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Abstract: In recent decades, interest in enzyme inhibition, such as myeloperoxidase (MPO) and glycosidases, 
has dramatically increased, mainly because these enzymes play a vital role in many biological processes. 
Based on the biological potential associated with these enzymes, instead of several glycosidase and myelop-
eroxidase (MPO) inhibitors that have been developed, there are not enough studies on the inhibition effects 

of widely used types of antivirals (aciclovir, tenofovir), oral antidiabetics (glibenclamide, glibornuride, 
glurenorm, metformin), and non-steroidal anti-inflammatory drugs (NSAIDs) active substances (benzyda-
mine HCl, diclofenac, indomethacin, ketorolac tromethamine, paracetamol, salicylic acid) today. For that rea-
son, the aim of our study is to investigate the inhibition effects of these 12 different drug active substances 
on α-glucosidase and MPO activities. According to the obtained results, the screened drug active substances 
acyclovir, glibornuride, and paracetamol inhibited α-glucosidase with the lowest IC50 value, while similarly 
low values for MPO were found by tenofavir, glurenorm, and indomethacin. In our study, we can suggest that 

these active pharmaceutical ingredients may contribute to the pharmaceutical industry due to their inhibitory 
effects on α-glucosidase and MPO in vitro. 
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1. INTRODUCTION 

 
Enzyme inhibitors are key molecules that regulate 
the velocity of enzymatic reactions in metabolism. A 

possible correlation between enzyme activity and 
diseases is an important reason for increasing 
interest in inhibition research. Examination of 
different antiviral, antidiabetic, and nonsteroidal 

anti-inflammatory drug (NSAIDs) active compounds 
demonstrated their inhibitory effect on the two 
important enzymes ɑ-glycosidase and 
myeloperoxidase (MPO). 
 
Glycosidases are enzymes responsible for the 

hydrolysis of glycosidic bonds in glycoconjugates, 
that are found in almost all living organisms (1). 
Today, wide structural diversity of carbohydrates, 
stable character of glycosidic bonds and catalytic 
rates of up to 1017 times have led to increased 

interest in glycosidases (2). Although catalysis of 

carbohydrates by these enzymes is biologically 
common, glycosidases also take part in various 
intracellular functions, such as the formation of 

signaling molecules or glycoconjugate catabolism 
(3). 
 
Since glycosidases are enzymes responsible for the 

breakdown of di-, oligo- and polysaccharides and 
glycoconjugates, they appear in every aspect of life.  
Inhibition of starch hydrolysis to slow down the 
absorption of glucose in starchy foods is an effective 
way to prevent type 2 diabetes. Recently, glycosidase 
inhibitors, synthesized or isolated from various plant 
sources, are used for several purposes, such as 

elucidating the mechanisms catalyzed by various 
types of glycosidases, in addition to being used in 
treatments (4). Besides being involved in the 
digestion of carbohydrates in the intestines, 
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glycosidases are involved in many biochemical 
processes, such as the catabolization of 
glycoconjugates in lysosomes and the processing of 

glycoproteins through post-translational 
modifications. Glycosidase inhibitors are important 
both in understanding the biological functions of 
glycoproteins and in investigating the structures and 

reaction mechanisms of glycosidases (5). 
 
Myeloperoxidase (MPO) is an inflammatory enzyme 
that triggers both oxidative stress and 
neuroinflammation in damage resulting from 
pathological processes such as cerebral ischemia-

reperfusion and is also a therapeutic target (6). MPO 
is one of the major proteins of the antimicrobial 
system in mammalian neutrophils (7). Since the 
surface of MPO molecule contains numerous lysine 
and arginine residues, which make the MPO a highly 
cationic molecule (PI~10), the interaction of MPO 

with a multitude of compounds or cells that have a 

negatively charged surface (or domain) including 
bacterial cells (8), endothelial cells (9), extracellular 
matrix components, particularly polyanionic 
glycosaminoglycans (9), apolipoprotein B-100 (10) 
and apolipoprotein A-I (11), albumin (12), 
cytokeratin I (13), α1-antitrypsin (14) and 
ceruloplasmin (15). It is reported that in 

physiological conditions, when MPO is binding to 
endothelial cells and glycosaminoglycans, it is 
inhibited by heparin and the multi-functional copper 
containing protein ceruloplasmin, which may be 
explained these molecules as anti-inflammatory (16, 
17). 

