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Abstract
Let X be a topological group with operations whose underlying space has a universal
cover. Then the fundamental groupoid πX becomes a topological internal groupoid, i.e.,
an internal groupoid in the category of topological groups. In this paper, we prove that the
slice category CovsTC/X of covering morphisms p : X̃ → X of topological groups with op-
erations in which X̃ has also a universal cover and the category CovGpd(TC)/πX of covering
morphisms q : G̃ → πX of topological internal groupoids based on πX are equivalent. We
also prove that for a topological internal groupoid G, the category CovGpd(TC)/G of covering
morphisms of topological internal groupoids based on G and the category ActGpd(TC)/G
of topological internal groupoid actions of G on topological groups with operations are
equivalent.
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1. Introduction
In the theory of covering groupoids there is a classical equivalence of categories for a

groupoid G of covering morphisms of the groupoid G and actions of the groupoid G on sets.
In [10, Theorem 2] it was proved that for a topological groupoid G, the category CovTGd/G
of topological groupoid coverings of G and the category ActTGd(G) of topological actions
of G are equivalent.

On the other hand there are two important results on group-groupoids, which are in-
ternal groupoids in the category of groups. One is that if X is a topological group whose
topology has a universal cover, then the category CovTGr/X of covering groups of X and
the category CovGrGd/πX of group-groupoid covers of πX are equivalent [8, Proposition
2.3]. The other is that if G is a group-groupoid, then the category CovGrGd/G of group-
groupoid covers of G is equivalent to the category ActGpGd(G) of group-groupoid actions of
G on groups [8, Proposition 3.1]. The former equivalence is also strengthened in the local
case of topological groups in [1]. These two results in [8] recently have been generalized in
[2] to a wide class of algebraic structures, which include groups, rings without identity, R-
modules, Lie algebras, Jordan algebras, and many others. These are conveniently handled
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by working in a category C of groups with operations in the sense of Orzech [22]. Mucuk
and Şahan in [19] give the relations between the coverings of an internal groupoid within
topological groups with operations and associated crossed module.

In this paper we deal with the topological cases of the results in [2] working in the
category TC of topological groups with operations. So for the first one we prove that for
a topological group with operations X whose underlying space has a universal cover, the
category CovsTC/X of covering morphisms p : X̃ → X of topological group with operations
in which X̃ has also a universal cover, is equal to the category CovGpd(TC)/πX of covering
morphisms q : G̃ → πX of topological internal groupoids in which the space Ob(G̃) has a
universal covering. For the second one we prove that if G is a topological internal groupoid,
then the category CovGpd(TC)/G of covering morphisms of topological internal groupoid G
is equivalent to the category ActGpd(TC)/G of topological internal groupoid actions of G
on topological groups with operations.

2. Preliminaries on groupoids and coverings
A groupoid is a (small) category in which each morphism is an isomorphism [5, p.205].

So a groupoid G has a set G of morphisms , which we call just elements of G, a set
Ob(G) of objects together with maps s, t : G → Ob(G) and ϵ : Ob(G) → G such that
sϵ = tϵ = 1Ob(G). The maps s, t are called initial and final point maps respectively and
the map ϵ is called object inclusion. If a, b ∈ G and t(a) = s(b), then the composite a ◦ b
exists such that s(a ◦ b) = s(a) and t(a ◦ b) = t(b). So there exists a partial composition
defined by Gt ×s G → G, (a, b) 7→ a ◦ b, where Gt ×s G is the pullback of t and s. Further,
this partial composition is associative, for x ∈ Ob(G) the element ϵ(x) denoted by 1x

acts as the identity, and each element a has an inverse a−1 such that s(a−1) = t(a),
t(a−1) = s(a), a ◦ a−1 = (ϵs)(a), a−1 ◦ a = (ϵt)(a). The map G → G, a 7→ a−1 is called
the inversion.

In a groupoid G for x, y ∈ Ob(G) we write G(x, y) for the set of all morphisms with
initial point x and final point y. We say G is transitive if for all x, y ∈ Ob(G), the set
G(x, y) is not empty. For x ∈ Ob(G) we denote the star {a ∈ G | s(a) = x} of x by Gx.

Let p : G̃ → G be a morphism of groupoids. Then p is called a covering morphism and
G̃ a covering groupoid of G if for each x̃ ∈ Ob(G̃) the restriction G̃x̃ → Gp(x̃) is bijective.

