for a near ring to be commutative ring.

In this note, we introduce the concepts of permuting tri(σ, τ)-derivation and permuting tri-generalized derivation of near ring and give some properties.

Throughout this paper N will be a zero-symmetric left near ring with multiplicative center Z. Recall that a near ring N is prime $x N y=\{0\}$ implies $x=0$ or $y=0$. For $x, y \in N,[x, y],[x, y]_{\sigma, \tau}$ and (x, y) will denote the commutator $x y-y x, x \sigma(y)-\tau(y) x$ and $x+y-x-y$ respectively. A mapping $D: N \times N \times N \rightarrow N$ is said to be permuting if $D(x, y, z)=D(y, x, z)=D(z, y, x)=D(x, z, y)=D(y, z, x)=$ $D(z, x, y)$ for all $x, y, z \in N$. A mapping $d: N \rightarrow N$ defined by $d(x)=D(x, x, x)$ is called the trace of D where $D: N \times N \times N \rightarrow N$ is a permuting mapping. It is obvious that, if $D: N \times N \times N \rightarrow N$ is a permuting mapping which is also tri-additive (i.e., additive in all
arguments), then the trace of D satisfies the relation $d(x+y)=d(x)+2 D(x, x, y)+D(x, y, y)+D(x, x, y)+2 D(x, y, y)+d(y)$ for all $x, y \in N$. A permuting tri-additive mapping $D: N \times N \times N \rightarrow N$ is called a permuting tri-derivation if $D(x w, y, z)=D(x, y, z) w+x D(w, y, z)$ is fulfilled for all $x, y, z, w \in N$. For the terminology used in near rings, see [7].

2. PERMUTING TRI- (σ, τ) DERIVATION

The following lemmas and theorems are necessary for the paper.

Lemma 1. [2, Lemma 3] Let N be a prime near ring.
(i) If $Z \in Z-\{0\}$, then Z is not a zero divisor.
(ii) If $Z-\{0\}$ contains an element Z for which $Z+Z \in Z$, then $(N,+)$ is abelian.

Lemma 2. [6, Lemma 2.2] Let N be a 3!-torsion free near ring. Suppose that there exists a permuting triadditive mapping $D: N \times N \times N \rightarrow N$ such that $d(x)=0$ for all $x \in N$, where d is the trace of D. Then we have $D=0$.

Lemma 3. [6, Lemma 2.3] Let N be a 3!-torsion free prime near ring and let $x \in N$. Suppose that there exists a nonzero permuting tri-derivation

[^0]$D: N \times N \times N \rightarrow N$ such that $x d(y)=0$ for all $x, y \in N$, where d is the trace of D. Then we have $x=0$.

Firstly, we introduce the definition of permuting tri(σ, τ)-derivation in a near ring.

Definition 1. A permuting tri-additive mapping $D: N \times N \times N \rightarrow N$ is called a permuting tri- $(\sigma, \tau)^{-}$ derivation if there exist functions $\sigma, \tau: N \rightarrow N$ such that $D(x w, y, z)=D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)$ for all $x, y, z, w \in N$.

Note that if $\sigma=1$ and $\tau=1$ then D is a permuting triderivation.

Example 1. Let $(N,+)$ be the Klein's four group with multiplication defined as following

\cdot	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	b	c
c	0	a	b	c

Define a map D on N by

$$
D(x, y, z)= \begin{cases}b, & x, y, z \notin\{0, a\} \\ 0, & \text { otherwise }\end{cases}
$$

If we take $\sigma(0)=\sigma(a)=0, \sigma(b)=b, \sigma(c)=c$ and $\tau(x)=0$ for all $x \in N, D$ is a permuting tri- (σ, τ) derivation on N. But, since
$D(b a, b, c)=D(b, b, c) a+b D(a, b, c)=a$
and
$D(b a, b, c)=D(a, b, c)=0$,
D is not permuting tri-derivation.
Throught this paper, σ and τ will represent automorphisms of N.

