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Abstract

Let f be an H-periodic continuous function. The approximation order of the function
f by deferred Cesaro means of its hexagonal Fourier series is estimated in uniform and
generalized Holder metrics.
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1. Introduction

The order of approximation of 27-periodic continuous functions on the real line is stud-
ied by many mathematicians in recent decades. There are several results on the order of
approximation by partial sums and various means (Cesaro means, Abel-Poisson means,
de la Vallée-Poussin means, etc.) of trigonometric Fourier series in the literature. In
these works, usually, it is assumed that the functions belong to Hoélder spaces or their
generalizations (see [2,3,9-11,13,15,17]).

Estimating the degree of approximation of functions of several real variables is also
important in trigonometric approximation theory. Approximation problems of functions
defined on cubes of the d—dimensional Euclidean space R? are usually studied by assuming
that the functions are 27-periodic with respect to each of their variables (see, for example,
[15, Sections 5.3 and 6.3] and [17, Vol. II, Chapter XVII]).

In the case of non-tensor product domains, for example, in the case of hexagonal domains
in the Euclidean plane R?, other types of periodicity are needed to study approximation
problems. The periodicity defined by lattices allows us to study approximation problems
on spectral sets of lattices. In this section we give basic knowledge about hexagonal
lattices, H-periodic functions and hexagonal Fourier series. It is well known that the
hexagon lattice offers the densest packing of R? with unit balls. Thus, the hexagon lattice
and hexagonal Fourier series have great importance in Fourier analysis. More general
information about lattices and Fourier analysis on spectral sets of them can be found in
[12] and [16].

The hexagonal lattice is defined by

HZ? .= {Hk ke 22},
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_ (V30
i = ( -1 2
and Z2 = {k = (k1, ko) € R? : k1, ko € Z} . H is called the generator matrix of this lattice.
The spectral (or fundamental) set of hexagonal lattice is

where

3 1
Qp = {(iﬁl,fvz) €ER?: -1< xz,\gm + g < 1}.

It is more convenient to use the homogeneous coordinates (¢1, to, t3) that satisfies t1 +to +
tg3 = 0. If we define

T9 \/gxl X2 \/§$1

tHh=——+ —, t9 1= t3 :i= —— —
1 2+ 9 s L2 x2, 13 2 9 )

(1.1)
the hexagon Qp becomes
Q= {(t17t27t3) S Rg -1 S t17t27_t3 < 17 tl +t2 +t3 = 0}7

which is the intersection of the plane t; + ¢y + t3 = 0 with the cube [—1,1]*.
We use bold letters t for homogeneous coordinates and we denote by ]R?}I the plane
t1 + to + t3 = 0, that is

RS, = {t = (t1,t2,t3) € R® 1ty + 1ty + 5 = 0}.
Also we use the notation Z3; for the set of points in R%, with integer components, that is
73, =73 NRY,.
L? (Q) is a Hilbert space with respect to the inner product

1 _
<ﬁmH=“ﬂéﬂﬂg@Mt(ﬁgeL%QD,

where || denotes the area of 2 and g (t) is the conjugate of g (t). By Fuglede’s theorem
(see [4]) the set

{65(6) =00 ez, teRY ),
where (j, t) is the usual Euclidean inner product of j and t, is an orthonormal basis of this
space.

A function f is called periodic with respect to the hexagonal lattice (or H-periodic) if
f(t) = f(t+s) whenever s = 0 (mod 3), where t = s (mod 3) defined as

t1 —s1 =tg — sp =t3 —s3 (mod3).

It is clear that the functions ¢; (t) are H-periodic and if the function f is H-periodic then
/f(t+s)dt :/f(t)dt, (sery).
Q Q

For every natural number n, we define a subset of Z‘j{[ by
H, = {j = (1, j2,Js) € Ziy : =1 < ju, o, js < nf .

Note that, H,, consists of all points with integer components inside the hexagon nf).
The hexagonal Fourier series of an H-periodic function f € L' (Q) is

f6) ~ Y figs(b), (1.2)
JEZ3,

where

~

1 27ms /s
. — - <.]7t> 1 3
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The nth partial sum of the series (1.2) is defined by
Su () (8) = fid; (t), (n€N).
j€Hn
It is clear that
1
S (1) () = g [ £ (6= 9) D (s) s, (13)
Q

where
Dy, (t) == Z b (t)
JEH,
is the Dirichlet kernel.
The Dirichlet kernel has the compact formula

Dy () =65 (t) = On-1 (), (REN), (1.4)

where
o (t) . 5o ()t iy (Dt gy (L)t y
n(t)= sin (tl?)” sin (t2;t3)7f sin (t373t1)7r (1.5)

for t = (t1,t2,t3) € R, ([14],[12]).