 
Apart from infiltrated neutrophils, MPO is also located 

in activated microglial cells, astrocytes, and neurons 
in the ischemic brain. Activation of MPO can catalyze 
the reaction of chloride and H2O2 to produce HOCl. 
Induced MPO activity in tissues also causes the 
production of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS), activation of 
polarization and inflammation-related signaling 
pathways in microglia and neutrophils, and 
consequent oxidative stress. Therefore, inhibition of 
MPO may also be therapeutically targeted for 
ischemic stroke and attenuation of 
neuroinflammation. It has been observed that 

targeting MPO both at the genetic expression level 
and in terms of catalytic inhibition is important in 
reducing possible neurological problems and brain 
infarction (6). 

 
In this paper, we investigate the inhibitory effect of 

12 different drug active substances on ɑ-glucosidase 
and MPO activities in vitro. Moreover, in addition to 
the antiviral, blood glucose lowering and anti-
inflammatory effects of these drug active 
ingredients, which are already widely used, we also 
aimed to emphasize to what extent they have the 

potential to inhibit these two enzymes. 
 
2. EXPERIMENTAL SECTION  
 
2.1. Inhibition of ɑ-glucosidase 
ɑ-Glucosidase inhibition assay was performed 

according to the method of Tao et al. (18). 5 µL of 
different concentrations of inhibitory solution and 20 

µL of 0.15 U/mL enzyme solution were added to 75 
µL of 0.1 M phosphate buffer (pH 7.4) and mixed. In 
the control sample, 5 µL of dimethyl sulfoxide 

(DMSO) were taken instead of the inhibitor solution. 
The same amount of DMSO and buffer was added to 
the blind instead of the inhibitor and enzyme 
solutions, and the same amount of buffer solutions 

were added to the color-blind instead of the enzyme. 
After 10 minutes of incubation at 37 °C, 20 µL of 
0.005 M p-nitrophenylglycopyranoside (PNG) was 
added to all samples and the absorbance values at 
410 nm were read. Acarbose was used as a positive 
control. The inhibition (%) values were calculated 

with the help of the following formula. 
 
α-Glucosidase Inhibition (%) = ([A-B]/A) ×100 
 
A: The absorbance value of the control solution in the 
spectrophotometer. 

B: The absorbance value of the solution containing 

the sample in the spectrophotometer. 
 
2.2. Inhibition of MPO 
Rat gastric tissue homogenates were used as the 
enzyme source. The gastric tissues were 
homogenized in 0.9% saline to make up a 10% (w/v) 
homogenate. The homogenate was centrifuged at 

3000 rpm for 30 minutes at +4 °C, and the 
supernatant was used for enzyme inhibition 
experiments. MPO enzyme inhibitory activity was 
determined spectrophotometrically according to Wei 
and Frenkel’s method (19). In a test tube, 1.3 mL of 
4-aminoantipyrine (25 mM in 2% phenol) and 1.5 mL 

of hydrogen peroxide solutions (1.7 mM) were 
shaken for 4 min, and 0.1 mL inhibition solution were 

added and stirred. The reaction was started by 
adding 0.2 mL of homogenate. Then, the change in 
absorbance was measured at 510 nm for 5 min. 
Reference measurements were performed without 
inhibitors (control value). Rutin hydrate was used as 

a standard. The potent inhibition of MPO activity (%) 
was calculated as follows:  
 
MPO Inhibition (%) = (A-B)/A x 100 
 
A is the enzyme activity without inhibitor. B is the 
activity in presence of inhibitor. 

 
The IC50 was determined as the concentration of drug 
active compound required to inhibit α-glucosidase 
and MPO activities by 50%. The results are given as 

half maximal inhibitory concentrations (IC50), whose 
value could be used to assess the inhibitory efficiency 

of the inhibitor calculated from the regression 
equations prepared from the concentrations of the 
samples. All measurements were done in triplicate. 
The percentage of inhibition was calculated from the 
residual activity in comparison to the control sample. 
Low IC50 values indicate higher enzyme inhibitory 
activity. 