Lemma 4. Let N be a 3!-torsion free prime near ring, D a permuting tri- (σ, τ)-derivation of N and d the trace of D. If $\operatorname{xd}(N)=\{0\}$ for all $x \in N$, then $x=0$ or $D=0$.
Proof. Using same method in proof of Lemma 2, we have $x D(w, y, z)=0$ for all $x, y, z, w \in N$. Replacing z by $z v, v \in N$, to get $x \tau(z) D(w, y, v)=0$ for all $x, y, z, w, v \in N$. Since τ is an automorphism of N, we get $x N D(w, y, v)=\{0\}$. Again N is prime near ring, we have $x=0$ or $D=0$.

Lemma 5. Let N be a near ring. D is a permuting tri- (σ, τ)-derivation of N if and only if $D(x w, y, z)=\tau(x) D(w, y, z)+D(x, y, z) \sigma(w)$ for all $x, y, z, w \in N$.

Proof. Let D be a permuting tri- (σ, τ)-derivation of N. Since σ is an automorphism, we get for all $x, y, z, w \in N$,

```
\(D(x(w+w), y, z)=D(x, y, z) \sigma(w+w)+\tau(x) D(w+w, y, z)\)
    \(=D(x, y, z) \sigma(w)+D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)\)
    \(+\tau(x) D(w, y, z)\)
and
\(D(x(w+w), y, z)=D(x w+x w, y, z)=D(x w, y, z)+D(x w, y, z)\)
    \(=D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)+D(x, y, z) \sigma(w)\)
    \(+\tau(x) D(w, y, z)\)
```

Combining the above two equality, we find that

$$
D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)=\tau(x) D(w, y, z)+D(x, y, z) \sigma(w)
$$

Hence we have
$D(x w, y, z)=\tau(x) D(w, y, z)+D(x, y, z) \sigma(w)$ for all $x, y, z, w \in N$. Converse can be proved in a similar way.

Lemma 6. Let N be a near ring, D a permuting tri(σ, τ)-derivation of N. Then, for all $x, y, z, w, v \in N$,
(i) $[D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)] v=$ $D(x, y, z) \sigma(w)_{v}+\tau(x) D(w, y, z)_{v}$,
(ii) $[\tau(x) D(w, y, z)+D(x, y, z) \sigma(w)] v=$.

$$
\tau(x) D(w, y, z) v+D(x, y, z) \sigma(w) v
$$

Proof. (i) Let D be a permuting tri- (σ, τ)-derivation of N. Since σ and τ are automorphisms, we get for all $x, y, z, t, w \in N$,

$$
\begin{aligned}
& D((x w) t, y, z)=D(x w, y, z) \sigma(t)+\tau(x w) D(t, y, z) \\
& \quad=[D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)] \sigma(t) \\
& \quad+\tau(x) \tau(w) D(t, y, z)
\end{aligned}
$$

and

$$
\begin{aligned}
& D(x(w t), y, z)=D(x, y, z) \sigma(w t)+\tau(x) D(w t, y, z) \\
& \quad=D(x, y, z) \sigma(w) \sigma(t)+\tau(x) D(w, y, z) \sigma(t) \\
& \quad+\tau(x) \tau(w) D(t, y, z) .
\end{aligned}
$$

Combining the above two equality, we find that
$[D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)] \sigma(t)=D(x, y, z) \sigma(w) \sigma(t)+\tau(x) D(w, y, z) \sigma(t)$

Therefore, we have
$[D(x, y, z) \sigma(w)+\tau(x) D(w, y, z)] v=D(x, y, z) \sigma(w) v+\tau(x) D(w, y, z) v$
for all $x, y, z, w, v \in N$.
(ii) It can be proved in a similar way.

Lemma 7. Let N be a prime near-ring, D a nonzero permuting tri- (σ, τ)-derivation of N. Then $D(N, N, N) x=\{0\}$ for all $x \in N$ implies $x=0$.

