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ABSTRACT 
 

In this paper, stress intensity factors (SIFs) at the edges of the cracks in an elastic orthotropic strip weakened by two collinear 

cracks are determined. The problem consisted of two symmetrical cracks about the sides of the strip and axis y- is approached 

by Iterative method. Also, by reducing the problem to a system of Cauchy type singular integral equations, a Quadrature 

technique is used to calculate SIFs. Finally, extensive numerical results and detailed interpretations are given. 
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1. INTRODUCTION 
 

In fracture mechanics, determination of the SIFs in a cracked strip plays an important role, since it 

enables to estimate crack propagation. A great number of studies in this field have been done.  

 

Shen and Fan [1] calculated mode I SIFs for a strip include two semi-infinite collinear cracks. Using 

complex function method, exact solutions are obtained. Also, Li and Fan [2] found the exact solutions 

for SIFs of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal by 

considering complex variable method.  

 

Srivastava et.al. [3] considered an infinitely long elastic strip with two coplanar Griffith cracks. It is 

aimed to examine the interaction of shear waves. By using an integral transform method dynamic SIFs 

are obtained. 

 

Zhou et.al., [4] studied a strip problem which involves two collinear symmetrical cracks. The problem 

is reduced to a set of triple integral equations with the help of Fourier transform and solved by 

Schmidts method. 

 

Li [5] converted two cracks problem in an orthotropic strip into a singular integral equation by using 

the Fourier series method. A closed form solution is obtained for mode III SIFs. 

 

Delale and Erdogan [6] determined the SIFs for the plane elastostatic problem in an infinite 

orthotropic strip and the obtained results are compared with isotropic results. 

 

Dhaliwal and Singh [7, 8] examined the SIFs and crack energy in an isotropic elastic strip and layer 

weakened by two coplanar Griffith cracks, respectively. The obtained triple integral equations by 

Fourier transform are solved exactly. 
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Erbas et.al., [9] considered a plane contact problem for an elastic orthotropic strip. They approached to 

the reduced singular integral equation by iterative solution method for thick strip and by a direct 

asymptotic procedure for a thin strip.  

 

The detailed studies for singular integral equations are done by Erdogan et.al., [10]. Numerical 

methods for the solution of singular integral equations with Cauchy kernel are described. Some 

examples of the crack problems are solved to show the application of the methods. 

 

Yusufoğlu and Turhan [11, 12] considered an orthotropic strip problem including a crack. The 

problem is reduced to a singular integral equation. The reduced singular integral equation is solved to 

determine normalized SIFs by Iterative method and Gauss Chebyshev quadrature rule, respectively. It 

has seen that, the results are convenient with the results in [13].  

 

This study consists of five sections. In the second section, an orthotropic strip weakened by two 

symmetric cracks is considered. The problem is solved by Iterative method. Analytical expressions of 

mode I SIFs are obtained. In the third section, the same problem is approached by Gauss quadrature 

formulas. In the fourth section, considering three different orthotropic materials, numerical results are 

given. Finally, in the conclusion section, the results are interpreted and the effect of loading conditions 

and the distance between cracks on the SIFs are analyzed. 

 

2. SOLUTION OF MIXED BOUNDARY VALUE PROBLEM CORRESPONDING TO TWO 

CRACKS LOCATED SYMMETRICALLY ABOUT AXIS y- BY ITERATIVE METHOD 

 

In this section, a strip problem weakened by two symmetrical cracks is considered. The problem is 

approached by Iterative method to obtain SIFs. Also, the similar strip problem weakened by a crack has 

been solved by Iterative method in [11]. The SIF values at the edges of the cracks are obtained  and the 

results have been compared with the results in [13]. The compatibility of these results has been seen. 

 

In this problem, it is assumed that, there are two collinear cracks in an elastic orthotropic strip located 

on    , ,   x b a a b  and the crack sides are loaded by uniformly distributed pressure of magnitude 

 q x .  

