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ABSTRACT 
 

The study of water waves is significant for researchers working in many branches of science. The behaviour of waves can be 

studied by observation or experimental means, but theoretically, mathematical modeling provides solutions to many problems 

in physics and engineering. Progress in this field is inevitable, with those who work in mathematics, physics, and engineering 

putting forth interdisciplinary studies. 

 

Jacobi elliptic functions are valuable mathematical tools that can be applied to various aspects of mathematics, physics, and 

ocean engineering. In this study, traveling wave solutions of the general Drinfel'd-Sokolov-Wilson (DSW) system, 

introduced as a model of water waves, were obtained by using Jacobi elliptic functions and the wave dynamics were 

examined. The extended Jacobi elliptic function expansion method is an effective method for generating periodic solutions. It 

has been observed that the periodic solutions obtained by using Jacobi elliptic function expansions containing different Jacobi 

elliptic functions may be different and some new periodic solutions can be obtained. 3D simulations were made using 

MapleTM to see the behaviour of the solutions obtained for different appropriate values of the parameters. 2D simulations are 

presented for easy observation of wave motion. In addition, we transformed the one of the exact solutions found by the 

extended Jacobi elliptic function expansion method into the new solution under the symmetry transformation. 

 

Keywords: DSW system, Exact solutions, Extended Jacobi elliptic function expansion method 
 

 

1. INTRODUCTION 
 

Installation of heavy and complex submarine equipment, submarine pipelines and submarine cables 

has been studied extensively in recent years due to their importance in ocean engineering. Various 

mathematical models for submarine installation have been obtained and different dynamic behaviours 

have been studied in various ways. Submarine installations are in the splash zone, completely 

submerged or close to the seafloor. If the structure is in the splash zone, shallow water waves, if the 

structure is completely underwater or close to the seabed, seabed waves are effective in the installation 

[1]. 

 

Autonomous underwater vehicles (AUVs) have an indispensable role in the exploration of the deep-

sea, marine surveillance, and underwater rescue operations. Due to the intricate nature of the AUV 

system and the unpredictable underwater environment, controlling them is a challenging task. The 

control design faces some challenges like high precision multivariate, strong couplings, nonlinearities, 

and unknown distortions. To overcome these challenges, various control strategies have been 

developed to create trajectory-tracking controllers for AUVs, such as back step control, pattern 

predictive control, fuzzy control, and sliding mode control. However, all of these control schemes 
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require calculations based on the underwater and surface wave strength, highlighting the importance of 

wave theory in this field [2]. 

 

When studying equations that describe wave phenomena, it is necessary to analyse travelling wave 

solutions. These solutions are permanent forms that move at a constant velocity. To obtain travelling 

wave solutions, the nonlinear evolution equations are usually reduced to associated ordinary 

differential equations. Solitary wave theory, which is rapidly advancing in several scientific fields, 

from shallow water waves to plasma physics, places particular interest in different types of travelling 

wave solutions [3]. 

 

The study of water waves is significant for researchers working in many branches of science. The 

behaviour of waves can be studied by observation or experimental means, but theoretically, 

mathematical modeling provides solutions to many problems in physics and engineering. Progress in 

this field is inevitable, with those who work in mathematics, physics, and engineering putting forth 

interdisciplinary studies. 

 

Partial differential equations have an important place in the theory of waves. Solutions of a nonlinear 

partial differential equation can be explained by the concept of waves, which helps us to understand 

many physical phenomena. If the obtained solutions of the equation can be expressed with the time-

dependent motion of a wave, the physical event that occurs can be explained more meaningfully.  

There are many methods in the literature to obtain wave solutions of partial differential equations. 

Some of these are the F-expansion method [4], the Jacobi elliptic function expansion method [5,6], 

(G’/G)-expansion method [7], Lie symmetry approach [8], and so on [9-12]. 

 

In modeling multiple events, partial differential equation systems consisting of at least two partial 

differential equations have an important place in the literature.  Partial differential equation systems 

are also systems whose solutions can be obtained by the methods mentioned above. 

 

The DSW system in dispersive water wave was introduced in 1981 by Drinfel'd and Sokolov [13] and 

Wilson [14] which resulted in the discovery of wave phenomena that have significant applications in 

fluid dynamics, ocean engineering, and science. This system serves as the fundamental integrable 

nonlinear system that describes surface gravitational waves propagating over a horizontal seabed. The 

DSW equation is expressed in the following form: 

 

𝑢𝑡 + 𝛼𝑣𝑣𝑥 = 0                                                                                                                                       (1) 

𝑣𝑡 + 𝛽𝑢𝑣𝑥 + 𝑠𝑢𝑥𝑣 + 𝜂𝑣𝑥𝑥𝑥 = 0 

The discovery of the DSW system and its wave phenomena has opened new avenues of research in 

various scientific fields and continues to pave the way for advancements in fluid dynamics and ocean 

engineering. Some researchers with various methods have studied this system: Shen et al. produced 

lump, soliton, and lump off solutions [15], Bashar et al. used the new auxilary equation (NAE) method 

[16], Khan et al. used the enhanced (G’/G)-expansion method [17], with a special selection Ren et al. 

used the consistent Riccati expansion method (CRE) [18], etc.   