Proof. Suppose $D(y, z, w) x=0$ for all $x, y, z, w \in N$ Then taking $y v$ instead of y, we have

$$
0=D(y, z, w) \sigma(v) x+\tau(y) D(v, z, w) x=D(y, z, w) \sigma(v) x
$$

Since σ is an automorphism, we have $D(y, z, w) N x=\{0\}$ for all $x, y, z, w \in N$. Since N is prime near ring and D is nonzero, this implies $x=0$.
Theorem 1. Let N be a prime near ring, D is a nonzero permuting tri- (σ, τ)-derivation of N. If $D(N, N, N) \subseteq Z$, then N is a commutative ring.
Proof. Since $D(N, N, N) \subseteq Z$ and D is a nonzero permuting tri- (σ, τ)-derivation of N, then there exist nonzero elements $x, y, z \in N$ such that $D(x, y, z) \in Z-\{0\}$.Then
$D(x+x, y, z)=D(x, y, z)+D(x, y, z) \in Z$ and
hence $(N,+)$ is abelian by Lemma 1. $D(x, y, z) \in Z$ for $x, y, z \in N$, implies that $D(x, y, z) w=w D(x, y, z)$ for all $w \in N$. Hence replace $X V$ with X to get
(2.1) $D(x, y, z) \sigma(v) w+\tau(x) D(v, y, z) w=$

$$
w D(x, y, z) \sigma(v)+w \tau(x) D(v, y, z)
$$

Taking $\sigma(v)$ instead of \boldsymbol{W}, we have

$$
\begin{aligned}
& D(x, y, z) \sigma(v) \sigma(v)+\tau(x) D(v, y, z) \sigma(v)=\sigma(v) D(x, y, z) \sigma(v) \\
& \quad+\sigma(v) \tau(x) D(v, y, z)
\end{aligned}
$$

Since $D(N, N, N) \subseteq Z$, we get

$$
D(v, y, z)[\tau(x), \sigma(v)]=0
$$

for all $x, y, z, v \in N$.
Since Z contains no nonzero divisors of zero, we see that for each $v \in N$, either $D(v, y, z)=0$ or $[\tau(x), \sigma(v)]=0$ for all $x, y, z \in N$. If $D(v, y, z)=0$, then $D(x, y, z)[w, \sigma(v)]=0$ from (2.1). Since N is prime near ring and $D \neq 0,[w, \sigma(v)]=0$. Since σ is an automorphism, N is commutative near ring. If $[\tau(x), \sigma(v)]=0$ for all $x, v \in N$, then N is commutative ring, since σ and τ are automorphisms.

Theorem 2. Let N be a 3!-torsion free prime nearring, D a permuting tri- (σ, τ)-derivation of N and d the trace of D. If $d(x) \sigma(y)=\tau(x) d(y)$ for all $x, y \in N$, then $d=0$.

Proof. Assume that $d(x) \sigma(y)=\tau(x) d(y)$ for all $x, y \in N$. Replacing y by $y+z, z \in N$ in hypothesis, we get

$$
\begin{aligned}
& d(x) \sigma(y+z)=\tau(x) d(y+z) \\
& d(x) \sigma(y)+d(x) \sigma(z)=\tau(x) d(y)+2 \tau(x) D(y, y, z)+\tau(x) D(y, z, z) \\
& \quad+\tau(x) D(y, y, z)+2 \tau(x) D(y, z, z)+\tau(x) d(z)
\end{aligned}
$$

and so
(2.2) $2 D(y, y, z)+D(y, z, z)+D(y, y, z)+2 D(y, z, z)=0$ since τ is an automorphism and N is prime near ring.
Replacing y by $-y$ in (2.2), it follows that
(2.3) $2 D(y, y, z)-D(y, z, z)+D(y, y, z)-2 D(y, z, z)=0$

On the other hand, replacing y by $z+y, z \in N$ in hypothesis, we get

$$
\begin{gathered}
d(x) \sigma(z+y)=\tau(x) d(z+y) \\
d(x) \sigma(z)+d(x) \sigma(y)=\tau(x) d(z)+2 \tau(x) D(z, z, y)+\tau(x) D(z, y, y) \\
+\tau(x) D(z, z, y)+2 \tau(x) D(z, y, y)+\tau(x) d(y)
\end{gathered}
$$

and so
(2.4) $2 D(z, z, y)+D(z, y, y)+D(z, z, y)+2 D(z, y, y)=0$ since τ is an automorphism and N is prime near ring. Comparing (2.2) with (2.3), we get
$2 D(y, z, z)+D(y, y, z)+D(y, z, z)+2 D(y, y, z)=D(y, y, z)$

$$
-3 D(y, z, z)+2 D(y, y, z)
$$

for all $y, z \in N$. From (2.4), we have
(2.5) $D(y, y, z)-3 D(y, z, z)+2 D(y, y, z)=0$

Replacing y by $-y$ in (2.5), we get
(2.6) $D(y, y, z)+3 D(y, z, z)+2 D(y, y, z)=0$

Combining (2.5) and (2.6), we obtain $D(y, z, z)=0$ for all $y, z \in N$. Replacing z by $z+x, x \in N$, we get $D(x, y, z)=0$ for all $x, y, z \in N$. Thus, $D=0$. That is, $d=0$.