 
 

Figure 1. Geometry of the problem 

 

The boundary conditions of the related elasticity problem are as follows: 
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,                                                                       

.                                                                           (1) 

Here,   denotes the vertical displacement; xy  and y are shear and normal stress components, 

respectively. 

 

Considering the symmetry of the related problem about the x coordinate, the auxiliary problem for a 

strip of thickness h  with the boundary conditions is given as 

 

 

                               
     , , ,

ˆ( )
0, .




   





x x b a a b
x

otherwise
                     (2) 

 

Here, the function ( ) x  denotes the displacements of points on the crack sides. By considering  the 

continuity of the function  ˆ( ) ,0 x x , the following additional condition can be obtained: 

 

                                                     0    a b .                                (3) 

 

Similar to the given procedure in [11,18,19], considering basic equations of elasticity theory, Fourier 

technique and Eqs. (1)-(3), the following integral equation is obtained  

 

                                         
 

'
 

  
     

           

b

a

hq xx x
M M d

h h
                                  (4) 

 
0

1
( ) sin( ) ,    

( )
,



 M t ut du x
L u

a b , 

 

where,  

2 1

2 1 1 2

( )
coth( ) coth( )

 

   





L u

u u
,  

 
2 1 2

32 23 1 2
1 ( )

 

   
 

 

E
. 

 

Lemma 1: For all values of  t  the kernel  M t
       

 

 

0

1 1
( ) ( ), ( ) 1 sin( )

( )


 

    
 
M t F t F t ut du

t L u
                                  (5) 

 

is true, also ( )F t  is a regular function in the domain of  ( , )  , 2   t t  as a function of  the 

complex variable  w t i . When 2t , the function of ( )F t  can be presented with absolute 

convergence series as  

 

2 1

0

( )






 n
n

n

F t d t ,                                   

where,            

 

( , ) ( , ) 0,
xy

x h x h     ( ,0) 0,
xy

x  ,x   ( ,0) 0,x     \ , ,x R b a a b   

( ,0) ( ),
y

x q x      , ,x b a a b   

ˆ( , ) ( , ) 0, ( ,0) 0, ( ,0) ( ), ,
xy xy

x h x h x x x x         
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1
2 1

0

( 1) 1
1

(2 1)! ( )


 

    


n
n

nd u du
n L u

, 0,1,2,...n  [14, p.29]. 

 

By inserting Eq. (5) into Eq. (4) and converting the integral equation into dimensionless form, 

 

                                    
 

     
1 12 2

11 1

,
2

w u b a
du p t w u K u t du

u x h


 


  

           (6) 

is obtained. Here, 

 

                                                   
2 2 2 2

2 2

b a b a
w u w u

  
  

 
 ,      '  w  ,             (7) 

 
2 2 2 2

, ,
2 2

b a b a
K u t K u t

  
  

 
,    

1
,

2

 




     
     

     

t t
K t F F

h h
, 

 
 




q t
p t ,   

2 2

1 2 2

2 
 



b a t
x

b a
,  

2t x . 

 

The Cauchy-type singular integral equation (6) may be regularized. By considering the method of 

Carlemann and Vekua, the following lemma can be written [17]:                     

 

Lemma 2. Every solution of Eq.(6) in the class of  
4

( 1,1), 1
3

   L  is also the solution of the 

following integral equation: 

 

                                   
1 12 2 2

1 0 1 22
11 11

1 1
( ) ( ) ( ) ,

21

b a u
w x x du w K u d

h u xx
  


 

  
   

   
  ,       (8)                                                                                             

                                                           

1 2

0 1

11

1 ( ) 1
( )

 



  


N p u u

x du
u x

.                                (9) 

 

The inverse of this lemma is true if    1,1 , 4   p x L  [15].  Here,  ,L a b  is the space of 

Lebesgue integrable functions of order α in the interval (a,b). 