 
3. RESULTS AND DISCUSSION 
 
The inhibitory effects of antiviral drug active 
compounds and standard compounds on ɑ-
glucosidase and MPO are given in Table 1.
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Table 1: ɑ-Glucosidase and MPO inhibitory activities of antiviral drug active compounds  
at different concentrations. 

 

Enzyme 
Drug active 
compounds  

Drug active 
compounds 
conc. 
(mg/mL) 

Inhibition 
(%) * 

IC50  
(mM)* 

ɑ-Glucosidase 

Acyclovir 
10.0 
15.0 
25.0 

12.25±1.61 
19.81±2.73 
25.21±2.67 

58.41±16.73 

Tenofovir 
0.5 
5.0 
50.0 

10.96±3.19 
17.89±1.66 
23.53±1.51 

204.40±30.29 

Acarbose 
2.0 
5.0 
7.5 

21.83±0.65 
26.77±2.77 
40.20±1.77 

10.57±0.57 

MPO 

Acyclovir 

10.0 

15.0 

20.0 

5.8±2.40 

6.0±0.57 

6.6±1.06 

321.03±214.03 

Tenofovir 

10.0 

25.0 
50.0 

16.7±2.90 

31.2±2.62 
47.1±0.57 

52.90±0.68 

Rutin hydrate 
2.5 
5.0 
10.0 

31.3±1.77 
38.9±0.78 
43.3±2.97 

13.00±2.67 

 *Mean±SD 
 
The studied two antiviral drug active compounds, 
acyclovir and tenofovir, have shown inhibitory effects 

on both ɑ-glucosidase (IC50= 58.41±16.73 mM for 
acyclovir and 204.40±30.29 for tenofovir) and MPO 
(IC50= 321.03±214.03 mM for acyclovir and 

52.90±0.68 for tenofovir) when compared to 
standard drugs acarbose and rutin hydrate 
(IC50=10.57±0.57 for ɑ-glucosidase; 

IC50=13.00±2.67 for MPO). According to Table 1, 
acyclovir is a more potent inhibitor on ɑ-glucosidase 
than MPO, while tenofavir inhibits MPO more 
effectively. The inhibitory effects of antiviral drug 
active compounds and standard on ɑ-glucosidase 

decreased activity are in the following order: 
acarbose > acyclovir > tenofovir. Similarly, for MPO, 
this order is as follows: rutin hydrate > tenofovir > 
acyclovir. 
 

The inhibitory effects of antidiabetic drug active 
compounds and standard compounds on ɑ-
glucosidase and MPO are given in Table 2. 

 
According to Table 2, glibornuride and glurenorm 
showed the lowest IC50 values for ɑ-glucosidase 

(IC50=0.29±0.04) and MPO (IC50=4.11±0.26), 
respectively. Both enzymes were inhibited at the 
lowest rate by metformin (IC50=142.59±46.64 for ɑ-
glucosidase; IC50=151.05±149.81 for MPO). The 
highest inhibition values of the antidiabetic drug 

active compounds and standards for ɑ-glucosidase 
are as follows: glibornuride > glurenorm > 
glibenclamide > acarbose > metformin; and for MPO, 
glurenorm > rutin hydrate > glibenclamide > 
glibornuride > metformin, respectively (Table 2). 

 
ɑ-Glucosidase and MPO inhibitory activities of 
NSAIDs compounds and standard compounds are 

given in Table 3. 
 

Among NSAIDs, paracetamol was found to be the 
most potent α-glucosidase enzyme inhibitor 
(IC50=4.02±0.20), while salicylic acid was identified 

as the weakest α-glucosidase enzyme inhibitor 
(IC50=206.23±15.28). While indomethacin did not 
show any inhibitory effect on α-glucosidase, on the 
contrary, it was found to strongly inhibit MPO at the 

highest rate (IC50=3.3x10-5 ±0.03x10-5). Inhibition 

rate of NSAIDs and standard compounds, for α-
glycosidase is: paracetamol > acarbose > ketorolac 
> diclofenac > benzidamine HCl > salicylic acid; and 
for MPO is indomethacin > diclofenac > paracetamol 
> rutin hydrate > ketorolac tromethamine > salicylic 

acid > benzidamine HCl, respectively. 
 
