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İlkem Turhan Çetinkaya1 ID
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Research Article

Abstract − In this study, a mathematical model describing diabetes mellitus and its com-
plications in a population is considered. Since standard numerical methods can lead to nu-
merical instabilities, it aims to solve the problem using a nonstandard method. Among the
nonstandard methods, nonstandard finite difference (NSFD) schemes that satisfy dynamical
consistency are preferred to make the model discrete. Both continuous and discrete models
are analyzed to show the stability of the model at the equilibrium points. The Schur-Cohn cri-
terion is used to perform stability analysis at the equilibrium point of the discretized model.
Thus, asymptotically stability of the model is presented. Moreover, the advantages of the
NSFD method are emphasized by comparing the stability for different step sizes with classi-
cal methods, such as Euler and Runge-Kutta. It has been observed that the NSFD method
is convergence for larger step sizes. In addition, the numerical results obtained by NSFD
schemes are compared with the Runge–Kutta–Fehlberg (RKF45) method in graphical forms.
The accuracy of the NSFD method is observed.

Keywords Diabetes mellitus, nonstandard finite difference scheme, stability analysis
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1. Introduction

Many biological problems can be modeled by using differential equations. As is known, diabetes has
become a very common disease recently. Many important studies about diabetes have been performed.
In epidemic models, stability analysis has an important role. Some of the studies about diabetes can
be summarized as follows:

Boutayeb et al. [1] propose a mathematical model of diabetes to present a better quality of line
for humans. The numerical solution and the stability analysis for the linear model in which the
unknowns are numbers of diabetics with and without complications are presented. Akinsola and
Oluyo [2–4] obtain the numerical and analytical solution of the model of complications and control
of diabetes mellitus in their studies with different methods. Moreover, the linear diabetes mellitus
model is considered by AlShurbaji et al. [5]. The numerical comparison of the solution of a system
of linear differential equations by numerical methods such as Euler, Heun, Runge-Kutta, and Adams-
Moulton is presented. Stability analysis is given. Furthermore, Vanitha and Porchelvi [6] consider the
linear mathematical model of diabetes mellitus. A numerical solution by the Euler-Cauchy method is
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presented. Besides, Boutayeb et al. [7] present a nonlinear mathematical model of diabetes mellitus
by applying appropriate parameters. Stability analysis and numerical experiments are presented. de
Oliveira et al. [8] consider the model proposed in [7] and global asymptotic stability is studied. The
stability is verified through numerical simulations. Boutayeb et al. [9] present the dynamics of a
population of healthy people, pre-diabetics, and diabetics with and without complications. Optimal
control theory is used. Permatasari et al. [10] considered the model developed by [9]. Global stability
and controllability for linear and nonlinear systems are presented, respectively. Widyaningsih et al. [11]
consider the nonlinear diabetes mellitus model in terms of lifestyle and genetic factors. Fourth-order
Runge-Kutta method is applied to predict the number of deaths due to diabetes, recently. Aye [12]
presents stability analysis of a linear model describing diabetes mellitus and its complications. The
stability is tested by using the Bellman and Coke theorem. Aye et al. [13] solve a similar model using
the Homotopy Perturbation Method. Aye [14] investigates the effect of control on the same model.

It is known that stability analysis of mathematical models plays an important role in the disciplines
of applied mathematics. Since, in real-life problems, the points are discrete, discretizing the models is
very important in stability analysis. Likewise, in solving such problems, standard numerical methods
can lead to numerical instabilities. Hence, nonstandard methods are important. Among the discrete
methods, the Nonstandard Finite Difference (NSFD) method developed by Mickens [15–20] is very
effective and easy to apply. Moreover, it provides convergence results in even bigger step sizes. The
detailed literature survey about NSFD schemes is presented in the studies of Patidar [21, 22]. There
are many studies about NSFD schemes in many disciplines of applied mathematics. Some of the recent
studies about NSFD schemes and stability analysis can be listed as follows:

Adekanye and Washington [23] consider a mathematical model presented by the collapse of the Tacoma
Narrows Bridge. Two NSFD schemes are constructed for the vertical and torsional models. Graphics
present vertical and torsional motions. An application of NSFD schemes to a model of the Ebola virus
in Africa is presented in [24] by Anguelov et al. Epidemic fractional models about susceptible-infected
(SI) and susceptible-infected-recovered (SIR) are proposed by Arenas et al. in [25]. NSFD schemes
are applied, and some comparisons with classical methods are given. Baleanu et al. [26] analyze a
novel fractional chaotic system for integer and fractional order cases. Stability analysis is presented
for both cases. Numerical simulations are presented with the help of NSFD schemes. Dang and
Hoang [27] construct NSFD schemes for two metapopulation models. Stability analysis and other
properties, such as positivity, boundedness, and monotone convergence, are presented. Numerical
calculations are given to support the theoretical study. Dang and Hoang [28], and Kocabıyık et
al. [29] approximate a computer virus model with the NSFD method. Ozdogan and Ongun [30]
solve a mathematical model describing the Michaelis-Menten harvesting rate with the help of NSFD
schemes. NSFD discretization of a distributed order smoking model is presented to determine the
effects of smoking on humans by Kocabiyik and Ongun [31]. A comparison of two different NSFD
schemes for the fractional order Hantavirus model is given in the study of Ongun and Arslan [32].
A predator-prey model is constructed by NSFD schemes by Shabbir et al. in [33]. Stability analysis
and other properties such as positivity, boundedness, and persistence of solutions are investigated.
Vaz and Torres [34] proposed an NSFD scheme for the Susceptible–Infected–Chronic–AIDS (SICA)
model. Elementary and global stability are studied. A linear mathematical model of pharmacokinetics
is considered by Egbelowo et al. in [35]. The Standard Finite Difference method, NSFD method, and
analytical solution are presented. More recent studies about the stability analysis of the mathematical
models are presented in [36–39].

In this study, a system of linear ordinary differential equations led from diabetes mellitus and its
complications given in [13] is considered. The second section defines the mathematical model and its
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parameters and variables. The stability of the continuous model is given. The third section is devoted
to discretizing the model by the NSFD method. The fourth section includes the stability analysis of
the discrete model. The fifth section is the numerical simulation section. Finally, the last section is
the conclusion section.

2. The Continuous Model Describing Diabetes Mellitus and Its Complica-
tions

This section presents the definition of a mathematical model of diabetes mellitus and its complications
provided in [13]. The model consists of a system of linear ordinary differential equations and is defined
as

dH

dt
= βθ − (µ+ τ)H + σS

dS

dt
= β(1 − θ) + τH − (µ+ α+ σ)S

dD

dt
= αS − (µ+ λ)D + ωT (1)

dC

dt
= λD − (µ+ δ + γ)C

dT

dt
= γC − (µ+ ω)T

with the initial conditions H(0) = H0, S(0) = S0, D(0) = D0, C(0) = C0, and T (0) = T0, where
the variables H(t), S(t), D(t), C(t), and T (t) denote to the healthy, susceptible, diabetics without
complication, diabetics with complication and diabetics with complications receiving a cure, respec-
tively. The parameters β, θ, µ, τ , σ, α, λ, ω, δ, and γ denote rate of birth, rate of children born
healthy, rate of natural mortality death, the rate at which healthy individual become susceptible, the
rate at which susceptible individual become healthy, probability rate of incidence of diabetes, rate of a
diabetic person developing complications, rate at which diabetic with complications after cured return
diabetic without complications, rate of mortality due to complications and rate at which diabetic with
complications are cured.

Hereinafter, the asymptotic stability of the continuous model described by Equation 1 will be pre-
sented. Thus, we first give some basic preliminaries. For a general autonomous vector field

ẋ = f(x), x ∈ Rn (2)

the linearized system can be defined as
dy

dt
= J(E)y

where E and J(E) denotes the equilibrium point of the Equation 2 and Jacobian matrix of the
Equation 2 at the equilibrium point E, respectively.

Theorem 2.1. [40] Suppose all the J(E) have negative reel parts. Then, the equilibrium solution of
the nonlinear vector field defined by Equation 2 is asymptotically stable.