Assume that p : G̃ → G is a covering morphism. Then we have a lifting function
Sf : Gs ×Ob(p) Ob(G̃) → G̃ assigning to the pair (a, x) in the pullback Gs ×Ob(p) Ob(G̃)
the unique element b of G̃x such that f(b) = a. Clearly Sf is inverse to (p, s) : G̃ →
Gs ×Ob(p) Ob(G̃). So it is stated that p : G̃ → G is a covering morphism if and only if
(p, s) is bijective.

A covering morphism p : G̃ → G is called transitive if both G̃ and G are transitive. A
transitive covering morphism p : G̃ → G is called universal if G̃ covers every cover of G,
i.e., if for every covering morphism q : H̃ → G there is a unique morphism of groupoids
p̃ : G̃ → H̃ such that qp̃ = p (and hence p̃ is also a covering morphism), this is equivalent
to that for x̃, ỹ ∈ O

G̃
the set G̃(x̃, ỹ) has not more than one element.

A morphism p : (G̃, x̃) → (G, x) of pointed groupoids is called a covering morphism if
the morphism p : G̃ → G is a covering morphism.

It was proved in that [5, 10.6.1] that If X is a topological space which has a universal
cover, then the category CovTop/X of covering maps p : X̃ → X is equivalent to the category
CovGd/π1X of covering morphisms q : G̃ → π1X of groupoids.

Let G be a groupoid. An action of G on a set consists of a set X, a function θ : X →
Ob(G) and a function φ : Xθ ×s G → X, (x, a) 7→ xa defined on the pullback Xθ ×s G of θ
and s such that



1022 O. Mucuk, H.F. Akız

(1) θ(xa) = t(a) for (x, a) ∈ Xθ ×s G;
(2) x(ab) = (xa)b for (a, b) ∈ Gt ×s G and (x, a) ∈ Xθ ×s G;
(3) x1θ(x) = x for x ∈ X.

Given such an action, semidirect product groupoid G n X is defined to be the groupoid
with object set X and elements of (GnX)(x, y) the pairs (a, x) such that a ∈ G(θ(x), θ(y))
and xa = y. The groupoid composite is defined to be

(a, x) ◦ (b, y) = (ab, x)

when y = xa
A topological groupoid is a groupoid such that the sets G of morphisms and the set

Ob(G) of objects are topological spaces and source, target, inclusion, inverse and product
maps are continuous (see for example [15, Section 2] and [7]). Let G and G̃ be two
topological groupoids. Then a morphism p : G̃ → G of topological groupoids is a morphism
of groupoids such that p : G̃ → G and Ob(p) : Ob(G̃) → Ob(G) are continuous.

Definition 2.1. A morphism p : G̃ → G of topological groupoids is called covering mor-
phism of topological groupoids if for each x ∈ Ob(G̃) the restriction px̃ : G̃x̃ → Gp(x̃) of p

is a homeomorphism.

Example 2.2 ([10, Example 3]). If p : X̃ → X be a covering morphism of topolog-
ical groups in which both underlying spaces of X and X̃ have universal covers, then
π(p) : πX̃ → πX becomes a covering morphism of topological groupoids.

As it is stated in [12, Section 2], equivalently a covering morphism of topological
groupoids can be restated as follows:

Theorem 2.3. Let p : G̃ → G be a morphism of topological groupoid groupoids. Then p
is a covering morphism of topological groupoids if and only if

(p, s) : G̃ → Gs ×Ob(p) Ob(G̃)

is a homeomorphism.

The topological action of a topological groupoid on a topological space is defined in
[10, p.144] as follow:

Let G be a topological groupoid, X a toplogical space and G n X a groupoid action
on X. If the functions θ : X → Ob(G) and φ : Xθ ×s G → X, (x, a) 7→ xa are continuous,
then we say that G acts as topologically on X.

Example 2.4 ([10, Theorem 2]). Let p : G̃ → G be a covering morphism of topological
groupoids. Then G acts as topologically on Ob(G̃).

Recall that a covering map p : X̃ → X of connected spaces is called universal if it covers
every covering of X in the sense that if q : Ỹ → X is another covering of X then there
exists a map r : X̃ → Ỹ such that p = qr (hence r becomes a covering). A covering map
p : X̃ → X is called simply connected if X̃ is simply connected. So a simply connected
covering is a universal covering.