Given their multitude of roles in-vivo, inhibition of ɑ-
glucosidase and MPO in a number of different 
processes is very important. ɑ-Glucosidase inhibition 

has potential in the treatment of lysosomal storage 

diseases, diabetes, and viral infections, including 
influenza and HIV. On the other hand, suppressing 
the catalytic activity of MPO prevents the 
accumulation of reactive oxygen species that cause 
tissue damage in some inflammatory diseases such 

as rheumatoid arthritis, atherosclerosis, multiple 
sclerosis, and cerebral ischemia-reperfusion. (6,20). 
Therefore, MPO and its downstream inflammatory 
pathways might be attractive targets for both 
prognostic and therapeutic intervention in the 
prophylaxis of all mentioned illnesses. Besides that, 
ɑ-glucosidase inhibitors can play an important role in 

controlling the postprandial blood glucose levels of 
diabetics and keeping the blood glucose levels in a 
suitable range by delaying the digestion of 
carbohydrates and diminishing the absorption of 
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monosaccharides (21-23). 
 
In recent years, in addition to different sugar-based 

inhibitory molecules being designed (24), extracts 
obtained from different parts of various plants have 
also been reported to exhibit inhibitory activity 
against glucosidase (25-27). Most of the ɑ-

glucosidase inhibitors in these plants are secondary 
metabolites such as alkaloids, phenolic acids, 
flavonoids, terpenoids, anthocyanins, and their 
glycosides, and these have been suggested to have 
much stronger inhibitory potentials than the 

inhibitory effect obtained from acarbose (28). 
 
Among the antiviral agents, acyclovir is used in the 
treatment of diseases such as herpes viruses, genital 
herpes, chickenpox, shingles, and dermal infections. 
Instead of this, in the studies conducted with various 
antiviral drugs for the prevention of the SARS CoV-2 

pandemic, two antiviral drugs, muglistat and 
catastanospermine (the prodrug of celgosivir) are 
used for the inhibition of ɑ-glucosidase (I and II) 
involved in the early stages of glycoprotein N-linked 
oligosaccharide processing in the endoplasmic 
reticulum (ER) where acyclovir inhibition is not 

examined (29, 30). On the other hand, another 
antiviral drug, tenofovir, is available for the treatment 
of HIV and HBV infections (31). No previous studies 
were found based on in vitro inhibition of ɑ-

glucosidase and MPO by acyclovir and tenofovir. 
However, Olojede et al., (2022) demonstrated in their 
research that tenofovir disoproxil fumarate loaded on 

silver nanoparticles successfully reduced the blood 
sugar level of diabetic rats through the inhibition of 
ɑ-glycosidase and ɑ-amylase in the gastrointestinal 

tract in vivo. (32). In our study, we have found that 
acyclovir inhibited ɑ-glucosidase more effectively 
than tenofovir, with an inhibition rate of 
IC50=58.41±16.73 mM. On the other hand, tenofovir 
reduced MPO activity more effectively 

(IC50=52.90±0.68 mM) than acyclovir 
(IC50=321.03±214.03 mM). 
 
ɑ-Glucosidase inhibitors are oral antihyperglycemic 
drugs that inhibit upper gastrointestinal enzymes 
that break down complex carbohydrates into glucose. 

Most conventional glycosidase inhibitors mimic the 
structures of monosaccharides or oligosaccharides 

and are well accepted by organisms. As a result, the 
absorption of glucose is delayed, postprandial 
glucose is reduced, and glycemic control is improved 
(33). Widely used two types of oral antidiabetics in 
the treatment of hyperglycemia are biguanides 

(metformin) and the second generation of 
sulphonylureas (glibenclamide, glibornuride, and 
gliquidon (glurenorm)). 