 

This article is organized as follows: In Chapter 2, we introduced the Jacobi elliptic functions and 

extended Jacobi elliptic function expansion method [19]. In Chapter 3, we apply these methods to the 

DSW system and present many solutions. In addition, we transformed the one of the exact solutions 

found by the new extended direct algebra method into a new solution under the symmetry 

transformation. We gave numerical simulations of the solutions obtained for different values of the 

parameters in 3D in Chapter 4. We also gave 2D plots to see how the wave motion changes as time 

changes. We have given a 2D drawing to see how the wave motion can be realized as time changes. 

In the last chapter, the results obtained in this study are given. 
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2. MATERIAL AND METHODS 

In this section, information about Jacobi elliptic functions will be given and the extended Jacobi 

elliptic function expansion method will be introduced. 

 

2.1. Jacobi Elliptic Function 

 

Legendre, who worked for decades on elliptic integrals, first introduced by John Wallis between 1655 

and 1659, introduced the normal forms of elliptic integrals that are still in use. Later, in 1828, Jacobi 

defined the elliptic functions as inverses of the elliptic integrals. Jacobi elliptic functions are obtained 

by inverting the elliptic integrals of the first kind. For a given constant m, the function snu is defined 

with the help of the integral 

𝑢 = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑚2𝑡2)

𝑥

0
 . 

 

When this integral is reversed, than the Jacobi elliptic function snu is defined as 𝑥 = 𝑠𝑛𝑢. Similarly, 

𝑐𝑛𝑢 and 𝑑𝑛𝑢 functions can be defined with the help of following identities: 

 

                                              𝑠𝑛2𝜉 + 𝑐𝑛2𝜉 = 1 ,   𝑑𝑛2𝜉 + 𝑚2 𝑠𝑛2𝜉 = 1.                                            (2) 

 

where 𝑑𝑛(𝜉) is a third kind Jacobian elliptic function.  

 

 

With these definitions, 𝑠𝑛0 = 0, c𝑛0 = 1 and 𝑑𝑛0 = 1 are obtained clearly. Each Jacobi elliptic 

function depends on a parameter 𝑚 and this parameter is called the modulus of the Jacobi elliptical 

function. The aforementioned double periodic functions have the following properties: 

              
𝑑

𝑑𝜉
𝑠𝑛(𝜉) = 𝑐𝑛(𝜉)𝑑𝑛(𝜉),   

𝑑

𝑑𝜉
𝑐𝑛(𝜉) = −𝑠𝑛(𝜉)𝑑𝑛(𝜉),   

𝑑

𝑑𝜉
𝑑𝑛(𝜉) = −𝑚2𝑐𝑛(𝜉)𝑠𝑛(𝜉)          (3) 

Other Jacobi functions which is denoted by Glaisher’s symbols and are generated by these three kinds 

of functions, namely.  

 

            𝑛𝑠𝜉 =
1

𝑠𝑛𝜉
, 𝑛𝑐𝜉 =

1

𝑐𝑛𝜉
 , 𝑛𝑑𝜉 =

1

𝑑𝑛𝜉
,   𝑠𝑐𝜉 =

𝑐𝑛𝜉

𝑠𝑛𝜉
,   𝑐𝑠𝜉 =

𝑠𝑛𝜉

𝑐𝑛𝜉
,   𝑑𝑠𝜉 =

𝑑𝑛𝜉

𝑠𝑛𝜉
, 𝑠𝑑𝜉 =

𝑠𝑛𝜉

𝑑𝑛𝜉
        (4) 

 

that have the relations 

 

𝑛𝑠2𝜉 − 𝑐𝑠2𝜉 = 1 ,   𝑛𝑠2𝜉 = 𝑚2 + 𝑑𝑠2𝜉  ,   𝑠𝑐2𝜉 + 1 = 𝑛𝑐2𝜉 ,  𝑚2𝑠𝑑2𝜉 + 1 = 𝑛𝑑2𝜉 

 

with the modals 𝑚 (0 < 𝑚 < 1). 
 

2.2. Extended Jacobi Elliptic Function Expansion Method    

This section presents the extended Jacobi elliptic function expansion method for solving nonlinear 

evolution equations. Consider a nonlinear evolution equation of the form: 

                                                       𝑃(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑡, … ) = 0                                                           (5)                                                                                                                  

By using the transformation  𝜉 = 𝑘(𝑥 − 𝑤𝑡)  and  𝑢(𝑥, 𝑡) = 𝑈(𝜉), the Eq(5) can be transformed into 

an ordinary differential equation of the form  
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                                                            𝐵(𝑈,𝑈′, 𝑈′′, … ) = 0                                                                  (6) 

where = 𝑈(𝜉), 𝑈′ =
𝑑𝑈

𝑑𝜉
, 𝑈′′ =

𝑑𝑈

𝑑𝜉
, … . To find periodic and solitary wave solutions of Eq (5), we 

assume that 𝑢 = 𝑢(𝜉) can be expressed as a finite series of Jacobi elliptic sine and cosine functions.  