The equilibrium point of Equation 1 is obtained as E∗ = (H∗, S∗, D∗, C∗, T ∗), where

H∗ = β(σ + θµ+ θα)
χ

S∗ = −β(−µ− τ + θµ)
χ
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D∗ = −αβ(µ+ ω)(−µ− τ + θµ)(µ+ δ + γ)
ϖ

C∗ = −αβλ(µ+ ω)(−µ− τ + θµ)
ϖ

T ∗ = −αβλγ(−µ− τ + θµ)
ϖ

χ = µ2 + (σ + τ + α)µ+ ατ

and
ϖ = (µ3 + (ω + δ + λ+ γ)µ2 + (ω(γ + δ + λ) + λ(δ + γ))µ+ ωλδ)χ

The Jacobian matrix of the continuous model at the equilibrium point E∗ = (H∗, S∗, D∗, C∗, T ∗) is
determined as

J(H∗, S∗, D∗, C∗, T ∗) =



−τ − µ σ 0 0 0
τ −µ− α− σ 0 0 0
0 α −µ− λ 0 ω

0 0 λ −µ− δ − λ 0
0 0 0 γ −µ− ω


Thus, considering Theorem 2.1, the continuous system defined by Equation 1 is asymptotically stable
if all the eigenvalues of J(H∗, S∗, D∗, C∗, T ∗) have negative reel parts. A detailed analysis of the
asymptotic stability of the continuous model will be given in Section 5.

3. Discretization of the Model by NSFD Schemes

In this section, the model defined by Equation 1 is discretized by using NSFD schemes, an effective
method. Some advantages of the proposed method are that it removes the numerical instabilities
obtained by standard finite difference procedures, gives more approximate results compared to classical
methods such as Runge-Kutta and Euler methods, and is converged for bigger step sizes compared to
classical methods.

The rules for constructing NSFD schemes and determination of denominator function can be summa-
rized as follows [16]:

i. To avoid numerical instabilities, the order of discrete derivatives should be equal to the derivatives
in the differential equations.

ii. The discretization of first-order derivatives is usually in the following general form:
dx

dt
→ xn+1 − ψ(h)xn

ϕ(h)
where ψ(h) and ϕ(h) are called numerator and denominator functions, respectively.

iii. Nonlinear terms should be replaced by nonlocal discrete terms such as x2 → xk+1xk and x2 → x2
k.

iv. Additional conditions for the differential equations should be satisfied for difference equations.

In the view of the procedure given above, the model is discretized by using the following steps to
satisfy the positivity conditions:

In the first equation of Equation 1, the replacements H(t) → H(n + 1) and S(t) → S(n) are used.
Similarly, in the second equation of Equation 1, the replacements H(t) → H(n) and S(t) → S(n+1); in
the third equation of Equation 1, the replacements S(t) → S(n), D(t) → D(n+ 1), and T (t) → T (n);
in the fourth equation of Equation 1, the replacements D(t) → D(n) and C(t) → C(n + 1); and
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finally, in the last equation of Equation 1, the replacements C(t) → C(n) and T (t) → T (n + 1) are
implemented. Thus, the following discrete model is obtained:

H(n+ 1) = H(n) + (βθ + σS(n))ϕ1
1 + (µ+ τ)ϕ1

S(n+ 1) = S(n) + (β(1 − θ) + τH(n))ϕ2
1 + (µ+ α+ σ)ϕ2

D(n+ 1) = D(n) + (αS(n) + ωT (n))ϕ3
1 + (µ+ λ)ϕ3

(3)

C(n+ 1) = C(n) + λϕ4D(n)
1 + (µ+ δ + γ)ϕ4

T (n+ 1) = T (n) + γϕ5C(n)
1 + (µ+ ω)ϕ5

where ϕi, i = 1, 5 are denominator functions and determined as

ϕ1 = eh(µ+τ) − 1
µ+ τ

ϕ2 = eh(µ+α+σ) − 1
µ+ α+ σ

ϕ3 = eh(µ+λ) − 1
µ+ λ

ϕ4 = eh(µ+δ+γ) − 1
µ+ δ + γ

and
ϕ5 = eh(µ+ω) − 1

µ+ ω

4. Stability Analysis of the Discretized Model

In this section, the stability analysis of the discretized model is performed. Some theorems and lemmas
about the stability and properties such as positivity, and permanence of the solutions of the discrete
system given by Equation 3 are presented.