Theorem 3. Let N be a 3!-torsion free prime near ring, D a permuting tri- (σ, τ)-derivation of N and d the trace of D. If $d(x)$,
$d(x)+d(x) \in C(D(N, N, N))$ for all $x \in N$, then $(N,+)$ is abelian.

Proof. Assume that
(2.7) $d(x), d(x)+d(x) \in C(D(y, v, w))$
for all $y, v, w \in N$.

From (2.7), we get

$$
\begin{aligned}
& D(y+t, v, w)(d(x)+d(x))=(d(x)+d(x)) D(y+t, v, w) \\
& \quad=(d(x)+d(x)) D(y, v, w)+(d(x)+d(x)) D(t, v, w) \\
& \quad=d(x) D(y, v, w)+d(x) D(y, v, w)+d(x) D(t, v, w) \\
& \quad+d(x) D(t, v, w) \\
& \quad=d(x)[D(y, v, w)+D(y, v, w)+D(t, v, w)+D(t, v, w)] \\
& \quad=[D(y, v, w)+D(y, v, w)+D(t, v, w)+D(t, v, w)] d(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& D(y+t, v, w)(d(x)+d(x))=D(y+t, v, w) d(x)+D(y+t, v, w) d(x) \\
& \quad=D(y, v, w) d(x)+D(t, v, w) d(x)+D(y, v, w) d(x) \\
& \quad+D(t, v, w) d(x) \\
& \quad=[D(y, v, w)+D(t, v, w)+D(y, v, w)+D(t, v, w)] d(x)
\end{aligned}
$$

for all $x, y, t, v, w \in N$. Comparing last two equations, $D((y, t), v, w) d(x)=0$, for $x, y, t, v, w \in N$.

Replacing y by $y z$ and t by $y t, z \in N$, we get

$$
\begin{aligned}
0 & =D(y(z, t), v, w) \\
& =D(y, v, w) \sigma(z, t)+\tau(y) D((z, t), v, w) \\
& =D(y, v, w) \sigma(z, t) .
\end{aligned}
$$

Since D is a nonzero permuting $\operatorname{tri}(\sigma, \tau)$-derivation and N is prime ring, we have $\sigma(z, t)=0$. Since σ is an automorphism, $(z, t)=0$ for all $z, t \in N$. Thus, $(N,+)$ is abelian.

3.PERMUTING TRI-GENERALIZED DERIVATION

Definition 2. Let N be a near ring and $D: N \times N \times N \rightarrow N$ a permuting tri-derivation of N. A permuting tri-addiive map $F: N \times N \times N \rightarrow N$ is said to be a permuting tri-right (resp. left) generalized derivation of N associated with D if $F(x w, y, z)=F(x, y, z) w+x D(w, y, z)$ $(\operatorname{resp} . F(x w, y, z)=D(x, y, z) w+x F(w, y, z))$ for all $x, y, z, w \in N$.

Also, F is said to be a permuting tri-generalized derivation of N with D if it is both a permuting triright and permuting tri-left generalized derivation of N associated with D.
Lemma 8. Let N be a 3!-torsion free prime near ring, D a permuting tri-derivation of N, F a permuting tri-additive mapping of N and f the trace of F. Then
(i) If F is a permuting tri-right generalized derivation of N associated with D and $x f(y)=0$ for all $y \in N$, then $x=0$ or $D=0$.
(ii) If F is a permuting tri-generalized derivation of N associated with D and $x f(y)=0$ for all $y \in N$, then $x=0$ or $F=0$.
Proof. (i) Using the same method in proof of Lemma 2, we have
(3.1) $x F(y, z, w)=0$
for all $y, z, w \in N$. Hence replace y by $y v, v \in N$, to get $x y D(v, z, w)=0$ for all $y, z, v, w \in N$. Since N is a prime near ring, we have $x=0$ or $D=0$.
(ii) Let x be a nonzero element of N. Thus from (i), we obtain $D=0$. Replacing y by $y v, v \in N$ in (3.1) and from $D=0$, we get $x y F(v, z, w)=0$ for all $y, z, v, w \in N$. Since N is prime and $x \neq 0$, we have that $F=0$.