Using ten different Jacobi elliptic functions, we assume that the solutions of Eq (6) will be in the 

following forms: 

 

                              𝑢(𝜉) = 𝑎0 + ∑ 𝑓𝑖
𝑗−1(𝜉)𝑛

𝑗=1 [𝑎𝑗𝑓𝑖(𝜉) + 𝑏𝑗𝑔𝑖(𝜉)],    𝑖 = 1,2,3,⋯                             (7) 

with 

𝑓1(𝜉)  =  𝑠𝑛(𝜉) and 𝑔1(𝜉)  =  𝑐𝑛(𝜉) 

𝑓2(𝜉)  =  𝑠𝑛(𝜉) and 𝑔2(𝜉)  =  𝑑𝑛(𝜉) 

                                                    𝑓3(𝜉)  =  𝑛𝑠(𝜉) and 𝑔3(𝜉)  =  𝑐𝑠(𝜉)                                                 (8) 

 𝑓4(𝜉)  =  𝑛𝑠(𝜉) and 𝑔4(𝜉)  =  𝑑𝑠(𝜉) 

𝑓5(𝜉)  =  𝑠𝑐(𝜉) and 𝑔5(𝜉)  =  𝑛𝑐(𝜉) 

𝑓6(𝜉)  =  𝑠𝑑(𝜉) and 𝑔6(𝜉)  =  𝑛𝑑(𝜉) 

where 𝑛, 𝑎𝑗, 𝑏𝑗    (𝑗 = 0,1,2,3,… ) are constants.  

To determine the value of n, we balance the highest power nonlinear term with the highest order 

derivative. Thus, the highest degree of 
𝑑𝑝𝑈

𝑑𝜉𝑝
  is taken as: 

𝑂 (
𝑑𝑝𝑈

𝑑𝜉𝑝
) = 𝑛 + 𝑝, 𝑝 = 1,2,3,…  

and the nonlinear term as 

           𝑂 (𝑈𝑞
𝑑𝑝𝑈

𝑑𝜉𝑝
) = (𝑞 + 1)𝑛 + 𝑝, 𝑞 = 0,1,2,3,…  

 

Replacing each 𝑓𝑖, 𝑔𝑖 in (8) to corresponding 𝑓𝑖, 𝑔𝑖 in (7) we get the new ansatz. Then selecting one of 

these outcomes and substituting it into (6) and equating to zero the coefficients of all powers of elliptic 

functions, we obtain a system of algebraic equations for 𝑎𝑗, 𝑏𝑗 (𝑗 = 0,1,2,… ). By substituting 𝑎𝑗, 𝑏𝑗 in 

(6), the solution of Eq.(6) is obtained. In this solution of Eq.(6), the solution of Eq.(5) is obtained by 

taking 𝜉 = 𝑘(𝑥 − 𝑤𝑡) [18]. 

 

3. APPLYING THE METHODS TO DSW-SYSTEM 

3.1. Extended Jacobi Elliptic Function Expansion Method to DSW System 

 

To apply the extended Jacobi elliptic function expansion method to solve Eq.(1), we substitute the 

following transformation: 

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝑣(𝑥, 𝑡) = 𝑣(𝜉), 𝜉 = 𝑘(𝑥 − 𝑤𝑡) 

Thus, Eq. (1) can be written in the following form: 

−𝑘𝑤𝑢′ + 𝛼𝑘𝑣𝑣′ = 0 
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                                                  −𝑤𝑣′ + 𝛽𝑢𝑣′ + 𝑠𝑢′𝑣 + 𝜂𝑘2𝑣′′′ = 0                                           (9) 

From the 1st equation in (9) we have 

                                                                        𝑢 =
𝛼

2𝑤
𝑣2.                                                                    (10) 

Using (10) in the 2nd equation in (9) and then integrating, we get undermentioned ODE: 

                                                −6𝑤2𝑣 + 𝛼(𝛽 + 2𝑠)𝑣3 + 6𝜂𝑤𝑘2𝑣′′ = 0                                          (11) 

Balancing the highest power nonlinear term and the highest order derivative yields n=1. Since 𝑛 = 1, 

if  (7) is used and 𝑓1(𝜉) = 𝑠𝑛(𝜉) and 𝑔1(𝜉) = 𝑐𝑛(𝜉) are selected from (8),  we get 

                                                      𝑣(𝜉) = 𝑎0 + 𝑎1𝑠𝑛(𝜉) + 𝑏1𝑐𝑛(𝜉).                                                 (12) 

 

Using (12) in (11) and collecting all the different powers of 𝑠𝑛𝑖(𝜉)𝑐𝑛𝑗(𝜉), 𝑖 = 0,1, 𝑗 = 0. .3, and 

setting the coefficients of 𝑠𝑛𝑖(𝜉)𝑐𝑛𝑗(𝜉) to zero, we obtain a system of nonlinear algebraic equations 

with respect to 𝑎𝑜, 𝑎1, 𝑏1, 𝑘, 𝑤 which is over-determined system. Solving these equations by the help 

of MapleTM, we get 

Set 1: 

                 {𝑎0 = 0, 𝑎1 = √−
3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂,    𝑏1 = √−

6−3𝑚2

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂, 𝑤 =

𝜂𝑘2(𝑚2−2)

2
}.           (13) 

Substituting (13) into (12), we have 

𝑣1,𝑚(𝜉) = √−
3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑠𝑛(𝜉) + √−

6−3𝑚2

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑐𝑛(𝜉)  

and using (10) we obtain 

𝑢1,𝑚(𝜉) = −
𝛼

𝑘2𝜂
(√−

3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑠𝑛(𝜉) + √−

−3𝑚2+6

2𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑐𝑛(𝜉))

2

 . 