The following result was proved in [6, Theorem 1] and we need it in the proof of Theorem
3.11.

Proposition 2.5. If X is a locally path connected and semi-locally simply connected space,
then the fundamental groupoid πX may be given a topology making it a topological groupoid.
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3. Topological groups with operations and topological internal categories
The idea of the definition of categories of groups with operations comes from Higgins

[13] and Orzech [22]; and the definition below is from Porter [23, Section 1] and Datuashvili
[11, p.21], which is adapted from Orzech[22].

Definition 3.1. The notion of a group with a set of operations consists of a pair (Ω, E)
where E is a set of identities including the group laws and Ω of operations which includes
the group operations, and the following conditions hold: If Ωi is the set of i-ary operations
in Ω, then

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) The group operations written additively 0, − and + are the elements of Ω0, Ω1 and

Ω2 respectively. Let Ω′
2 = Ω2\{+}, Ω′

1 = Ω1\{−} and assume that if ⋆ ∈ Ω′
2, then ⋆◦

defined by a ⋆◦ b = b ⋆ a is also in Ω′
2. Also assume that Ω0 = {0};

(c) For each ⋆ ∈ Ω′
2, E includes the identity a ⋆ (b + c) = a ⋆ b + a ⋆ c;

(d) For each ω ∈ Ω′
1 and ⋆ ∈ Ω′

2, E includes the identities ω(a + b) = ω(a) + ω(b) and
ω(a) ⋆ b = ω(a ⋆ b).

From now on C will be a category of groups with operations satisfying the conditions
(a)-(d).

A morphism f : (E, Ω) → (E′, Ω) consists of a function f : E → E′ is a group homo-
morphism, which preserves the operations.

Remark 3.2. The set Ω0 contains exactly one element, the group identity; hence for
instance the category of associative rings with unit is not a category of groups with oper-
ations.

Example 3.3. The categories of groups, rings generally without identity, R-modules,
associative, associative commutative, Lie, Leibniz, alternative algebras are examples of
categories of groups with operations.

The category of topological groups with operations are defined in [2] as follows:

Definition 3.4. A category TC of topological groups with a set Ω of continuous oper-
ations and with a set E of identities such that E includes the group laws such that the
conditions (a)-(d) of Definition 3.1 are satisfied, is called a category of topological groups
with operations.

In the rest of the paper TC will denote the category of topological groups.
A morphism between any two objects of TC is a continuous group homomorphism,

which preserves the operations in Ω′
1 and Ω′

2.
The categories of topological groups, topological rings and topological R-modules are

examples of categories of topological groups with operations.

Definition 3.5 ([23, Section 3]). Let C be the category of groups with operations. An
internal category in C is a category C in which Ob(C) and C are the objects of C such that
the initial and final point maps s, t : C ⇒ Ob(C), the object inclusion map ϵ : Ob(C) → C
and the partial composition ◦ : Ct ×s C → C, (a, b) 7→ a ◦ b are morphisms in the category
C.

Note that since ϵ is a morphism in C, ϵ(0) = 0 and that the operation ◦ being a morphism
implies that for all a, b, c, d ∈ C and ⋆ ∈ Ω2,

(a ⋆ c) ◦ (b ⋆ d) = (a ◦ b) ⋆ (c ◦ d) (3.1)

whenever one side makes sense. This is called the interchange law [23] .
We also note from [23] that any internal category in C is an internal groupoid since,

given a ∈ C, a−1 = ϵt(a) − a + ϵs(a) satisfies a−1 ◦ a = ϵt(a) and a ◦ a−1 = ϵs(a). So we
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use the term internal groupoid rather than internal category and write G for an internal
groupoid. For the category of internal groupoids in C we use the notation Gpd(C). Here a
morphism f : H → G in Gpd(C) is the morphism of underlying groupoids and a morphism
in C.

In particular if C is the category of groups, then an internal groupoid G in C becomes
a group object in the category of groupoids, which is quite often called 2-group, see
for example [4], group-groupoid or G-groupoid [9, p.297], [16]. The advantages of the
group-groupoid term are: (i) there is no confusion with the group theoretic term "2-
group" as a group all of whose elements are of order 2; (ii) it is a clear statement of the
structure involved. Recently the notion of monodromy for topological group-groupoids
was developed in [21, Theorem 3.10]; and the normality and quotient in group-groupoids
were developed in [20]. In the case where C is the category of rings, an internal groupoid
is a ring object in the category of groupoids [17, Definition 1.1] (see also [3, Definition 4.1]
for topological R-module case).