 

Table 2: ɑ-Glucosidase and MPO inhibitory activities of antidiabetic drug active compounds at different 
concentrations. 

Enzyme 
Drug active 
compounds  

Drug active 
compounds 
conc. 

(mg/mL) 

Inhibition 
(%)* 

IC50  
(mM)* 

 

ɑ-Glucosidase 

Glibenclamide 

0.05 

0.25 
0.50 

8.52±0.78 

11.21±1.96 
14.20±3.40 

4.60±3.50  

Glibornuride 

0.001 

0.01 
0.1 

2.24±0.77 

13.15±0.68 
21.53±2.33 

0.29±0.04  

Glurenorm 
0.1 

0.5 
0.75 

20.33±1.30 
29.02±2.02 
49.03±1.44 

0.86±0.05  

Metformin 
10.0 
25.0 
50.0 

10.17±4.04 
12.85±1.58 
23.32±3.59 

142.59±46.64  

Acarbose 

2.0 

5.0 
7.5 

21.83±0.65 

26.77±2.77 
40.20±1.77 

10.57±0.57  

MPO 

Glibenclamide 
2.5 
5.0 
10.0 

4.5±3.18 
7.3±1.98 
12.1±0.21 

48.7±9.93 

Glibornuride 
5.0 
12.5 
25.0 

5.3±0.78 
7.4±2.33 
13.8±2.83 

119.85±34.86 

Glurenorm 
2.5x10-1 

0.5 
1.0 

1.1±0.71 
3.3±0.71 
10.5±1.27 

4.11±0.26 

Metformin 
2.5 
5.0 

10.0 

3.7±3.39 
6.0±2.47 

8.2±2.19 

151.05±149.81 
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Rutin hydrate 

2.5 

5.0 

10.0 

31.3±1.77 

38.9±0.78 

43.3±2.97 

13.00±2.67 

 *Mean±SD 
 

Table 3: ɑ-Glucosidase and MPO inhibitory activities of NSAIDs compounds at different concentrations. 

Enzyme 
Drug active 
compounds  

Drug active 
compounds 
conc. 
(mg/mL) 

Inhibition 
(%)* 

IC50  
(mM)* 

 

ɑ-Glucosidase 

Benzydamine 

HCl 

50 
60 
70 

23.09±1.01 
33.75±3.26 
46.85±2.27 

73.19±2.16  

Diclofenac 
15 

25 
45 

8.33±0.57 
24.51±1.35 
41.20±1.02 

52.30±1.21  

Indomethacin - - -  

Ketorolac- 
tromethamine 

2.5 
10 
15 

26.13±0.58 
30.70±0.35 
43.20±2.72 

22.56±1.92  

Paracetamol 
0.1 

1.0 
5.0 

16.1±1.40 
39.1±0.48 
54.9±1.70 

4.02±0.20  

Salicylic acid 
25 
40 

100 

3.31±0.80 
6.43±3.08 

22.39±1.66 

206.23±15.28  

Acarbose 
2.0 
5.0 

7.5 

21.83±0.65 
26.77±2.77 

40.20±1.77 

10.57±0.57  

MPO 

Benzydamine 
HCl 

2.5 
5.0 
10.0 

2.7±2.83 
3.5±0.99 
5.3±2.69 

153.17±102.15 

Diclofenac 
3.4x10-3 
5.1x10-3 

8.4x10-3 

19.4±11.81 
44.5±2.05 
85.9±4.03 

5.6x10-3±0.0003  

Indomethacin 
2.8x10-8 

2.8x10-6 

1.4x10-5 

18.5±2.12 
20.3±2.33 
41.6±21.4 

3.3x10-5±0.03x10-5  

Ketorolac- 

tromethamine 

1.25 
2.5 
5.0 

3.3±2.97 
9.4±1.34 
11.3±3.04 

24.92±2.74 

Paracetamol 
6.6x10-3 

9.9x10-3 

1.7x10-2 

1.3±0.14 
19.7±11.6 
22.3±3.54 

0.032±0.004 

Salicylic acid 
5.0 
10.0 
20.0 

5.4±2.05 
6.8±0.07 
13.7±2.26 

83.69±5.64 

Rutin hydrate 
2.5 
5.0 
10.0 

31.3±1.77 
38.9±0.78 
43.3±2.97 

13.00±2.67 

 *Mean±SD 
 
Especially, sulfonylureas are widely used in medicine 
as potent blood glucose-reducing agents for the 
treatment of diabetes. Sulfonylureas alter the plasma 
membrane of cells to increase their responsiveness 
to insulin action, by increasing the number of insulin 