 

Theorem 1. If ( ) ( 1,1), 0, 0    np x H n  and Eq. (8) has solution in the class of

4
( 1,1), 1

3
   L , then the solution can be presented for (0, )    as follows, 

 

                                                                   1
1

2

1

( )
( )

1

x
w x

x





,                                                       (10) 

 

where 1( ) ( 1,1)  nx C ;   ( 1,1) ( 1,1), [ 1,1]      
n

n nH f f C f H  [14]. Here, ( 1,1)nC  and 

[ 1,1] H  are the spaces of continuous differentiable functions of order n and the spaces of functions 

that satisfy Holder condition in the interval (-1,1), respectively. 
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Now, by using Eq. (10) we can rewrite the following equations instead of Eq. (9); 

 

                                                 1 0 1( ) ( )    x x A , 

1

1

2
1

( , )
( )

1

  



G u x

A u du
u

 ,                           (11) 

 

where, 

 

                                                  
1 22 2

1 2

11

1
( , ) , .

2

b a
G u x K u d

h x


 

 





                                 (12) 

 

Lemma 3. Let 1( ) ( 1,1) p x H , 0  . The function 0 1( ) x  defined by Eq. (9) is a continuous 

function.  

 

Rewritting Eq. (11) as   B , where, 0    B A , 

 

the following theorem can be given similarly Banach theorem. 

 

Theorem 2. Let the conditions of Lemma 3 are satisfied. Then, for every λ,

 2

0 0 1

1
2 ,

2
    D D D 0 max ( ) ,D F t 1 max '( )D F t ,  0,   t , operator B has an only 

and only fixed point in the class of continious functions. The fixed point is the limit of the sequence of 

iterations of  . 

 

To use Eqs. (11) and (12) in the sequence of iterations of   leads to following formula for the general 

term of sequence 1( )n x : 

 

              

1 1 11 1
21 1

1
2 2

11 1 1

( , ) ( , )
1 1

( ) 1 ( ) 1
1 ( ) 1 

 

  

   
   
        

     
      

 
  

n n

k k

k k
n

G u x G u x
N

x du p s s du ds
s xu s u u

,       (13) 

where, 

                           1 1 1( , ) ( , )G u x G u x , 

1

1 1 1 1 1
1 1

2
1 1

( , ) ( , )
( , ) , 2,3,...,

1

 








 



k

k

G u G x
G u x d k n  .            (14) 

 

Considering Eq. (13) and using the iterated kernels (14) together with Eqs. (10) and (12), the solution 

for integral equation (8) can be obtained as 
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 


    

2
21

1 12 2 62
1 1 14 62

111

6 2 6 2 4 4 2 2 2 4 6 2

1 1 1 1 1 1 1

4 2 8 2

1 1 1 0 122

1

2 41
1 14

11 1
( ) ( ) 1 12

4 161

12 10 3 3 12 30 30 5 15

1
15 12 10 5 1 1

21

6 8 6
8

d x d
w x p s s x x s

s xx

x x x s x s x x x

N
x s x x O ds d x

x

d
x x


 

 

        

  










    

 

        


         



  



  

 

   

2 4 2 2 2 4 4

1 1 1 0 1 16

6 2 4 3 2 2 6 2 2 2

1 1 1 2 1 1 1 1 1

3 4 2 4 4 6 6 3 3 2 2

1 1 1 1 1 1 1

6 8

1
12 6 3 8 3 3

16

3 44 20 30 40 40 44

30 40 20 28 10 10 20 28 40

20 .

x x x d d x

x x x d x x x x x

x x x x x x x

O

    


      

     

  

     


        

        

 


       (15) 

 

Here, it is assumed that,  
a

b
, 

1




b

h
. 