Example 3.6 ([2]). Let X be an object of TC. Then the groupoid G = X × X is an
internal groupoid.Here a pair (x, y) is a morphism from x to y with inverse morphism
(y, x). The groupoid composition is defined by (x, y) ◦ (u, z) = (x, z) whenever y = u.
The binary operations in G are defined by (x, y)⋆̃(u, v) = (x ⋆ u, y ⋆ v) for ⋆ ∈ Ω2 and
the unary operations by ω̃(x, y) = (ω(x), ω(y)) for ω ∈ Ω1. For the interchange law if
a = (x, y), b = (y, z), c = (u, v) and d = (v, w) are the morphisms in G so that the
compositions a ◦ b and c ◦ d are defined, then we have (a ◦ b)⋆̃(c ◦ d) = (x ⋆ u, z ⋆ w) and
(a⋆̃c) ◦ (b⋆̃d) = (x ⋆ u, z ⋆ w) and therefore we have the interchange law

(a⋆̃c) ◦ (b⋆̃d) = (a ◦ b)⋆̃(c ◦ d).

Remark 3.7 ([2, 3.7]). The following are immediate from Definition 3.5:
(i) By Definition 3.5 we know that in an internal groupoid G in C, the initial and final
point maps s and t, the object inclusion map ϵ are the morphisms in C and the interchange
law (3.1) is satisfied. Therefore in an internal groupoid G, the unary operations are
endomorphisms of the underlying groupoid of G and the binary operations are morphisms
from the underlying groupoid of G × G to the one of G.
(ii) Let G be an internal groupoid in C and 0 ∈ Ob(G) the identity element. Then
Kers = StG0, called in [5, p.3] transitivity component or connected component of 0, is also
an internal groupoid.

Let H and G be two internal groupoids in C. A morphism of internal groupoids is
a morphism f : H → G of underlying groupoids which is also a morphism of groups
with operations. A morphism f : H → G of internal groupoids is called covering (resp.
universal covering) if it is a covering (resp. universal covering) morphism on the underlying
groupoids.

Definition 3.8. An internal groupoid in the category TC of topological groups with
operations is called a topological internal groupoid.

So a topological internal groupoid is a topological groupoid G in which the set of
morphisms and the set Ob(G) of objects are objects of TC and all structural maps of G,
i.e, the source and target maps s, t : G → Ob(G), the object inclusion map ϵ : Ob(G) → G
and the composition map ◦ : Gt ×s G → G, are morphisms of TC.

If TC is the category of topological groups, then an internal topological groupoid be-
comes a topological group-groupoid which was previously defined in [14, Definition 1]
by the requirement that is a topological groupoid which is also a group-groupoid with
continuous structural maps of groups.

Example 3.9. A topological group with operations which is abelian according to all
binary operations ⋆ ∈ Ω2 can be thought as a topological internal groupoid.
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Example 3.10 ([18, Example 3.10]). Let X be an object of TC. Then the groupoid
G = X × X is a topological internal groupoid. By Example 3.6 it is seen that G = X × X
is an internal groupoid. In addition since the maps s, t, ϵ and the groupoid composition
◦ : Gt ×s G → G, (a, b) 7→ a◦b are continuous then the structural maps of G are continuous.
Hence G becomes a topological internal groupoid.

Theorem 3.11. Let X be an object of TC such that the underlying space is locally path
connected and semi-locally simply connected. Then the fundamental groupoid πX is a
topological internal groupoid.

Proof. Let X be a topological group with operations as assumed. By Theorem 2.5, πX
has a topology such that it is a topological groupoid. We know by [6, Proposition 3]
that when X and Y are endowed with such topologies, for a continuous map f : X → Y ,
the induced morphism π(f) : πX → πY is also continuous. Hence the continuous binary
operations ⋆ : X × X → X for ⋆ ∈ Ω2 and the unary operations ω : X → X for ω ∈ Ω1
respectively induce continuous binary operations ⋆̃ : πX ×πX → πX and unary operations
ω̃ : πX → πX. So the set of morphisms becomes a topological group with operations. Now
we show that the groupoid structural maps are morphisms of groups with operations, i.e.,
preserve the operations.