If we calculate the limits of 𝑣1,𝑚(𝜉), 𝑢1,𝑚(𝜉) for  𝑚 → 1, we get 𝑐𝑛(𝜉,𝑚) → 𝑠𝑒𝑐ℎ(𝜉), 𝑠𝑛(𝜉,𝑚) →

𝑡𝑎𝑛ℎ(𝜉) and therefore the equations above degenerates into a solution of the DSW equation that is 

both periodic and exact. It can be written as 

𝑣1(𝜉) =
√6

2
√

1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑡𝑎𝑛ℎ(𝜉) +

√6

2
√−

1

𝛼(2𝑠+𝛽)
𝑘2𝜂𝑠𝑒𝑐ℎ(𝜉)  

                𝑢1(𝜉) = −
𝛼

𝑘2𝜂
(
√6

2
√

1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑡𝑎𝑛ℎ(𝜉) +

√6

2
√−

1

𝛼(2𝑠+𝛽)
𝑘2𝜂𝑠𝑒𝑐ℎ(𝜉))

2

                 

where  𝜉 = 𝑘(𝑥 − 𝑤𝑡) . Therefore the solution of the system (1) is found as 

                 

{
 
 

 
 𝑣1(𝑥, 𝑡) =

√6

2
√

1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑡𝑎𝑛ℎ(𝑘(𝑥 − 𝑤𝑡)) +

√6

2
√−

1

𝛼(2𝑠+𝛽)
𝑘2𝜂𝑠𝑒𝑐ℎ(𝑘(𝑥 − 𝑤𝑡))

 𝑢1(𝑥, 𝑡) = −
𝛼

𝑘2𝜂
(
√6

2
√

1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑡𝑎𝑛ℎ(𝑘(𝑥 − 𝑤𝑡)) +

√6

2
√−

1

𝛼(2𝑠+𝛽)
𝑘2𝜂𝑠𝑒𝑐ℎ(𝑘(𝑥 − 𝑤𝑡)))

2

}
 
 

 
 

.        

                                                                                                                                                              (14) 
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Set 2: 

                         {𝑎0 = 0, 𝑎1 = 0,    𝑏1 = √−
12−24𝑚2

𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂, 𝑤 = 2𝜂𝑘2𝑚2 − 𝜂𝑘2}                       (15) 

Substituting (15) into (12), we have 

𝑣2,𝑚(𝜉) = √−
12−24𝑚2

𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑐𝑛(𝜉)  

and using (10) we obtain 

𝑢2,𝑚(𝜉) =
(12−24𝑚2)𝑚2𝑘4𝜂2

2(2𝜂𝑘2𝑚2−𝜂𝑘2)(2𝑠+𝛽)
𝑐𝑛2(𝜉,𝑚)  

If we calculate the limits of 𝑣2,𝑚(𝜉), 𝑢2,𝑚(𝜉) for  𝑚 → 1, we get 𝑐𝑛(𝜉,𝑚) → 𝑠𝑒𝑐ℎ(𝜉) and therefore 

the equations above degenerates into a solution of the DSW equation that is both periodic and exact. It 

can be written as 

𝑣2(𝜉) =
2√3𝑘2𝜂

√𝛼(2𝑠+𝛽)
𝑠𝑒𝑐ℎ(𝜉)  

𝑢2(𝜉) =
6𝜂𝑘2

2𝑠+𝛽
𝑠𝑒𝑐ℎ2(𝜉)  

since  𝜉 = 𝑘(𝑥 − 𝑤𝑡). Therefore, the solution of the system (1) is found as 

                         {𝑣2(𝑥, 𝑡) =
2√3𝑘2𝜂

√𝛼(2𝑠+𝛽)
𝑠𝑒𝑐ℎ(𝑘(𝑥 − 𝑤𝑡)),  𝑢2(𝑥, 𝑡) =

6𝜂𝑘2

2𝑠+𝛽
𝑠𝑒𝑐ℎ2(𝑘(𝑥 − 𝑤𝑡)) }.      (16) 

 

Set 3: 

                  {𝑎0 = 0 ,   𝑎1 = √
12𝑚2+12

𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 ,  𝑏1 = 0, 𝑤 = −𝜂𝑘2(𝑚2 + 1), 𝑘 = 𝑘    }               (17) 

Substituting (17) into (12), we have  

𝑣3,𝑚(𝜉) = √
12𝑚2+12

𝛼(2𝑠+𝛽)
𝑚𝑘2𝜂 𝑠𝑛(𝜉,𝑚)  

and using (10)  we have 

𝑢3,𝑚(𝜉) = −
6𝑚2𝑘2𝜂

 2𝑠+𝛽
𝑠𝑛2(𝜉,𝑚). 

If we calculate the limits of 𝑣3,𝑚(𝜉), 𝑢3,𝑚(𝜉) for  𝑚 → 1, we get 𝑠𝑛(𝜉,𝑚) → 𝑡𝑎𝑛ℎ(𝜉) and therefore 

the equations above degenerates into a solution of the DSW equation that is both periodic and exact. It 

can be written as 

𝑣3(𝜉) = 2√6𝑘
2𝜂√

1

𝛼(2𝑠+𝛽)
𝑡𝑎𝑛ℎ(𝜉)  

   𝑢3(𝜉) = −
6𝜂𝑘2𝑡𝑎𝑛ℎ2(𝜉)

2𝑠+𝛽
, 

since  𝜉 = 𝑘(𝑥 − 𝑤𝑡). Then the solution of the system (1)  
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           {𝑣3(𝑥, 𝑡) = 2√6𝑘
2𝜂√