2. Main results
Let Cy (ﬁ) be the space of complex valued H-periodic continuous functions defined on

R?jq. Cr (ﬁ) is a Banach space with respect to the uniform norm
I £llo(@) = sup {If (&)] : t € 2}
A function f € Cy (ﬁ) is said to belong to the Holder space H“ (ﬁ) ,0<a<,if

£ (£) — £ (s)]
e e—sl® ’

where ||t|| = max {|t1], |t2], [t3]} .

In [16], the author proved that the Abel-Poisson means and the sequence of Cesaro
(C,1) means of the Fourier series of a function f € Cpy (ﬁ) converge to this function
uniformly on €. Later, the order of approximation by Abel-Poisson and (C,1) means of
Fourier series of functions belong to the class H“ (ﬁ) (0 < o < 1) were investigated in

uniform norm ([6]) and in the Holder norm ([5]).
Let p = (p,) and ¢ = (g) be two sequences of non-negative integers such that

Pn < qn and Jgngoqn = 00. (2.1)
The deferred Cesaro means of the series (1.2) are defined by

1

S Se(f) (b).

Dy (p,q; f) (t) :=
dn — Pn k=—pn+1

It is known that the D,, (p, ¢) summability method is regular under conditions in (2.1) and
generalizes the Cesaro (C, 1) method if and only if p,, < g, — pn ([1]).
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By considering (1.3) and (1.4) we obtain

m@@ﬁw::me ( iﬁm¢0@

— P 570
- /f Z 01 (s) — Op_1 (s) | ds

= ——— i | [ (£ =5)(Og, (s) = Oy, (s)) ds.
Qn_pn|Q’é

Hence we have

F©)=Dupai ) (6) = e [ (110~ (£-9) (0, () =0y, () ds (22)
Q

for each f € L' (Q2) and t € R3,.

If we take g, = n and p, = 0 for n = 1,2,..., D, (p,q; f) become the (C,1) means
S (f).

Hereafter, we shall write A < B for the quantities A and B, if there exists a constant
K > 0 such that A < KB holds.

The order of approximation by deferred Cesaro means of hexagonal Fourier series was
estimated by the second author as follows [8].

Theorem 2.1. Let f € H® (ﬁ) , 0 < a < 1. Then the estimate

< n ? (qnflpn)“ a<l
|f — Dn (p,q; f)HCH(ﬁ) ~ (Qn — pn> (lOg(2q(fz;f")))27 o— (2.3)
holds.
Theorem 2.2. Let0< < a<1and fe H" (ﬁ) . Then we have
qn 2 (q —pl )= o<l
||f - D, (pa q; f)”Hﬁ (ﬁ) S ( — ) (1og(n2(qnn_pn)))2 _ (24)
n = bn @—p 7 0 YT

A non-decreasing continuous function w : [0,00) — [0, 00) is called a modulus of conti-
nuity if
w(0)=0, w(t; +t2) Swl(t1) +wl(ta).
For any modulus of continuity w, we define the generalized Holder class H¥ (ﬁ) as the

set of functions f € Cpg (ﬁ) for which
[/ (t) = f(s)]

sup——-——— < 00,
t#s w ([t —sl|)

and the norm on H% (ﬁ) as

[f (t) = f(s)]
w(llt—sll) -

If w(d) =d%0 < a <1, then it is clear that H“ (ﬁ) coincides with H® (ﬁ), and || f1],

becomes || f||,,

In [10], L. Leindler introduced a certain class of moduli of continuity:

for 0 < a <1, let M, denote the class of moduli of continuity w, having the following
properties:

151l = 1 lega) + sup
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(i) for any o/ > « there exists a natural number p = p (o) such that
21 o (27TH) > 2w, (27, (R=1,2,..),
(i7) for every natural number v, there exists a natural number N (v) such that
2% (2777Y) < 2wa (277), (n> N (v)).
It is clear that w (0) = 6% € M, but w, (0) is an extension of w () = §%*. Consequently,
in general, H*= (ﬁ) is larger than H® (ﬁ) .
It is known that if 0 < f < a <1, wg € Mg and w, € M, then the function
_ wa (t)
ws(t)

Y (t) = Ya,p (1) :

is non-decreasing ([11]).
In this work, we will estimate the order of approximation by deferred Cesaro means of

hexagonal Fourier series of functions belong to the generalized Holder class H“> (ﬁ) and

generalize the some results of [6] and [5], [8].
Main results of this work are the following.