Lemma 4.1. All solutions of discrete system given in Equation 3 are positive with positive initial
conditions and positive parameters β, θ, µ, τ, σ, α, λ, ω, δ, γ, and h under the assumption of

S(n)
ϕ2

> −(β(1 − θ) + τH(n))

Proof.
Assume that the parameters β, θ, µ, τ, σ, α, λ, ω, δ, γ, and h are positive. Moreover, assume that the
initial conditions H(0) = H0, S(0) = S0, D(0) = D0, C(0) = C0, and T (0) = T0 are positive. Then,
it is obvious that the denominator functions are all positive, i.e.,

ϕ1 = eh(µ+τ) − 1
µ+ τ

> 0, ϕ2 = eh(µ+α+σ) − 1
µ+ α+ σ

> 0,

ϕ3 = eh(µ+λ) − 1
µ+ λ

> 0, ϕ4 = eh(µ+δ+γ) − 1
µ+ δ + γ

> 0,

and
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ϕ5 = eh(µ+ω) − 1
µ+ ω

> 0

Therefore, for the positive parameters, it is obvious that

H(n+ 1) = H(n) + (βθ + σS(n))ϕ1
1 + (µ+ τ)ϕ1

> 0

D(n+ 1) = D(n) + (αS(n) + ωT (n))ϕ3
1 + (µ+ λ)ϕ3

> 0

C(n+ 1) = C(n) + λϕ4D(n)
1 + (µ+ δ + γ)ϕ4

> 0

and
T (n+ 1) = T (n) + γϕ5C(n)

1 + (µ+ ω)ϕ5
> 0

As well, assuming S(n)
ϕ2

> −(β(1 − θ) + τH(n)), it can be concluded that

S(n+ 1) = S(n) + (β(1 − θ) + τH(n))ϕ2
1 + (µ+ α+ σ)ϕ2

Thus, the discrete system is positive for all the positive parameters and initial conditions.

Locally asymptotic stability of the model can be analyzed by obtaining the eigenvalues of the Jacobian
matrix at equilibrium points. Local asymptotic stability of the system depends on the eigenvalues of
the Jacobian matrix at the equilibrium points.

Theorem 4.2 (Schur-Cohn Criterion). [41] Consider the characteristic polynomial

p(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an (4)

where a1, a2, · · · , an are constants. The zeros of the characteristic polynomial defined by Equation 4
lie inside the unit disk if and only if the following conditions hold:

i. p(1) > 0

ii. (−1)np(−1) = 1 − a1 + a2 − · · · + (−1)nan > 0

iii. The matrices

B±
n−1 =



1 0 0 · · · 0

a1 1 0 · · · 0
...

...
...

...
...

an−3 an−4 · · · 1 0

an−2 an−3 · · · a1 1


±



0 0 · · · 0 an

0 0 · · · an an−1

...
... . . . ...

...

0 an · · · a4 a3

an an−1 · · · a3 a2


are positive innerwise.

Hence, one can conclude that if the Schur-Cohn criterion is satisfied, then the discrete system is
asymptotically stable. Note that the equilibrium point of the discrete system given by Equation
3 is the same as the continuous model. Therefore, the Jacobian matrix at the equilibrium point
E∗ = (H∗, S∗, D∗, C∗, T ∗) can be written as
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J∗ = J(H∗, S∗, D∗, C∗, T ∗) =



j1 ϕ1σj1 0 0 0

ϕ2τj2 j2 0 0 0

0 ϕ3αj3 j3 0 ϕ3ωj3

0 0 ϕ4λj4 j4 0

0 0 0 ϕ5γj5 j5


where

j1 = 1
1 + ϕ1(µ+ τ)

j2 = 1
1 + ϕ2(µ+ α+ σ)

j3 = 1
1 + ϕ3(µ+ λ)

j4 = 1
1 + ϕ4(µ+ δ + γ)

and
j5 = 1

1 + ϕ5(µ+ ω)
The characteristic equation is as follows:

p(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 (5)

where the coefficients of Equation 5 are determined as

a1 = −(j1 + j2 + j3 + j4 + j5)

a2 = (j3 + j4)j5 + j3j4 + (j1 + j2)(j3 + j4 + j5) − (1 − τσϕ1ϕ2)j1j2

a3 = −(1 + γλωϕ3ϕ4ϕ5)j5j4j3 + (τσϕ1ϕ2 − 1)j2j1(j5 + j4 + j3) − (j2 + j1)[j5(j4 + j3) + j3j4] (6)

a4 = (j2 + j1)(1 + ϕ3ϕ4ϕ5λωγ) + j2j1(1 − στϕ1ϕ2)[j5(j4 + j3) + j4j3]

a5 = j5j4j3j2j1(στϕ1ϕ2 − 1)(1 + ϕ3ϕ4ϕ5λωγ)

To analyze the stability of the model at the equilibrium point, the following theorem for the discrete
system given by Equation 3 is presented.