receptors (34). Today, a wide variety of sulfonylurea 
derivatives continue to be synthesized and 

recommended as adjunctive agents in treatments to 
reduce diabetes symptoms. Although it has been 
emphasized that the mechanism of action of 
sulfonylureas in diabetes is on insulin secretion in the 
pancreas., Bui et al., (2021) demonstrated in their 

research that different new synthesized sulfonylurea 
derivatives exhibited significant α-glucosidase 
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inhibition compared to commercially available 
acarbose and glipizide (35). Similarly, in our study, 
we found that glubornuride and glurenorm, also 

inhibited α-glucosidase more strongly than acarbose 
(IC50= 0.29±0.04 mM; IC50= 0.86±0.05 mM). On 
the other hand, when examined with various 
diabetes models after the formation of diabetes, it is 

observed that MPO activity clearly increases in 
various diabetic tissues (36-38). Although, a broad 
and chemically heterogeneous group of molecules 
(alkylindoles, fluoroindoles, indazonoles, dapsone, 
bis-arylalkamines, nitroxides, and phenolic 
compounds) have been found to successfully inhibit 

MPO, no data were found regarding in vitro inhibition 
with oral antihyperglycemic drugs (39). Our research 
showed that each examined antihyperglycemic drug 
in Table 2 inhibited MPO at different rates, but the 
highest inhibition was observed to be achieved by 
glurenorm (IC50= 4.11±0.26 mM). However, if we 

need to make a comparison between both groups, it 

was found that sulfonylurea group oral antidiabetic 
agents are more effective inhibitors of both studied 
enzymes, ɑ-glucosidase and MPO, than metformin, 
which is a biguanide type. 
 
The NSAIDs are among the most widely prescribed 

drugs worldwide (40), and these components were 
investigated for their ability to affect the chlorinating 
activity of human MPO and to scavenge HOCl, which 
is the main MPO system product (41). In our study, 
although NSAIDs showed an inhibitory effect on the 
ɑ-glucosidase, it was observed that this effect was 

actually more effective on MPO. Moreover, 
indomethacin was found to be the strongest MPO 
inhibitor with the lowest IC50 value (IC50= 3.3x10-5 

±0.03x10-5), whereas on ɑ-glucosidase, it was 
observed to be unaffected (Table 3). Supporting this, 

in an in-vitro study using murine neutrophils, it was 
found that indomethacin and NSIDs inhibited HOCl 
formation in MPO (42). Similarly, Zuurbier et al., 
(1990) demonstrated that, in isolated MPO from 
human polymorphonuclear neutrophils, diclofenac 
inhibited the enzyme during the reaction cycle of 
MPO with H2O2 (43). Supporting these findings, we 

also found in our study that diclofenac inhibits MPO 
very effectively. (IC50= 5.6x10-3 ± 0.0003 mM). 
 
4. CONCLUSION 
 
Despite the discovery of different novel ɑ-glucosidase 

and MPO inhibitors as potential novel therapeutic 

interventions for many diseases, in existing literature 
there is a lack of information about the inhibitory 
effects of 12 commonly used drug active compounds 
studied in our research. Among the scanned different 
antiviral, antidiabetic, and NSAIDs active 

compounds, it was found that these selected 
ingredients are effective inhibitiors of ɑ-glucosidase 
as well as MPO in-vitro, except indomethacin, which 
is not effective on ɑ-glucosidase activity in contrast 
to MPO. Therefore, we can suggest that these drugs, 

which are used as antidiabetics, antivirals, and NAIDs 
in the field of health, can contribute to the 
pharmaceutical industry due to their ɑ-glycosidase 
and MPO inhibition effects. 
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