For the morphism s : πX → X, s([a]) = a(0), the operations ⋆ ∈ Ω2 and ω ∈ Ω1 we have
the following:

s([a ⋆ b]) = (a ⋆ b)(0)
= a(0) ⋆ b(0)
= s[a] ⋆ s[b]

and

s(ω[a]) = s[ω(a)]
= (w(a))(0)
= w(a(0))
= ws[a].

For the final map t : πX → X, t([a]) = a(1), the operations ⋆ ∈ Ω2, ω ∈ Ω1 and for
[x] ∈ πX the following are satisfied:

t([a ⋆ b]) = (a ⋆ b)(1)
= a(1) ⋆ b(1)
= t[a] ⋆ t[b]

and

t(ω[a]) = t[ω(a)]
= (w(a))(1)
= w(a(1))
= wt[a].

Since X is a topological group with operations, then for the partial composition πXt ×s

πX → πX, ([x], [y]) 7→ [x ◦ y] and x, y, z, t ∈ X,

[(x ⋆ z) ◦ (y ⋆ t)] = [(x ◦ y) ⋆ (t ◦ z)],

where (x◦y) and (t◦z) are defined. This equivalence shows us that the partial composition
is a morphism of groups with operations.

Therefore πX becomes a topological internal groupoid. �
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Let sTC be the full subcategory of TC on those objects whose underlying spaces are
locally path connected and semi-locally simply connected; and let Gpd(TC) be the category
of topological internal groupoids in C. Then we have a functor

π : sTC → Gpd(TC).

4. Covering morphisms of topological internal groupoids
We now give the definition of a covering morphism of topological internal groupoids:

Definition 4.1. Let G̃ and G be topological internal groupoids and let p : G̃ → G be
a morphism of topological internal groupoids. Then p is called a covering morphism of
topological internal groupoids if it is also a covering morphism of topogical groupoids.

Example 4.2. Let p : X̃ → X be a covering morphism of topological groups with opera-
tions in which X and X̃ has universal covers. We know from Theorem 3.11 that πX̃ and
πX are topological internal groupoids. Then the induced morphism π(p) : πX̃ → πX is a
covering morphism of topological internal groupoids in C.

Let X be a topological group with operations which has a universal cover. Let CovsTC/X

be the category of covering morphisms p : X̃ → X of topological groups with operations
in which X̃ has also a universal cover. Let CovGpd(TC)/πX be the category of covering
morphisms p : G̃ → πX of topological internal groupoids based on πX such that Ob(G̃)
has a universal cover. We now prove the following equivalence of the categories.

Theorem 4.3. The categories CovsTC/X and CovGpd(TC)/πX are equivalent.

Proof. Define a functor
π : CovsTC/X → CovGpd(TC)/πX

as follows: Suppose that p : X̃ → X is a covering morphism of topological groups with
operations in which both underlying spaces X and X̃ have also a universal covers. From [2,
Theorem 3.1] the induced morphism π(p) : πX̃ → πX is a morphism of internal groupoids
and a covering morphism on the underlying groupoids. By Theorem 3.11, πX and πX̃ are
topological internal groupoids. Since the map (π(p), s) in the sense of Theorem 2.3 is a
homeomorphism and so π(p) is a covering morphism of topological groupoids [10, Example
3]. Therefore π(p) : πX̃ → πX is a covering morphism of topological internal groupoids.
In this way we have a functor as required.

We now define a functor
Γ: CovGpd(TC)/π1X → CovsTC/X

as follows: Let q : G̃ → π1X be a covering morphism of topological internal groupoids in
which Ob(G̃) = X̃ and X have a universal cover. By the lifted topology on X̃ [5, 10.5.5]
we have a covering morphism p : X̃ → X of topological spaces where p = Ob(q) and
X̃ = Ob(G̃). Since q is a covering morphism of topological internal groupoid, q and
Ob(q) = p are morphisms of topological groups with operations.

Since the category CovTop/X of topological covering maps of X is equivalent to the
category CovGd/π(X) of groupoid covering morphisms of πX, by the following diagram
the proof is completed.

