E-ISSN: 2146-6459

2023, 13(2), 261-285

Araştırma Makalesi / Research Article

https://doi.org/10.54370/ordubtd.1326751

Düz Bir Levhaya Çarpan Sınırlandırılmamış ve Sınırlandırılmış Dönmeli Jetlerde Isı Transferi Etkilerinin İncelenmesi

Haluk Keleş¹ 🝺, Yücel Özmen² 🝺

¹Artvin Çoruh Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Artvin ²Karadeniz Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Trabzon

Geliş Tarihi / Received Date: 13.07.2023 Kabul Tarihi / Accepted Date: 22.12.2023

Öz

Bu çalışmada, düz bir yüzeye çarpan sınırlandırılmamış ve düz levha ile sınırlandırılmış türbülanslı dönmeli hava jetlerinde çarpma yüzeylerindeki ısı transferi etkileri deneysel olarak incelenmiştir. Reynolds sayısının Re = 20000 ve 30000 değerleri, lüle-levha arası açıklığın H/D = 0.5, 1, 3 ve 6 değerleri ve boyutsuz dönme sayısının S= 0.125, 0.26 ve 0.52 değerleri için çarpma levhası yüzeylerinde termal kamera ile sıcaklık ölçümleri gerçekleştirilmiştir. Elde edilen sıcaklık dağılımlarından, Reynolds sayısının, lüle-levha arası açıklığın, sınırlayıcı levha durumunun ve boyutsuz dönme sayısının çarpma levhası üzerindeki Nusselt dağılımlarına etkisi araştırılmıştır. İncelenen tüm akış alanlarında, çarpma levhası üzerindeki Nusselt değerlerinin artan Reynolds sayısı ile arttığı, artan lüle-levha arası açıklık ile azaldığı görülmüştür. Akış alanlarında sınırlayıcı levhanın varlığı, çarpma levhası üzerindeki Nusselt dağılımları daha üniform hale gelmektedir. Çarpma levhası üzerinde üniform dağılıma en yakın Nusselt dağılımları daha üniform se S=0.52 değerlerini oluşmaktadır.

Anahtar Kelimeler: çarpan dönmeli jet, sınırlayıcı levha, Nusselt dağılımı

Investigation of Heat Transfer Effects in Unconfined and Confined Swirling Jets Impinging on a Flat Plate

Abstract

In this study, the heat transfer effects on the impingement surfaces of unconfined and confined turbulent swirl air jets impacting a flat surface are experimentally investigated. For Reynolds numbers Re = 20000 and 30000, nozzle-to-plate spacings H/D = 0.5, 1, 3 and 6 and dimensionless swirl number S = 0.125, 0.26 and 0.52, temperature measurements were performed with a thermal camera on the impingement plate surfaces. From the temperature distributions obtained, the effects of Reynolds number, nozzle-to-plate spacing, the presence of confinement plate and dimensionless swirl number on the Nusselt distributions on the impingement plate were investigated. In all flow fields investigated, it was observed that the Nusselt values on the impingement plate increased with increasing Reynolds number and decreased with increasing nozzle-to-plate spacing. The presence of the confinement plate in the flow fields reduces the Nusselt values on the impingement plate. As the dimensionless swirl number increases, the Nusselt distributions on the impingement plate. As the dimensionless swirl number increases, the Nusselt distributions on the impingement plate become more uniform. The Nusselt distribution on the impingement plate is closest to the uniform distribution at H/D=3 and S=0.52.