1

𝛼(2𝑠+𝛽)
𝑡𝑎𝑛ℎ(𝑘(𝑥 − 𝑤𝑡)) , 𝑢3(𝑥, 𝑡) = −

6𝜂𝑘2𝑡𝑎𝑛ℎ2(𝑘(𝑥−𝑤𝑡))

2𝑠+𝛽
}.           (18) 

 

Now since 𝑛 = 1, if (7) is used and 𝑓3(𝜉) = 𝑛𝑠(𝜉) and 𝑔3(𝜉) = 𝑐𝑠(𝜉) are selected from (8),  we get 

                                                     𝑣(𝜉) = 𝑎0 + 𝑎1𝑛𝑠(𝜉) + 𝑏1𝑐𝑠(𝜉).                                                   (19) 

Using (18) in (11) and collecting all the different powers of 𝑛𝑠𝑖(𝜉)𝑐𝑠𝑗(𝜉), 𝑖 = 0,1,…6 , 𝑗 = 0,1, and 

setting the coefficients of 𝑛𝑠𝑖(𝜉)𝑐𝑠𝑗(𝜉) to zero, we obtain a system of nonlinear algebraic equations 

with respect to 𝑘, 𝑤, 𝑎𝑜, 𝑎1, 𝑏1 which is over-determined system. Solving these equations by the help 

of the MapleTM, we get 

Set 1: 

                            {𝑎0 = 0,     𝑎1 = √
12𝑚2+12

𝛼(2𝑠+𝛽)
𝑘2𝜂,     𝑏1 = 0,     𝑤 = −𝜂𝑘2(1 + 𝑚2)}                      (20) 

Substituting (20) into (19), we have 

𝑣4,𝑚(𝜉) = √
12𝑚2+12

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑛𝑠(𝜉)  

and using (10) we obtain 

𝑢4,𝑚(𝜉) = −
12𝑚2+12

4(2𝑠+𝛽)
𝑘2𝜂 𝑛𝑠2(𝜉). 

If we calculate the limits of 𝑣4,𝑚(𝜉), 𝑢4,𝑚(𝜉) for  𝑚 → 1, we get 𝑛𝑠(𝜉,𝑚) → 𝑐𝑜𝑡ℎ(𝜉)  and therefore 

the equations above degenerates into a solution of the DSW equation that is both periodic and exact. It 

can be written as 

𝑣4(𝜉) = 2√6√
1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑐𝑜𝑡ℎ(𝜉)  

                                                      𝑢4(𝜉) = −
6𝑘2𝜂

2𝑠+𝛽
 𝑐𝑜𝑡ℎ2(𝜉)                                                     

where  𝜉 = 𝑘(𝑥 − 𝑤𝑡) . Then the solution of the system (1) is found as 

           {𝑣4(𝑥, 𝑡) = 2√6√
1

𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑐𝑜𝑡ℎ(𝑘(𝑥 − 𝑤𝑡))   , 𝑢4(𝑥, 𝑡) = −

6𝜂𝑘2𝑐𝑜𝑡ℎ2(𝑘(𝑥−𝑤𝑡))

2𝑠+𝛽
}.          (21) 

 

Now since 𝑛 = 1, if  (7) is used and 𝑓4(𝜉) = 𝑛𝑠(𝜉) and 𝑔4(𝜉) = 𝑑𝑠(𝜉) are selected from (8),  we get 

                                                      𝑣(𝜉) = 𝑎0 + 𝑎1𝑛𝑠(𝜉) + 𝑏1𝑑𝑠(𝜉)                                                  (22) 

Using (22) in (11) and collecting all the different powers of 𝑠𝑛𝑖(𝜉)𝑑𝑛𝑗(𝜉), 𝑖 = 0,1, 𝑗 = 0. .3,  and 

setting the coefficients of 𝑠𝑛𝑖(𝜉)𝑑𝑛𝑗(𝜉) to zero, we obtain a system of nonlinear algebraic equations 

with respect to  𝑎𝑜, 𝑎1, 𝑏1, 𝑘, 𝑤   which is over-determined. Solving these equations by the help of the 

MapleTM, we get 
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Set 1: 

                      {𝑎0 = 0,     𝑎1 = √
12(1+𝑚2)

𝛼(2𝑠+𝛽)
𝑘2𝜂 ,     𝑏1 = 0, 𝑘 = 𝑘,   𝑤 = −𝜂𝑘2(𝑚2 + 1)}.                (23) 

Substituting (23) into (22), we have 

𝑣5,𝑚(𝜉) = √
12(1+𝑚2)

𝛼(2𝑠+𝛽)
𝑘2𝜂  𝑛𝑠(𝜉)  

and using (10)  we obtain 

𝑢5,𝑚(𝜉) = −3
𝑘2𝜂(𝑚2+1)

2𝑠+𝛽
 𝑛𝑠2(𝜉). 