Lemma 9. Let N be a near ring, D a permuting triderivation of N and F a permuting tri-additive mapping of N. Then, for all $y, z, x, w \in N$, the following are equivalent,
(i) $F(x w, y, z)=F(x, y, z) w+x D(w, y, z)$
(ii) $F(x w, y, z)=x D(w, y, z)+F(x, y, z) w$

Proof. $(i) \Rightarrow$ (ii) Assume that
$F(x w, y, z)=F(x, y, z) w+x D(w, y, z)$ for all $y, z, x, w \in N$. Then

```
\(F(x(w+w), y, z)=F(x, y, z)(w+w)+x D(w+w, y, z)\)
    \(=F(x, y, z) w+F(x, y, z) w+x D(w, y, z)\)
    \(+x D(w, y, z)\)
and
\(F(x(w+w), y, z)=F(x w+x w, y, z)=F(x w, y, z)+F(x w, y, z)\)
    \(=F(x, y, z) w+x D(w, y, z)+F(x, y, z) w\)
    \(+x D(w, y, z)\)
```

Combining the above two equality, we find that $F(x, y, z) w+x D(w, y, z)=x D(w, y, z)+F(x, y, z) w$

Hence we have $F(x w, y, z)=x D(w, y, z)+F(x, y, z) w$ for all $x, y, z, w \in N$.
$($ ii $) \Rightarrow(i)$ This is proved in similar way.
Lemma 10. Let N be a near ring, D a permuting triderivation of N, F a permuting tri-additive mapping of N and f the trace of F. Then for all
$x, y, z, w, v \in N$,
(i) $[F(x, y, z) v+x D(v, y, z)] w=$

$$
F(x, y, z) v w+x D(v, y, z) w,
$$

(ii) $[f(x) v+x D(x, x, v)] w=f(x) v w+x D(x, x, v) w$,
(iii) $[x D(v, y, z)+F(x, y, z) v]_{w}=$

$$
x D(v, y, z) w+F(x, y, z) v w
$$

(iv) $[x D(x, x, v)+f(x) v] w=$.

$$
x D(x, x, v) w+f(x) v w
$$

Proof.(i)Supposethat
$F(x v, y, z)=F(x, y, z) v+x D(v, y, z) \quad$ for all $x, y, z, v \in N$. From the asssociative law,

$$
\begin{aligned}
& F((x v) w, y, z)=F(x v, y, z) w+x v D(w, y, z) \\
& \quad=[F(x, y, z) v+x D(v, y, z)] w \\
& \quad+x v D(w, y, z)
\end{aligned}
$$

and

$$
\begin{aligned}
& F(x(v w), y, z)=F(x, y, z) v w+x D(v w, y, z) \\
& \quad=F(x, y, z) v w+x D(v, y, z) w \\
& \quad+x v D(w, y, z)
\end{aligned}
$$

Combining he above two equality, we find that
$[F(x, y, z) v+x D(v, y, z)] w=F(x, y, z) v w+x D(v, y, z) w$
(ii) Substituting x for y and z in (i), we obtain that

$$
[f(x) v+x D(x, x, v)] w=f(x) v w+x D(x, x, v) w .
$$

The proof of (iii) and (iv) are straight forward from Lemma 9.