 

Now, we will obtain analytical expressions of the SIFs  IK a and  IK b . Mode I SIFs occurred in a 

crack located on [a,b] are defined as, 

 

                                 
0

lim 2 ( ) 
 

  I
x a

K a x a x ,    
0

lim 2 ( ) 
 

   I
x b

K b b x x .      (16) 

 

During the analysis, we will consider two different loading condition given in Figure 2. 

 

  
                                    (a)                                                                                           (b) 

 

 

 
                                                                                      (c) 

Figure 2. Geometry of loading conditions: (a) Uniform crack surface pressure; (b) Fixed grip loading; (c) Fixed grip loading. 
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By considering the first loading condition, i.e.,   / p s q , in Eq. (15) and using Eqs. (7), the 

derivative of the function describing vertical displacements of the points on the crack sides is 

obtained: 

 

 
 

   
  

 

     

2 2 2 2 2 2

2 2 2 2 20

2

6 6 2 4 2 6 4 4 2 2 6 6 4 4 21

4 4

2 2 4 2 2 4 4 2 4 6 2 6 6 6

1 21
' 2 1

2 2 4

2 4 2
16

1 8 8 24 5 2 5 ,

 
  

 

     


     

   
     



      


        


Nb q b b x Nd
x b b x

A x

d
q b b b x b b x b b x

b

N x b x b x b b b b O

                         (17)

        

 

where 

  4 2 2 2 2 2 2 4     A x b b x b x x . 

Applying Eq. (17) in the formulas (16), SIFs at the edges a and b are obtained as follows, respectively 

 
   

 

 

2
22 2

0 4 21

42 2

4 2

11 1
11 6 5

2 164 1

2 1 ,

  
 

       

  

    
     




   


I

d aNa N q d a
K a N

q

 

 
   

 

 

2 22 2
0 4 21

2 4

4 2

1 11 1
5 6 11

2 4 16

2 1 .

   
 

    

  

     
     


   


I

d bNb N q d b
K b N

q

 

 

3. SOLUTION OF MIXED BOUNDARY VALUE PROBLEM CORRESPONDING TO TWO 

CRACKS LOCATED SYMMETRICALLY ABOUT AXIS y- BY GAUSS QUADRATURE 

FORMULAS 

 

In this section, two symmetrical cracks problem given in Figure 1 is solved with the help of Gauss 

quadrature formulas. Similar problem corresponding to a crack is considered in [12]. The problem has 

been approached by Gauss-Chebyshev quadrature.  The obtained values of SIFs have been compared 

with results in [11,13]  and it is concluded that the present results agree well with those of references.  

 

For two cracks problem, the following system of singular integral equation is obtained: 

 

 

                                                
 

   
'2 2

'

1 1

1   
   


 

 
   

  
  

j

j

j jw w

x
d F d q x

x h h
,                   (18) 

 

where,  
   

   
1

2

, ,

, ,

   
 



q x x b a
q x

q x x a b
. 

 

Similarly to Eq. (3), with the help of the following continuity condition, 

 

    0    i ia b ,  1,2i , 

 

the following integral equations are obtained:  
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 

 

'
1

'
2

0,

0.

  

  













a

b

b

a

d

d

              (19) 

Substituting the variables  

 

 i ix s r t ,   j js r , 
( )

2

 
i

b a
s , 

2


i

b a
r  

 

in Eqs. (18) and (19), the system of singular integral equations turn into dimensionless forms are 

obtained as 

 

              
   

     
1 1 12 2

*

1 11 1 1

,
  

     


   


  


 

   
ji

j ij i
j iij j

i j

j j

d d F t d f t
s st r

t
r r

,               (20) 

                                                                  
1

1

0  



 i d ,                                               (21) 

where,  

 

   '    j j j js r ,  * ,



   

  
 

j j i j i

ij ij

r r r t s s
F t F

h h
,  

  
 



i i i

i

q s r t
f t ,  1,2i  

In this section, the solution of reduced system of singular integral equations (20),(21) is approached by 

the procedure given in [16]. So, according to Muskheleshvili [17], the solution can be obtained as 