CovsTC/X

��

π // CovGpd(TC)/π(X)

��

CovTop/X π
// CovGd/π(X)

�
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We define an action of a topological internal groupoid on a topological group with
operation as follows:

Definition 4.4. Let G be a topological internal groupoid in TC and X an object of TC.
If the underlying groupoid of G acts on the underlying set of X such that θ : X → Ob(G)
and φ : Xθ ×s G → X, (x, a) 7→ xa are morphisms in TC, then we say that the topological
internal groupoid G acts as topologically on the topological group with operations X via
θ.

We write (X, θ, φ) for an action.
Here note that φ : Xθ ×s G → X, (x, a) 7→ xa is a morphism in TC, then we have

(x ⋆ y)(a ⋆ b) = (xa) ⋆ (yb)
for x, y ∈ X and a, b ∈ G whenever one side is defined.

Example 4.5. Let G and G̃ be topological internal groupoids in TC and let p : G̃ → G
be a covering morphism of of topological internal groupoids as defined in Definition 4.1.
Then the topological internal groupoid G acts topologically on the topological group with
operations X̃ = Ob(G̃) via Ob(p) assigning to x̃ ∈ X̃ and a ∈ Gp(x̃) the target of the
unique lifting of a with source x̃: In fact p : G̃ → G is a covering morphism of topological
groupoids and therefore by Example 2.4 the topological groupoid G act topologically on
the space X̃ = Ob(G̃) via Ob(p). The condition

(x̃ ⋆ ỹ)(a ⋆ b) = (x̃a) ⋆ (ỹb)
is satisfied for x̃, ỹ ∈ X̃ and a, b ∈ G whenever one sight is defined. The other conditions
related to the group operations are satisfied.

We know from [10, p.145] that if G is a topological groupoid and X is a topological space
such that G acts topologically on X, then the semidirect product groupoid GnX becomes
a topological groupoid. The internal groupoid case of the following theorem was given in
[2, Theorem 2.15]. So we obtain the following result for topological internal groupoids.

Theorem 4.6. Let G be a topological internal category in TC and X an object of TC.
Suppose that the topological internal groupoid G acts as topologically on the topological
group with operations X. Then the semidirect product groupoid G n X becomes a topolo-
gical internal groupoid in TC such that the projection p : G n X → G is a morphism of
topological internal groupoids.

Let G be a topological internal groupoid in the category TC of topological groups with
operations. Then we have a category CovGpd(TC)/G of covering morphisms of topological
internal groupoids based on G. So the objects are the covering morphisms p : G̃ → G
of topological internal groupoids and a morphism say from p : G̃ → G to q : H̃ → G is
a morphism f : G̃ → H̃ of topological internal groupoids which becomes also a covering
morphism, such that qf = p.

Let ActGpd(TC)(G) be the category of topological internal groupoid actions on topological
groups with operations. So an object of ActGpd(TC)(G) is an topological internal groupoid
action (X, θ, φ) of G on a topological group with operations X and a morphism say from
(X, θ, φ) to (X, θ, φ) is a morphism of topological groups with operations f : X → X ′ such
that θ = θ′f and f(xa) = (fx)a whenever xa is defined.

In [10, Theorem 2] it was proved that for a topological groupoid G, the category
ActTGd(G) of topological groupoid actions of G and the category CovTGd/G of covering
morphisms of topological groupoids based on G are equivalent. We now generalize this
equivalence to the topological internal groupoids as follows:
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Theorem 4.7. The categories CovGpd(TC)/G and ActGpd(TC)/G are equivalent.

Proof. We define a functor
Γ: CovGpd(TC)/G → ActGpd(TC)(G)

as follows: Let p : G̃ → G be a covering morphism of topological internal groupoid based
on G. Then by Example 4.5 topological internal groupoid G acts as topologically on
topological group with operations Ob(G̃) via θ.

We now define a functor

Φ: ActGpd(TC)(G) → CovGpd(TC)/G

as follows: Let (X, θ, φ) be a topological internal groupoid action on a topological group
with operation. So by [8] the projection p : G n X → G is covering morphism of topo-
logical groupoids and by [2, Theorem 3.14] is a covering morphism of internal groupoids.
By compounding these we have that p is a covering morphism of topological internal
groupoids.

The natural equivalences ΓΦ ' 1 and ΦΓ ' 1 follow. �
Acknowledgment. We would like to thank to the referee for useful comments and
suggestions which improve the paper.
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