If we calculate the limits of 𝑣5,𝑚(𝜉), 𝑢51,𝑚(𝜉) for  𝑚 → 1, we get 𝑛𝑠(𝜉,𝑚) → 1/tanh (𝜉) and 

therefore the equations above degenerates into a solution of the DSW equation that is both periodic 

and exact. It can be written as 

𝑣5(𝜉) = 2√
6

𝛼(2𝑠+𝛽)
𝑘2𝜂  

1

𝑡𝑎𝑛ℎ(𝜉)
  

     𝑢5(𝜉) = −
6𝑘2𝜂

(2𝑠+𝛽)
 

1

𝑡𝑎𝑛ℎ2(𝜉)
  

where  𝜉 = 𝑘(𝑥 − 𝑤𝑡) . Then the solution of the system (1) is found as 

              { 𝑣5(𝑥, 𝑡) = 2√
6

𝛼(2𝑠+𝛽)
𝑘2𝜂  

1

𝑡𝑎𝑛ℎ(𝑘(𝑥−𝑤𝑡))
, 𝑢5(𝑥, 𝑡) = −

6𝑘2𝜂

(2𝑠+𝛽)
 

1

𝑡𝑎𝑛ℎ2(𝑘(𝑥−𝑤𝑡))
}.             (24) 

Set 2: 

                       {𝑎0 = 0,  𝑎1 = 0,  𝑏1 = √
12(1−2𝑚2)

𝛼(2𝑠+𝛽)
𝑘2𝜂, 𝑘 = 𝑘,   𝑤 = −𝜂𝑘2(𝑚2 + 1)}                  (25) 

Substituting (25) into (22), we have 

𝑣6,𝑚(𝜉) = √
12(1−2𝑚2)

𝛼(2𝑠+𝛽)
𝑘2𝜂  𝑑𝑠(𝜉)  

and using (10) we obtain 

𝑢6,𝑚(𝜉) = −
𝑘2𝜂(2𝑚2−1)

2𝑠+𝛽
 𝑑𝑠2(𝜉). 

If we calculate the limits of 𝑣6,𝑚(𝜉), 𝑢6,𝑚(𝜉) for  𝑚 → 1, we get 𝑑𝑠(𝜉,𝑚) → 𝑠𝑒𝑐 h(𝜉) /tanh (𝜉) and  

therefore the equations above degenerates into a solution of the DSW equation that is both periodic 

and exact. It can be written as 

𝑣6(𝜉) = 2√
−3

𝛼(2𝑠+𝛽)
𝑘2𝜂  

sech (𝜉)

𝑡𝑎𝑛ℎ(𝜉)
                                                            

                                                        𝑢6(𝜉) = −
6𝑘2𝜂

(2𝑠+𝛽)
 
𝑠𝑒𝑐ℎ2(𝜉)

𝑡𝑎𝑛ℎ2(𝜉)
                                                             

where  𝜉 = 𝑘(𝑥 − 𝑤𝑡) . Then the solution of the system (1) is found as 

                             { 𝑣6(𝑥, 𝑡) = 2√
−3

𝛼(2𝑠+𝛽)
𝑘2𝜂  

sech (𝜉)

𝑡𝑎𝑛ℎ(𝜉)
, 𝑢6(𝑥, 𝑡) = −

6𝑘2𝜂

(2𝑠+𝛽)
 
𝑠𝑒𝑐ℎ2(𝜉)

𝑡𝑎𝑛ℎ2(𝜉)
}.                   (26) 
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Set 3: 

                     {𝑎0 = 0, 𝑎1 = √−
3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂,    𝑏1 = √−

3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂, 𝑤 =

𝜂𝑘2(𝑚2−2)

2
}.              

(27) 

Substituting (27) into (21), we have 

𝑣7,𝑚(𝜉) = √−
3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑛𝑠(𝜉) + √−

3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑑𝑠(𝜉)  

and using (10) we obtain 

𝑢7,𝑚(𝜉) = −
𝛼

𝑘2𝜂
(√−

3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑛𝑠(𝜉) + √−

3𝑚2−6

2𝛼(2𝑠+𝛽)
𝑘2𝜂 𝑑𝑠(𝜉))

2

 . 

If we calculate the limits of 𝑣7,𝑚(𝜉), 𝑢7,𝑚(𝜉) for  𝑚 → 1, we get 𝑛𝑠(𝜉,𝑚) →
1

tanh(𝜉)
, 𝑑𝑠(𝜉,𝑚) →

𝑠𝑒𝑐ℎ(𝜉)

tanh(𝜉)
  and therefore the equations above degenerates into a solution of the DSW equation that is both 

periodic and exact. It can be written as 

𝑣7(𝜉) = √
6

𝛼(2𝑠+𝛽)
𝑘2𝜂  

(1+𝑠𝑒𝑐ℎ(𝜉))

2𝑡𝑎𝑛ℎ(𝜉)
  

   𝑢7(𝜉) = −
3𝑘2𝜂(1+𝑠𝑒𝑐ℎ(𝜉))2

2(2𝑠+𝛽)𝑡𝑎𝑛ℎ2(𝜉)
  

where  𝜉 = 𝑘(𝑥 − 𝑤𝑡) . Then the solution of the system (1) is found as 

                       { 𝑣7(𝑥, 𝑡) = √
6

𝛼(2𝑠+𝛽)
𝑘2𝜂  

(1+𝑠𝑒𝑐ℎ(𝜉))

2𝑡𝑎𝑛ℎ(𝜉)
, 𝑢7(𝑥, 𝑡) = −

3𝑘2𝜂(1+𝑠𝑒𝑐ℎ(𝜉))2

2(2𝑠+𝛽)𝑡𝑎𝑛ℎ2(𝜉)
}.                   (28) 

3.2. New Exact Solution by Lie Transformation Groups 

Lie symmetry analysis is one of the most general and effective methods for obtaining exact solutions 

of nonlinear partial differential equations. In the last few decades, Lie’s method has been applied to a 

number of physical and engineering models. Solutions of partial differential equations can be 

transformed into another solution under the act of any symmetry group. Solutions that do not change 

under a symmetry transformation are called invariant solutions. 