 

                                                                  
 

21


 



j

j

t
t

t
, 1,2j .                                    (22) 

 

Substituting Eqs. (22) into Eqs. (20)-(21) and defining the function  j t by Lagrange interpolation 

polynomials as 

     

   1 '

 


 





n

j m nj

n

m n mm

T t

t T
, 

 

the following system of singular integral equation is obtained:       

 

      

   

 

         
 

1 1 1 *2 2

2 2
1 121 1 1

,
,

1 1
1

     
  

  
 

   


  
   

   
 
 

   
ji j

n ijn n

i

j jj ii
i j

j j

F t
d d d f t

s srt
t

r r

      (23) 

                                                           

   1

2
1

0
1

 








i

n
d , 1,2i .                            (24) 

Here,  nT t  denotes the Chebyshev polynomials of the first kind,m , ( 1,2,...,m n ) are the roots of 

the Chebyshev polynomials of the first kind and 
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        
j

n m j m
 

is valid.  

 

By considering the following known formulas for Chebyshev polynomials of first and second kind [20] 

 

 

 
 

1

1
2

1 1


 

 





 


n

n

T
d U t

t
,  

 

 
1 1

'








n m

n m

U

T n
 

 

and using appropriate Gauss-Chebyshev integration formula for Eq. (22), next, setting t= tm 

(m=1,2,…,n-1) in equation (23), where tm are roots of the polynomial 1( )nU t , the system of linear 

equations is obtained: 

 

   
 

 
 

2
*

1 1

1
,

/ /

 


 

 
  

    


n
j m

ij m k i k

j m m i j k j i j

F t f t
nr r t s s r

. 

 

The additioal condition can be obtained by using the same procedure as follows, 

 
1

0

 




n

j m

m n
. 

 

4. NUMERICAL RESULTS 
 

In this section, we will analyse the effect of the orthotropy and relative thickness on the normalized 

SIFs. In accordance with this purpose, three kinds of orthotropic materials given in Table 1 are 

considered.  Here, the coefficients are the elements of the compliance matrix which is the inverse of 

stiffness matrix obtained by Hooke’s law for an orthotropic material in case of plane strain. Table 1 is 

rewritten as transformation of stiffness parameters in [21]. 

 
Table 1. Compliance parameters for selected materials 

 

Material i s11 s12 s22 s66 

1 0.101x10-9 -0.209x10-10 0.676x10-10 0.141x10-9 

2 0.977x10-10 -0.757x10-11 0.244x10-10 0.141x10-9 

3 0.244x10-10 -0.757x10-11 0.977x10-10 0.141x10-9 

 

Here and in the other tables, Material i denotes the names of three materials with different orthotropic 

properties. From Table 1, it is obvious that Materials 2 and 3 are same except a 90 degree rotation of 

orthotropy. Since compliance matrix of a material is the inverse of the stiffness matrix, from Table 1, 

it can be seen that while Material 3 has the highest orthotropy, Material 2 has weakest orthotropy in 

crack line direction. 

 

During the analyses, two different loading conditions i.e., uniform crack surface pressure and fixed-

grip loading are considered to examine the effect of the degree of orthotropy and relative thickness on 

the SIFs. The loads are defined as ( )  q x q const  and 0 0( )  xq x E e  in the cases of the uniform 

crack surface pressure and the fixed-grip loading, respectively. For the fixed-grip loading, the 

notations   0,  x y , 
2

0 11 12 22/ E c c c  are used. 
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The SIF values are calculated for the strips made from these materials under these two different 

loading conditions by using Gauss quadrature method and Iterative method. Also, in references [11-

13], the strip problems weakened by a crack are also solved by Iterative method, Gauss-Chebyshev 

quadrature and Series method, respectively. The presented tables and graphics underline the 

compatibilty of the results for SIFs. 