Theorem 2.3. Let 0 < f < a <1, wg € Mg, wa € My and f € H (ﬁ) . Then
1f = Dn (2,6 Fll ey @) (2.5)

S < Gn )2{ WEqnipn;IOg(2(Qn_pn))y a<l1 O’I"B>0

Gn — Pn ~ Qnipn (log (2 (qn —pn)))2 , a=land =0

holds.
Theorem 2.4. Let 0 < f < a <1, wg € Mg, wa € My and f € H (ﬁ) . Then

1f = Do (0, ¢ )l s () (2.6)

< ( dn )2 W(ﬁ log(2(Qn_pn))7 Oé<107"6>0
~ \gn—pn y (qnipn (log (2 (gn —pn)))2, a=1and 3 =0.

3. Proofs of main results

Proof of Theorem 2.3. Since f € H%~ (ﬁ) , by (2.2) we have,

£0) = Do (.0:.1) () S 7= 77 [ Is1) 1€y, (5) = 0y, (5) s
Q

(Qn - pn)

Since the integrated function symmetric with respect to its variables, it is sufficient to
estimate this integral

L= [wa(lt) €y, (t) = ©,, (t)]de
A
where
A o= {t = (t1,to,t3) €RY, 10 < ty, 9, —t3 < 1}
= {(t1,t2) :t1 >0, t2 >0, t; +t2 <1},
which is one of the six equilateral triangles in €.
By (1.5) and some simple trigonometric identities,
GQTL (t) - epn (t)

2cos (4P +1) T sin ((2gPe) LT sin ((ga + 1) “527) sin ((gn + 1) 527)
(tz—gts)ﬂ (t3—3t1)7r

sin

. (t—t .
sin (4 32)W sin
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2 cos ((‘I'n‘gpn + 1) (tzfgtg)fr) sin ((w) W) sin ((qn +1) @) sin ((pn +1) W)
+ (t173t2)7r sin (t2 73t3)7r (t373t1)7r

sin

sin
+QCOS ((q";rp" + 1) (tl_gtz)") sin ((7‘1"?3") 7(“_;2)”) sin ((pn +1) 7(t2_3t3)77) sin ((pn +1) 7“3_;1)7() .

t1—t . (to—t . (ta—t
n 32)7\' sm(2 33)7r Sln(3 31)7r

If we use the change of variables

t1—1 to —t
51 = 133,32:: 23 3 (3.1)
we obtain
I, < B/Wa(sl +82) (|L1,n (81, 82)| + [L2n (51, 82)| + L (51, 52)]) dsidsa,
A
where _
A= {(81782) 10 <51 <259,0< 59 <251,51+852 < 1}
and
. sin (( ) s17 ) sin ((gn + 1) (81 — s2) 7) sin ((gn, + 1) s27)
Lo (s1,82) o= sin ((s1 — s2) 7) sin (so7) sin (s17)
. sin (2522 ) (s5m)) sin (o +1) (51 — 52) 7) sin ((pn + 1) (17))
znls1,52) = sin ((s1 — $2) 7) sin (so7) sin (s17)
sin ((q";p”) (s1— s2) 7r) sin ((p, + 1) (som)) sin ((p, + 1) (s17))
L3n(s1,82) @ = :

sin ((s1 — s2) m) sin (s97) sin (s17)

Since the integrated function symmetric with respect to s; and so, we have

I, < G/wa(81 + 52) (|L1n (51, 52)| + |Lan (s1,52)| + | L3 (s1,52)|) dsidsa,

where
A" = {(51,52) €EA:s < 52},
i. e. the half of A. The change of variables
Up — U2 Ul + U2

S11= 5 $21= (3.2)

transforms the triangle A* onto triangle

I:.= {(ul,uQ) :OSUQ S —,Ogul S 1},
and hence

I, < 3/wa(u1) (’L’{n (ul,uz)‘ + ’L;n (Ul,UQ)’ + ‘Lgn (ul,ug)‘) duydus,
r

where
sin ((‘1" 2pn) %) sin ((gn, + 1) ugm) sin ((Qn +1) M)