Theorem 4. Let N be a 2,3-torsion free prime near ring, D a nonzero permuting tri-derivation and F a nonzero permuting tri-right generalized derivation of N associated with D. If $F(N, N, N) \subseteq Z$, then N is a commutative ring.
Proof. Since $F(N, N, N) \subseteq Z$ and F is nonzero, there exist nonzero elements $x, y, z \in N$ such that $F(x, y, z) \in Z-\{0\}$.Then
$F(x+x, y, z)=F(x, y, z)+F(x, y, z) \in Z$ and hence $(N,+)$ is abelian by Lemma 1. $F(x, y, z) \in Z$ for $x, y, z \in N$, implies that $F(x, y, z) w=w F(x, y, z)$ for all $w \in N$. Hence replace $x v$ with X to get
(3.2) $F(x, y, z) v w+x D(v, y, z) w=w F(x, y, z) v+w x D(v, y, z)$

Replacing x by $r f(x)$ in (3.2) and from (3.2), we have
(3.3) $r D(f(x), y, z)[v, w]=0$
for all $x, y, z, v, r, w \in N$.
Now, suppose that N is not commutative. In this case, N is a prime near ring and (3.3), we obtain
(3.4) $D(f(x), y, z)=0$
for all $x, y, z \in N$. Substituting $x+v$ for x in (3.4), since N is 2,3-torsion free and from (3.4), we get that
(3.5) $D(F(x, v, v), y, z)=0$

Taking $v+r$ instead of v in (3.5) and from (3.5), we have
(3.6) $D(F(x, v, r), y, z)=0$
since N is 2 -torsion free.
Taking $x w$ instead of x in (3.6) and from (3.6), we have
(3.7) $F(x, v, r) D(w, y, z)+D(x, y, z) D(w, v, r)+x D(D(w, v, r), y, z)=0$

Substituting $f(r)$ for r in (3.7) and from (3.7), we get
(3.8) $F(f(r), x, v)=0$

Taking $r+s, s \in N$ instead of r in (3.8) and from (3.8), we obtain
(3.9) $F(F(r, r, s), x, v)=0$
since N is 2,3-torsion free. Substituting $r+z, z \in N$ for r in (3.9) and from (3.9), we have
(3.10) $F(F(r, z, s), x, v)=0$
since N is 2 -torsion free.
Replacing r by $r w$ in (3.10) and from (3.10), we get for all $r, z, s, x, v, w \in N$,
(3.11) $F(r, z, s) D(w, z, v)+F(r, x, v) D(w, z, s)$

$$
+r D(D(w, z, s), x, v)=0
$$

Substituting $f(r)$ for r in (3.11) and from (3.8), we get

$$
f(r) D(D(w, z, s), x, v)=0
$$

Since N is a prime near ring and $F \neq 0$, we have
(3.12) $D(D(w, z, s), x, v)=0$

Taking wy instead of w in (3.12) and from (3.12), we get
(3.13) $D(w, z, s) D(y, x, v)+D(w, x, v) D(y, z, s)=0$ for all $x, y, s, z, w, v \in N$.

Replacing x, z, s, v by w in (3.13), since N is 2 torsion free prime near ring, we get
(3.14) $d(w) D(y, w, w)=0$
for all $y, w \in N$.
Taking $y r$ instead of y in (3.14) and from (3.14), we get
$d(w) y D(r, w, w)=0$
and so
$d(w) y d(w)=0$
for all $y, w \in N$. Since N is prime near ring, we get $D=0$. But this is a contradiction. Consequently, N is commutative ring.

Theorem 5. Let N be a 2,3-torsion free prime near ring, D a nonzero permuting tri-derivation of N and $F \quad a \quad$ nonzero permuting tri-right generalized derivation of N associated with D. If $f(x)$, $f(x)+f(x) \in C(D(y, z, w))$ for all $x, y, z, w \in N$, then $(N,+)$ abelian and $f(x) \in Z$ for all $x \in N$.
Proof. Since $f(x), f(x)+f(x) \in C(D(y, z, w))$ for all $x, y, z, w \in N$, if both u and $u+u$ commute elementwise with $D(y, z, w)$ for all $y, z, w \in N$, then
$[D(y, z, w)+D(v, z, w)](u+u)$
$=D(y, z, w) u+D(y, z, w) u+D(v, z, w) u+D(v, z, w) u$
and on the other hand
$[D(y, z, w)+D(v, z, w)](u+u)$
$=D(y, z, w) u+D(v, z, w) u+D(y, z, w) u+D(v, z, w) u$.