 

Figures 3-10 present the normalized SIFs for three kinds of material and under uniform crack surface 

pressure. Figures 3-5 give the effect of the relative thickness on right and left edge of SIFs, for 

considered three materials. It is established that, the crack propagation starts at x=±a. Also, while the 

relative thickness of the strip increases, SIFs increase too.  It is obvious that while ε increases, the 

distance between the cracks increases, too. From Figures 6-8, when ε increases the SIFs at the edge a  

decrease and critical load increases. Figures. 9-10 show the effect of the relative thickness on the 

normalized SIFs at the edges a and b, for all materials and 0.5  , respectively. Since Material 3 has 

the highest orthotrophy, the SIFs in the strip made from Material 3 would be biggest at the both edges. 

 

 

 
Figure 3. The effect of relative thickness on SIFs for 

Material 1 and 0.5  . 

 

 
Figure 4. The effect of relative thickness on SIFs for 

Material 2 and 0.5  . 
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Figure 5. The effect of relative thickness on SIFs for 

Material 3 and 0.5  . 

 

 
Figure 6. The effect of distance between cracks on SIFs for 

Material 1 and λ=4. 

 

 

 

 

 

 

 

 
Figure 7. The effect of distance between cracks on SIFs for 

Material 2 and λ=4.  

 

 
Figure 8. The effect of distance between cracks on SIFs for 

Material 3 and λ=4. 
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Figure 9. The effect of the relative thickness on the 

normalized SIFs at the edge a of the crack for all materials 

and 0.5  . 

 
Figure 10. The effect of the relative thickness on the 

normalized SIFs at the edge b of the crack for all materials 

and 0.5  . 

 
Table 2 presents the normalized SIFs correspond to the value of the material orthotropy parameter 

E1/E2 under uniform crack surface pressure. E1/E2=1 correspond to the isotropic material. As is seen 

from Table 2, while the anisotrophy properties of the material from which the strip is made increase 

SIFs increase and the resistance of the strip decreases. In Table 2, the results are compared by Gauss 

Quadrature method and Iterative method to verify the validity of the results. 

 
Table 2. The normalized SIFs correspond to the value of the material orthotropy parameter E1/E2 under uniform crack 

surface pressure. 

 

 
 λ=4 λ=6 

   / /I IK a q a K a q a       / /I IK b q b K b q b       / /I IK a q a K a q a       / /I IK b q b K b q b    

E1/E2 

 

ε 

Gauss 

Quadrature 

Method 

Iterative 

Method 

Gauss 

Quadrature 

Method 

Iterative 

Method 

Gauss 

Quadrature 

Method 

Iterative 

Method 

Gauss 

Quadrature 

Method 

Iterative 

Method 

1 

0.3 1.9132 1.9147 1.0238 1.0253 1.9485 1.9489 1.0413 1.0415 

0.5 1.5822 1.5830 1.1138 1.1149 1.5962 1.5963 1.1231 1.1232 

0.7 1.2229 1.2233 1.0226 1.0230 1.2266 1.2266 1.0255 1.0256 

5 

0.3 1.9537 1.9541 1.0440 1.0441 1.9682 1.9685 1.0515 1.0516 

0.5 1.5983 1.5983 1.1246 1.1246 1.6041 1.6041 1.1285 1.1285 

0.7 1.2271 1.2271 1.0260 1.0260 1.2287 1.2287 1.0273 1.0273 

10 

0.3 1.9643 1.9646 1.0495 1.0496 1.9731 1.9734 1.0541 1.0542 

0.5 1.6025 1.6025 1.1274 1.1275 1.6060 1.6060 1.1299 1.1299 

0.7 1.2283 1.2283 1.0269 1.0269 1.2292 1.2292 1.0277 1.0277 

25 

0.3 1.9741 1.9744 1.0546 1.0547 1.9775 1.9778 1.0564 1.0565 

0.5 1.6064 1.6064 1.6064 1.1302 1.6078 1.6078 1.1311 1.1312 

0.7 1.2293 1.2293 1.0278 1.0278 1.2297 1.2297 1.0281 1.0281 

 