* A )
Ll,n (U17U2) L= sin (U27T sm( u1+u2 ﬂ') ( Uy — u2 )
sin ((qn 2Pn> M) sin ((gn + 1) ugm) sin ((pn +1) %)
sin (ugm) sin (W) sin ( W)
sin (2522 upr ) sin ((pn + 1) M52 ) sin ((p, + 1) (15127)
ey (S ()

si

=3

Ly (ui,u2) @ =

Ly, (u,u2) @ =
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If we divide the triangle I' into three parts as

1
r, : :{ul,uz EF:ulﬁ},
( ) 2(Qn_pn)
r {( el iuy > — < ! }
2 1 = q(u1,u2 B e L Ry Y &)
2 (qn — pn) 6 (¢n — Pn)
1 1
Fg : :{ul,ug EF:ulzi, u22}7
( ) 2 (qn — pn) 6 (Qn - pn)
we get
In ,S Il,n + IQ,n + I3,na
where

Ij,n = /wa(ul) (‘Lin (ul,uQ)’ + ‘L;Jl (ul,ug)‘ + ’L;;n (ul,uQ)D dulduQ (] = 1, 2,3) .

We use the inequalities

sin nt
| <n e, (3.3)
and
T
sint > —t, <O§t<2) (3.4)

to estimate integrals I, (j =1,2,3).
For (uy,ug) € T, since ug < 1/3, we have

sin|———n) = sin[{— )cos|— ) +cos|— )sin|[—
2 2 2 2 2
N (ulﬂ') <u27r> S <7T) . <u17r> V3 . wm
sin [ — ) cos [ — cos|— |sin| — | = —sin —
- 2 2 - 6 2 2 2’

and by (3.4) we obtain

(u1 #0). (3.5)

sin (%ﬂ)

By the inequality (3.3) we get

‘LT,n (Ulau2)‘ ,S (Qn _pn) (Qn + 1)2 ,
L5 (u1,02)| S (g0 =) (@ +1) (0 + 1),
L3 (i, u2)| S (@0 —pa) (o +1)°,

and hence

‘Lﬁ,n (ul»W)\ <S(n—pa)@2 (j=1,2,3)
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for (u1,ug) € I'y. Thus,

Liyap S (qn—pn)qi/wa(m)dmdw
I
2(‘171 Pn) u1/3
= / / ’LL1 duzdul
0
( 2(‘171 Pn)
— p" q" / Uwe (u1)duy
0
1
1 2(qn—pn)
< (gn — Pn) W urduy
2
q 1
< m—wa ( )
dn — Pn dn — Pn
2
q 1 1
= ——uws(—— )M (——)
dn — Pn dn — Pn dn — Pn
2
1
< wp() L )

Since (u1 —u2) § < 7, by (3.4) we get

. T
uy — ug < sin (u; — ug) 5
This inequality and the fact uy — ug > 2“1 yield
1 3
< , (ul, 'LLQ) eIy UTls. (36)

sin (Lu2)m) = 2u
Thus, by (3.3), (3.5) and (3.6) we obtain
* 1
Li uw2)| S (an+1) -,
uy

L5 (wyw2)| S (@n+1)—

uy
and
‘LS,n (ula UQ)’ ~ (Qn - pn) 55
uy
which implies
q .
‘LJH (Ul,UQ)‘ S uir%l (] = 1)2)3)
for (ul,uQ) eTI's.
By Lemma 1 of [7] we have
1 1
t nyl(=), a<lorfB>0
/t;u;v ((l)t)dt . { 71(711) 1and B =0 (3.7)
] a5 (3) o, =1 ani 5
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for every natural number n > 2. Hence we get

1 G(in—pn) ( )
IQ,n S, qn / / Wozu;tl dusduq
1 0 1
Q(anpn)
[ )
Qn / Wa U1
T (a0 — o) —————wg(u1)duy
6 (QH - pn) f U%Wﬂ(ul) B
2(‘1n*?n)
[ walu)
dn Wa U
S wa(l / 7du1
W= uiwg(u)
2(gn—pn)
1
SJ dn 1’y(q"pn)’ a<10rﬂ>0
V(M) log (2 (gn — pn)), «=1and =0.