In this section, we will transform the exact solution (26) of the system (1) obtained by the extended 

Jacobi elliptic function method into a new solution under the symmetry transformation. 

Essential aim is to yield one new exact solution by the transformation groups of which makes the Eq. 

(1) invariant. 

Equation (1) accepts a three dimensional Lie algebra having the generators given below: 
 

Χ1 =
𝜕

𝜕𝑡
, Χ2 =

𝜕

𝜕𝑥
, Χ3 = 3𝑡

𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑥
− 2𝑢

𝜕

𝜕𝑢
− 2𝑣

𝜕

𝜕𝑣
. 

 

Thus, one parameter 𝐺𝑖, (𝑖 = 1,2,3) groups produced by 𝑋𝑖, (𝑖 = 1,2,3) can be obtained in the 

following form: 

 

𝐺1: (𝑡, 𝑥, 𝑢, 𝑣) → (𝑡 + 𝜀, 𝑥, 𝑢, 𝑣), 
 

𝐺2: (𝑡, 𝑥, 𝑢, 𝑣) → (𝑡, 𝑥 + 𝜀, 𝑢, 𝑣), 
      

                                                        𝐺3: (𝑡, 𝑥, 𝑢, 𝑣) → (𝑡𝑒3𝜀 , 𝑥𝑒𝜀 , 𝑢𝑒−2𝜀, 𝑣𝑒−2𝜀). 
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Let us consider the nontrivial generator Χ3, then the transformation {�̅� = 𝑓1(�̅�, 𝑡̅), �̅� =
𝑓2(�̅�, 𝑡̅)}, {𝑢(𝑧, 𝑡) = 𝑓(𝑥𝑒

𝜀 , 𝑡𝑒3𝜀)𝑒2𝜀 , 𝑣(𝑧, 𝑡) = 𝑓(𝑥𝑒𝜀 , 𝑡𝑒3𝜀)𝑒2𝜀} is obtained as corresponding 

transformation where 

 

�̅� = 𝑥𝑒𝜀   �̅� = 𝑥𝑒𝜀 
𝑡̅ = 𝑡𝑒3𝜀   𝑡̅ = 𝑡𝑒3𝜀 
�̅� = 𝑣𝑒−2𝜀   �̅� = 𝑣𝑒−2𝜀 

 

We know from the theory of Lie groups that using these variables the solution {𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)} of the 

Eq. (1) transforms into another solution of the Eq. (1). Under this symmetry transformation, using 

solution (26) of the DSW system obtained by the extended Jacobi elliptic function expansion method 

we reach to the following solution 

𝑢𝑛𝑒𝑤 = −
6𝜂𝑘2 sech(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))

2

(2𝑠+𝛽) tanh(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))
2  

 

   𝑣𝑛𝑒𝑤 = −
6𝜂𝑘2 sech(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))

2
𝑒2𝜀

(2𝑠+𝛽) tanh(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))
2 . 

 

Then the solution of the system (1) is found as 

      { 𝑣𝑛𝑒𝑤(𝑥, 𝑡) = −
6𝜂𝑘2 sech(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))

2
𝑒2𝜀

(2𝑠+𝛽) tanh(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))
2 , 𝑢𝑛𝑒𝑤(𝑥, 𝑡) = −

6𝜂𝑘2 sech(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))
2

(2𝑠+𝛽) tanh(𝑘(−𝑤𝑡𝑒3𝜀+𝑥𝑒𝜀))
2}.    (29) 

New solutions can be obtained in the same way by using other solutions. 

 

 

4. GRAPHICAL REPRESENTATIONS OF THE RESULT 

 

Graphs are a powerful tool commonly used to visually represent and communicate data and 

information. The purpose of graphics is to make data more meaningful and accessible. They are also 

used to reduce complexity, facilitate focus, and provide quick understanding. In this section, we 

visualized the exact solutions we obtained using the extended Jacobi elliptic method with specific 

parameter values in 2D and 3D graphs. These graphs were intended to assist readers in better 

understanding and interpreting the solutions. 

 

Figure 1 given below is given for to show the behaviour of (14) by using the parameters { 𝛼 =

−1, 𝛽 = 3, 𝑠 = 1, 𝜂 = 3, 𝑘 = 1,𝑤 = −
3

2
} (in complex plane)   

Figure 2 given below is given for to show the behaviour of (14) by using the parameters { 𝛼 =

−1, 𝛽 = 3, 𝑠 = 1, 𝜂 = 3, 𝑘 = 1,𝑤 = −
3

2
} (in real plane)   

Figure 3  given below is given for to show the behaviour of (21) by using the parameters { 𝛼 = 1, 𝛽 =

1, 𝑠 = 1, 𝜂 = −2, 𝑘 =
1

2
, 𝑤 = 1}  

Figure 4 given below is given for to show the behaviour of (24) by using the parameters { 𝛼 = 1, 𝛽 =
1, 𝑠 = 1, 𝜂 = −2, 𝑘 = 1,𝑤 = 4}  
Figure 5 given below is given for to show the behaviour of (28) by using the parameters { 𝛼 = 1, 𝛽 =

1, 𝑠 = 1, 𝜂 = 1, 𝑘 = 1,𝑤 = −
1

2
}  

Figure 6 given below is given for to show the behaviour of (29) by using the parameters { 𝛼 = 1, 𝛽 =