Theorem 4.3. The discrete system in Equation 3 is locally asymptotically stable at the equilibrium
point E∗ = (H∗, S∗, D∗, C∗, T ∗) if the following conditions are satisfied:

i. [−1 + ϕ3ϕ4ϕ5γωλj3j4j5 + j5 + (j5 − 1)(j4j3 − j4 − j3)][ϕ1ϕ2τσj1j2 + (1 − j1)(j2 − 1)] > 0

ii. [1 + ϕ3ϕ4ϕ5γωλj3j4j5 + (1 + j3)(j4 + j5(1 + j4)) + j3][−ϕ1ϕ2τσj1j2 + (j2 + 1)(j1 + 1)] > 0

iii. 1 − a1a5 + a4 − a2
5 > 0

[1 + (a1a2a5 − a1a5(1 − a4))(1 + a4) + a4a5(2a1 + a3) − a2
4(a4 + a2 + 1) + (a5 + a3 + a1)(a3

5 − a3)

−a2
5(a4 + 2 + a2 + a2

1 + a2
2) − a5a

2
1(a1 + a3) + a4(1 + a1(a3 + a1)) + a2(1 + a5(2a3 − a5a4))] > 0

[1 + a4a5(2a1 − 3a3) + a2
4(a4 − 1 − a2) + a3(a5 − a3 + a1(1 + a4)) − a2

1(a4 + a5(a3 − a1 + a5))

+a1a5(1 − 3a2 + a4(a2 − a4)) + a2
5(a5(a5 − a3 − a1) + a2(1 − a2) + a4(1 + a2) − 2(1 + a1a3))

−a4(1 − 2a2) − a2(1 − 2a2a3a5)] > 0

where a1, a2, a3, a4, and a5 are denoted by Equation 6.
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Proof.
Considering Theorem 4.2, it is obvious that if the conditions i-iii in Theorem 4.3 are satisfied, then
the discrete system given by Equation 3 is locally asymptotically stable at the equilibrium point
E∗ = (H∗, S∗, D∗, C∗, T ∗).

5. Numerical Results

This section presents the stability analysis for the parameters given in [13]. The parameters are taken
into consideration as

β = 0.038, θ = 0.923, µ = 0.118, τ = 0.04, σ = 0.08,

α = 0.02, λ = 0.05, ω = 0.08, δ = 0.02, and γ = 0.08
(7)

Under the given parameters above, the stability of the continuous model and discrete model will be
analyzed in the view of Theorems 2.1 and 4.2.

5.1. Stability Analysis of the Continuous Model

The characteristic polynomial of the Jacobian matrix at the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

is determined as

J(E∗) =



−0.158 0.08 0 0 0

0.04 −0.218 0 0 0

0 0.02 −0.168 0 0.08

0 0 0.05 −0.218 0

0 0 0 0.08 −0.198


The eigenvalues of J(E∗) is as follows:

λ1 = −0.123042327249903

λ2 = −0.123968757625671

λ3 = −0.252031242374328

and
λ4,5 = −0.230478836375048 ∓ 0.0566939252859813i

Since all the eigenvalues of J(E∗) have negative reel parts, according to Theorem 2.1, the continuous
model defined by Equation 1 is asymptotically stable at the equilibrium point E∗.

5.2. Stability Analysis of the Discrete Model

In addition to the parameters given in Equation 7, the step size is chosen as h = 0.01. The Jacobian
matrix at the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

is determined as
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J(E∗) =



0.9984212475 0.0007993683 0 0 0

0.0003995643 0.9978223744 0 0 0

0 0.00019983209 0.9983214104 0 0.0007993283

0 0 0.0004994553 0.9978223744 0

0 0 0 0.0007992085 0.9980219589


(8)