By (3.4), (3.5) and (3.6) we obtain

* < | =
Lt w)] S e (=1,2.9
for (u1,u2) € I's. Thus, by (3.7), we have
1 u1/3
I3, < / / wa2<u1)du2du1

1
2(gn—pn) 6(gn—pn)

1
— / wa(gl) log (2 (qn — pn) u1) duy
1
1

u
Q(Qn—Pn)
T walu)
Wall
< log2lan-p) [ du
1
Q(in—Pn)
I wa(u)
Wa U1
= log (2(gn — pn)) / — (g )duy
) dwg(u)
2(qgn—pn)
T walw)
Wa (U1
< g -p) [ ey
1 1%pt1
2<Qn*pn)
v (qnipn) log (2 (gn — pn)), a<lorf>0

< —
s p”){v(qnipn)<log<2<qn—pn>>>2, a=1and f=0.

Combining these estimates of Iy ,, I, and I3, finishes proof of Theorem 2.3

Proof of Theorem 2.4. Set e, (t) :== f(t) — Dy, (p,q; f) (t). Hence

, _ len (£) — en ()]
I = Dn (2@ )l g @) = llenlloy @) st —sl)
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By (2.2) we have

1 1
nt) —en(8) = s é o (1) (O, (W) — O, (w))du,

where
prs(u):=f(t) = f(t—u)—f(s)+ f(s—u).
Thus,

1 1
e [ s ()18, (@) = €, (w)]du.

Since f € H¥ (ﬁ) , by using the inequality

lpes (W] S wg ([t —sl) ——5 (3.8)
wg (lall)
which is proved in [7],
—en (s ! w —s L fwallul) u) — u))|du
o (6 =0 (615 = Gt =) gy [ 90 () = 0, )

As in proof of Theorem 2.3, it is sufficient to estimate the integral

wa (1) i
Z s (] | (©@an (8) = O (£

By the transforms (3.1) and (3.2),
(

14, t) ~ 0, (t))at
A

< /wa (u1) (‘Lfn (U1,U2)’ + ‘L;,n (U1,u2)‘ + ’Lgn (ul,uQ)D duydus.

wg (u
A 5 (u1)
Since
‘L;n (u17u2)‘ S (qn _pn) q?l,? (u17u2) S F17
we get
() o) 2 (w)
we (U . we (U
/a : Lj,n(u1>u2)‘du1du2 S (a0 —po)dn / /O‘ Y duy | duy
wg (u1) wg (u1)
Iy 0 0
1
2(qn—pn) ( )
W, Ul
< _ 2 a duod
< (qn—pn) a, o (01) uaduy
( . )
2(gn—pn
wa(1/2 (Qn — Pn
< (g —pn) / wrduy
( " n) nwﬂ(1/2 (Qn_pn)) b
2
< ()
dn — Pn Gn — DPn
for j =1,2,3.
Since .
L (w1, u2)| u*% (j=1,2,3)
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for (u1,ug) € 'y, the inequality 3.7 gives

Wa (u1)
F/W,B( 1)

L* (ul, UQ)’ duldu2

1

6(gn—pn) 1
o]
1 B 1
0 Q(in Pn)
1
< ’Y<qn,pn), a<lorfB>0
log (2 (g0 — )7 (5.2 ), @=1and 3=0.
Also,
% 1 .
’Lj,n (U17U2)) S —5—, (u,u2) €T3 (j=1,2,3)
and (3.7) yield
we (u1)
L3, (u1, u2)| durdus
/wg( 1) ‘
1 u1/3 1
S / / i :a Eulid@dul
L TU2 Wg (U1
2((1n pn) 6(an—pn)
[ waluw)
Wa (U1
= —————2_log (2u; (g, — pn)) du
/1 By (ur) g (2u1 (g — pn)) dur
2(gn—pn)
1
S log (2( / du
ulwﬁ u1)

2(‘171 pn)

S inog(Q (Qn _pn)) { 7(

’Y(Qnipn), a<lorf>0

Qnipn> log (2(gn —pn)), a=1land B=0

for j =1,2,3.
By combining these inequalities we obtain

dn Pn ~ .
AW/3<||tH) Qn — Pn y(qnip”)log(Q (qn—pn))27 a=1land =0
This implies

_ dn 2 B ’Y<qn pn>10g(2( pn))’ O‘<10T6>0
en (8) en<s>s( p)wﬂ(|t s||>{ Y 2 — ) a1 and 50

dn — Pn

and hence
len (8) —en (5)]
wg([[t —s|)

4n 2 7(71 n)log(( —Dn)), a<lorp>0
< ( _pn) {’y(qq_p)log(( —pn)?, a=1land =0

for every t,s € R%; with t # s. This estimate and Theorem 2.3 give the desired result. [
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