Comparing the two expression, we get
(3.15) $D((y, v), z, w) u=0$

Taking $f(t)$ instead of u in (3.15), we get $D((y, v), z, w)=0$ for all $y, v, z, w \in N$. Since $s(y, v)$ is also an additive-group commutator for any $s \in N$, replacing (y, v) by $s(y, v)$ in the last equation, we obtain
$D(s, z, w)(y, v)=0$
for all $s, z, w, y, v \in N$. Since N is a prime near ring and $D \neq 0$, we have $(y, v)=0$ for all $y, v \in N$, that is $(N,+)$ abelian.
Since $f(x) \in C(D(y, z, w))$,
$f(x) D(y, z, w)=D(y, z, w) f(x)$, for all $x, y, z, w \in N$.
Taking $y v$ instead of y in this equation, we obtain that
(3.16) $f(x) D(y, z, w) v+f(x) y D(v, z, w)$
$=D(y, z, w) v f(x)+y D(v, z, w) f(x)$
Replacing y by $d(y)$ in (3.16) and from hypothesis, we get
(3.17) $D(d(y), z, w)[v, f(x)]=0$
for all $x, y, z, w, v \in N$.
Substituting $z t$ for Z in (3.17), we get
$D(d(y), z, w) t[v, f(x)]=0$.
Since N is a prime near ring, $D(d(y), z, w)=0$ or $[v, f(x)]=0$ for all $x, y, z, w, v \in N$.

Suppose that $D(d(y), z, w)=0$ for all $y, z, w \in N$. Taking $y+v$ instead of y in the last equation, we get
$D(d(y), z, w)+D(d(v), z, w)+3 D(D(y, y, v), z, w)+3 D(D(y, v, v), z, w)=0$.

Since $D(d(y), z, w)=0$, we get
(3.18) $D(D(y, y, v), z, w)+D(D(y, v, v), z, w)=0$ since N is 3 -torsion free.

Replacing y by $-y$ in (3.18), we have
(3.19) $D(D(y, y, v), z, w)-D(D(y, v, v), z, w)=0$.

Combining (3.18) and (3.19), we obtain
(3.20) $D(D(y, v, v), z, w)=0$,
since N is 2 -torsion free.
Replacing y by $y x, x \in N$ in (3.20) and from (3.20), we have
(3.21) $D(y, v, v) D(x, z, w)+D(y, z, w) D(x, v, v)=0$

Taking $x t$ instead of $x, t \in N$ in (3.21), we get

$$
D(y, v, v) x D(t, z, w)+D(y, z, w) x D(t, v, v)=0
$$

Replacing v by t, z, w, y in the last equation we get $d(v) x d(v)=0$ for all $x, v \in N$. Since N is prime near ring $d(v)=0$, and so $D=0$. But, since $D \neq 0$, we get $f(x) \in Z$.

REFERENCES

[1] M. Ashraf, A. Ali and S. Ali; " (σ, τ)-derivations on prime near-rings", Archivum Mathematicum (BRNO), Tomus 40: 281-286 (2004).
[2] H. E. Bell and G. Mason; "On derivations in nearring, near-rings and near-fields", North-Holland, Math. Studies 137: 31-35(1987).
[3] M. Bresar; "Community Maps, a survey, Taiwanese", J. Math. 8(3):361-397(2004).
[4] Y. Çeven and M. A. Öztürk; "Some properties of symmetric bi- (σ, τ)-derivations in near- rings, Commun". Korean Math. Soc. 22 (4):487491(2007).
[5] M. A. Öztürk; "Permuting tri-derivations in prime and semi-prime rings", East Asian Math. J. ,15(2):177-190(1999).
[6] K.-H. Park and Y.-S. Jung; "On permuting triderivations and commutativity in prime near rings", Commun. Korean Math. Soc. 25(1):1-9 (2010).
[7] G. Pilz; "Near-Rings", Second Edition, NorthHolland, Asterdam, (1983).
[8] M. Uçkun and M. A. Öztürk; "On the trace of symmetric bi-gamma-derivations in gamma-nearrings", Houston . Math., 33(2):323-339(2007)..

[^0]: ^Corresponding author, e-mail: hyazarli@cumhuriyet.edu.tr