The characteristic polynomial of the Jacobian matrix defined by Equation 8 is as

p(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5

where the constants of characteristic polynomials are

a1 = −4.990409365, a2 = 9.9616737805, a3 = −9.9425650792, a4 = 4.9617462802,

and
a5 = −0.99044561567

In the view of Theorem 4.2, since

i. p(1) = 1 + a1 + a2 + a3 + a4 + a5 = 0.215 × 10−13 > 0

ii. −p(−1) = 1 − a1 + a2 − a3 + a4 − a5 = 31.84684012 > 0

iii. The inners of the matrices

B±
4 =



1 0 0 ±a5

a1 1 ±a5 ±a4

a2 a1 ± a5 1 ± a4 ±a3

a3 ± a5 a2 ± a4 a1 ± a3 1 ± a2


are the matrices B±

4 itself and the matrice

IB± =

 1 ±a5

a1 ± a5 1 ± a4


Since the determinants of the inners of the matrice B±

4

det(B+
4 ) = 0.213 × 10−12

det(B−
4 ) = 0.614 × 10−24

det(IB+
4 ) = 0.038034685

and
det(IB−

4 ) = 0.278 × 10−6

are positive, the matrices B±
4 are positive innerwise. Thus, since all the conditions of the Schur-Cohn

criterion are satisfied, the discrete system given in Equation 3 is locally asymptotically stable for the
estimated parameters.

A numerical solution obtained by NSFD schemes is presented in the figures to support the stability of
the discrete model. Moreover, the Runge-Kutta-Fehlberg (RKF45) method is applied for the estimated
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parameters. Therefore, the accuracy of the results obtained by the NSFD method is shown.

The estimated parameters defined in Equation 7, the step size h = 0.01, and the positive initial
condition

H(0) = 198195839, S(0) = 101535728, D(0) = 940000, C(0) = 3760000,

and
T (0) = 1193250

are used during the calculations.

Figures 1-5 present the numerical comparison of the results obtained by the NSFD method with the
RKF45 method. It can be observed from Figures 1-5 that the results approach the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

The compatibility of the results can also be observed in Figures 1-5.

Figure 1. Variation of healthy class H(t)

Figure 2. Variation of susceptible class S(t)
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Figure 3. Variation of diabetics without complication C(t)

Figure 4. Variation of diabetics with complication D(t)

Figure 5. Variation of diabetics with complications receiving a treatment T (t)
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NSFD method is a very effective method for the bigger step size. Table 1 compares the convergence
of the methods. One can see the effectiveness of NSFD schemes from Table 1.

Table 1. Stability of equilibrium point E∗ under application of different methods for different step
size h

h Euler Method Fourth Order Runge-Kutta Method NSFD Schemes

0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Convergence Convergence Convergence
5 Convergence Convergence Convergence
7 Divergence Convergence Convergence
10 Divergence Divergence Convergence
25 Divergence Divergence Convergence
50 Divergence Divergence Convergence
100 Divergence Divergence Convergence

6. Conclusion

This paper presents the stability analysis of a mathematical model describing diabetes mellitus and
its complications. The main aims of the study are to analyze the stability of the model and show the
advantages of the NSFD method. Thus, the stability of the continuous model is analyzed, and it is
concluded that the model is asymptotically stable. Moreover, the continuous model is discretized with
the help of the NSFD method. Considering the Schur-Cohn criterion, it is concluded that the discrete
model is asymptotically stable, too. The accuracy of the NSFD scheme is supported by comparing
the numerical results with the RKF45 method. The compatibility of the numerical results can be seen
through graphics. One of the advantages of the NSFD method is to be convergence for the bigger step
sizes. The efficiency of the NSFD method for the bigger step size is presented in tabular form.

In future studies, the NSFD schemes for the linear and nonlinear models can be constructed, and their
stability analysis can be performed using a similar technique. Moreover, since the NSFD method can
be applied to the fractional order differential equations, fractional diabetes models can be solved by
the NSFD method. In addition, stability analysis can be given.
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[39] Ö. A. Gümüs, Q. Cui, G. M. Selvam, A. Vianny, Global Stability and Bifurcation Analysis of a
Discrete Time SIR Epidemic Model, Miskolc Mathematical Notes 23 (1) (2022) 193–210.

[40] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New
York, 2003.

[41] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.


	Introduction
	The Continuous Model Describing Diabetes Mellitus and Its Complications
	 Discretization of the Model by NSFD Schemes 
	Stability Analysis of the Discretized Model
	Numerical Results
	Stability Analysis of the Continuous Model
	Stability Analysis of the Discrete Model

	Conclusion