1, 𝑠 = 1, 𝜂 = 1, 𝑘 = 1, 𝜀 =
1

 3
, 𝑤 = −

1

2
}  
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                                  𝑢1(𝑥, 𝑡)                                                                                     𝑣1(𝑥, 𝑡) 

Figure 1. Profile of solution (14) 

          

        {𝑅𝑒(𝑢1(𝑥, 𝑡)), 𝐼𝑚(𝑢1(𝑥, 𝑡)}                       {𝑅𝑒(𝑣1(𝑥, 𝑡)), 𝐼𝑚(𝑣(𝑥, 𝑡))}                {𝑅𝑒(𝑢1(𝑥, 𝑡)), 𝐼𝑚(𝑢1(𝑥, 𝑡)), 𝑅𝑒(𝑣1(𝑥, 𝑡)), 𝐼𝑚(𝑣(𝑥, 𝑡))} 

Figure 2. Profile of solution (14)   

  

                 {𝑢4(𝑥, 𝑡), 𝑣4(𝑥, 𝑡)}                              𝑢4(𝑥, 𝑡𝑖)                                     𝑣4(𝑥, 𝑡𝑖) 

Figure 3. Profile of solution (21) 
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                 {𝑢5(𝑥, 𝑡), 𝑣5(𝑥, 𝑡)}                              𝑢5(𝑥, 𝑡𝑖)                                     𝑣5(𝑥, 𝑡𝑖) 

Figure 4. Profile of solution (24) 

 

   

         {𝑢7(𝑥, 𝑡), 𝑣7(𝑥, 𝑡)}                                𝑢7(𝑥, 𝑡𝑖)                                         𝑣7(𝑥, 𝑡𝑖) 

Figure 5.     Profile of solution (28) 

 

        
         {𝑢𝑛𝑒𝑤(𝑥, 𝑡), 𝑣𝑛𝑒𝑤(𝑥, 𝑡)}                                𝑢𝑛𝑒𝑤(𝑥, 𝑡𝑖)                                         𝑣𝑛𝑒𝑤(𝑥, 𝑡𝑖) 

Figure 6.     Profile of solution (29) 
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5. CONCLUSIONS  

 

In this study, the extended Jacobi elliptic function expansion method was applied to the DSW system 

and the exact solutions of this system were obtained. Research has demonstrated that the periodic 

wave solutions derived from the Jacobi elliptic function expansion may vary depending on the choice 

of the Jacobi elliptic function used. Consequently, this approach can lead to the discovery of a 

multitude of novel periodic solutions as well as shock wave or solitary wave solutions. The physical 

characterization of some solutions obtained in our study is depicted in two- and three-dimensional 

graphics. We produced new solutions with the help of Lie symmetry groups previously given in the 

literature. The new solution is graphed in Figure 6. 

 

When we reviewed the literature, we noticed that some of the solutions obtained in [17] structurally 

resemble the solutions we obtained in (14), (16), (18), and (21). However, the enhanced (G’/G)- 

expansion method used in [17] includes parameters associated with hyperbolic function variables due 

to the auxiliary equation used in the application of the method. On the other hand, the extended Jacobi 

elliptic function expansion method we used does not require an auxiliary equation. Therefore, 

although the solutions we obtained structurally resemble each other, it is observed that different 

solutions emerge when looking at the hyperbolic function variables they contain. Additionaly it is seen 

that the solutions (16) and (18) obtained in this study coincide with the solutions obtained using the 

Jacobi elliptic function expansion method of the same system [20]. According to our research, other 

solutions obtained are not available in the literature. 

 

Figure 1 shows the multi soliton solution of (14) at special parameter values in the complex space. In 

Figure 2, a kink shape soliton and a bell shape soliton together represent the solution. Figure 3 shows a 

bright soliton and singular kink shape soliton. Figure 4 shows the periodic wave solution. The multi 

soliton solution is also seen in Figure 5. In Figure 6, we see that a singular kink wave and a kink wave  

together represent the solution.  

 

From the open literature, we notice that Lie symmetry analysis of system (1) is carried out with special 

coefficient selection. Zhang and Zhao made a special case Lie symmetry analysis of the system by 

choosing α=2,β=3k,s=3b,η=-a [21]. They systematically constructed the Lie symmetries together with 

some symmetry reductions and group invariant solutions corresponding to this reduction. In their 

study, we saw that the symmetry generators obtained in the special case of the DSW-system and the 

generators we obtained for the general DSW-system are the same. Therefore, with the new solution 

generation method we use, an even richer solution set of the system can be obtained. 

 

The obtained solutions were checked one by one by substituting them in the equations of the system 

with Maple. Numerical simulations of the solutions obtained from the method discussed were 

performed for specific parameter values. 

 

We think that the new wave solutions obtained by applying extended Jacobi elliptic expansion method 

from the DSW system, resulting from the interaction between water waves and long waves, will have 

a significant impact on the field of ocean engineering. Furthermore, this research has the potential to 

provide novel perspectives on the behaviour of various scientific phenomena. 

The solutions obtained can be used as an auxiliary function in the modeling of autonomous underwater 

vehicles, in the installation of heavy and complex submarine equipment, in the placement of 

submarine pipelines and submarine cables. We also believe that it will be useful for those working in 

the fields of physics and engineering in interpreting ocean waves, the physics of underwater sound and 

how to make sense of sounds underwater. 
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