Figures 11-15 show the normalized SIFs for these three materials under fixed-grip loading. Figures 

11-13 give the effect of the distance between cracks on SIFs for all tip materials. So, when cracks’s 

length increases, the SIFs increase too. Figures 14-15 give the effect of relative thickness on SIFs 

under fixed-grip loading for all tips materials given in Table 1. When relative thickness of the strip 

increases, SIFs increase independently of strip material. Since Material 3 has the highest orthotropy in 

crack line direction, the normalized SIFs are the highest at the crack edges in the strip composed of 

Material 3. Likewise, since, Material 2 has weakest orthotropy in crack line direction, the normalized 

SIFs are the lowest at the crack edges in the strip composed of Material 2. Figure 16 shows the SIFs 

corresponding to  material orthotrophy parameter values E1/E2 under fixed-grip loading for a strip 
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weakened by two cracks.  It can be interpreted, when the material orthotrophy parameter values E1/E2   

increase, SIFs also increase and then strip resistance decreases.  

 

 

 
Figure 11. The effect of distance between cracks on SIFs 

for Material 1 under fixed grip loading given by 

   1 2,   x x
f fq x q e q x q e   . 

 

 
Figure 12. The effect of distance between cracks on SIFs 

for Material 2 under fixed grip loading given by 

   1 2,   x x
f fq x q e q x q e   . 

 

 

 

 

 

 
Figure 13. The effect of distance between cracks on SIFs 

for Material 3 under fixed grip loading given by 

   1 2,   x x
f fq x q e q x q e   . 

 

 
Figure 14. The effect of relative thickness on SIFs at the 

edges b under fixed grip loading given by 

   1 2,   x x
f fq x q e q x q e   . 
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Figure 15. The effect of relative thickness on SIFs at the 

edges a under fixed grip loading given by

   1 2,   x x
f fq x q e q x q e   . 

 

 
Figure 16. The normalized SIFs correspond to the value of 

the material orthotropy parameter E1/E2 under fixed grip 

loading given by    1 2,   ,x x
f fq x q e q x q e    for 

λ=4. 

 

5. CONCLUSION  

 

In this study, the problem is approached by Gauss Quadrature formulas and Iterative method. It is 

established that, when the distance between the cracks increases, i.e., ε=a/b increases, normalized SIFs 

decrease. Also, it is obvious that the crack propagation starts at x=±a. When the crack sides are loaded 

by uniform crack surface pressure it has seen that        / /  I IK a q a K a q a  and 

       / /  I IK b q b K b q b . When the crack sides are loaded by fixed-grip loading, if loading 

conditions are given symmetrically as    1 2,     x x
f fq x q e q x q e , then normalized SIFs at the 

both edges are equal, i.e.,        / /  I IK a q a K a q a  and        / /  I IK b q b K b q b .  

 

Finally, from tables and figures, it can be concluded that under uniform crack surface pressure, when 

relative thickness of the strip increases SIFs increase, too. It causes to decrease of strip’s resistance. If 

the crack sides are loaded by fixed-grip loading, for δh<0, while thickness of the strip decreases, the 

normalized SIFs on axis –Ox increase; but rather, the normalized SIFs on axis Ox decrease. Another 

point, for δh>0, while the thickness of the strip decreases, the normalized SIFs on axis –Ox decrease, 

conversely, the normalized SIFs on axis Ox increase. Also, the cracks in the strip composed of 

Material 3 starts to spread faster by comparision with the strips made from Material 1 and Material 2. 

So, between the strips which have same geometry and same cracks, the resistance of  strip made from 

Material 3 is the lowest. Additionally, when material orthotrophy parameter E1/E2 increases, SIFs 

increase, too. As a result, when material anisotrophy increases, critical load decreases and so strip 

resistance decreases.  
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