Keywords: impinging swirl jet, confinement plate, Nusselt distribution

Giriş

Jet akışları ile doğada ve mühendislik uygulamalarında serbest jet ve bir yüzeye çarpan jet olarak iki farklı şekilde karşılaşılmaktadır. Yüzeye çarpan jetler, genellikle ısıtma ve soğutma işlemlerinde, özellikle yüksek ısı transfer miktarlarının istenildiği durumlarda yaygın olarak kullanılmaktadır. Elektronik sistemlerin devrelerinde bulunan transistör, çip ve benzeri elemanlardan kaynaklanan ısı, optimum çalışma sıcaklıklarını olumsuz yönde etkilemektedir. Bu tür elemanların güvenli şekilde çalışabilmeleri ve performanslarının artırılması, ısıl yönden kararlı olmalarına bağlıdır. Çarpan jet akışlarında yüzeyden ısı geçişi, çarpma bölgesinden itibaren yüzey boyunca gittikçe azalmakta ve yüzeyde homojen olmayan bir sıcaklık alanı meydana gelmektedir. Bu tür akışlarda ısı geçiş mekanizması taşınım ağırlıklıdır ve jetin yüzeye çarptığı bölgeden kenarlara doğru ısı taşınım katsayısı azalmaktadır. Elektronik elemanlar üzerinde üniform olmayan sıcaklık dağılımları, iç gerilmelere ve termal kararsızlıklara yol açmakta ve elemanların işlem performansının düşmesine ve ömürlerinin kısalmasına neden olmaktadır. Çarpan jetlerle hem yüksek düzeyde hem de üniform ısı transferini sağlamak amacıyla son yıllarda çarpan dönmeli jetler kullanılmaya başlanmıştır. Dönmeli akışlarla doğada ve birçok endüstriyel uygulamada sıklıkla karşılaşılmaktadır. Dönmeli jetler, normal jetlere göre çevresiyle çok daha hızlı bir karışım performansı göstermektedir. Bu nedenle, havalandırma sistemlerinde etkinliği artırmak için ve gaz türbinlerindeki yakıcılarda alev stabilizasyonu için yaygın olarak kullanılmaktadır. Çarpan dönmeli jetler, dönerek ve ilerleyerek hareket etmeleri nedeniyle hem çarpma bölgesini hem de duvar jeti bölgesini genişletmektedir. Çarpan dönmeli jetlerde akış alanı, serbest jet, çarpma alanı, çapraz akış, akış ayrılması, sürüklenme ve zayıflamış akış bölgelerinden oluşmaktadır. Dönme etkisi, akışın radyal olarak açılmasına neden olmaktadır. Yüksek jet hızı ve dönme etkisi dairesel jetlere göre daha fazla sürüklenme etkisi yaratmaktadır. Çarpan dönmeli jet ve dairesel jet durumlarına ait sıcaklık dağılımları karşılaştırıldığında, çarpan dönmeli jetlerin çarpma yüzeyi üzerinde daha üniform bir sıcaklık dağılımı oluşturduğu ve daha yüksek ortalama Nusselt sayısı değerlerine ulaşıldığı görülmektedir (Huang ve El-Genk, 1998).

Çarpan dönmeli jet akışları ile ilgili literatürdeki çalışmalar çoğunlukla deneysel incelemeler seklindedir. Huang ve El-Genk (1998), dairesel çarpan jet ve dönmeli çarpan jet akışında ısı transferi etkilerini deneysel olarak incelemişlerdir. Dönmeli jet durumunda çarpma levhası üzerindeki yerel ve ortalama Nusselt sayılarının daha büyük olduğunu ve levha boyunca üniform bir dağılım gösterdiğini belirtmişlerdir. Lee vd. (2002), dairesel bir lüle içerisine eklenen vida mekanizması ile oluşturulmuş çarpan dönmeli jet akışında ısı transferi karakteristiklerini sıvı kristal yöntemi kullanarak incelemişlerdir. Dönmeli jet akışının çarpma yüzeyi üzerindeki ısı transferini iyileştirdiğini ifade etmişlerdir. Bilen vd. (2002), çarpan dönmeli jet akışında dönmeli geometrideki açının çarpma levhası üzerindeki ısı transferine etkisini tekli ve çoklu jet durumları için sıvı kristal yöntemi ile incelemişlerdir. Dönmeli geometri açısındaki artışın ve çoklu jet durumunun ısı transfer performansını artırdığını belirtmişlerdir. Wen ve Jang (2003), dairesel bir lüleden çıkan dönmeli çarpan jet akışında, carpma levhası üzerine yerleştirdikleri termoelemanlar ile ısı transferi karakteristiklerini deneysel olarak incelemişlerdir. Düşük lüle-levha arası açıklıklarda, çarpma bölgesindeki yerel Nusselt sayılarında, dairesel jete göre iyileşmenin olduğunu açıklamışlardır. Çarpan dönmeli jet akışında ısı transferi performansının farklı lüle-levha arası açıklıklarda ve dönmeli geometri açılarında sıvı kristal tekniği kullanılarak incelendiği bir çalışma Senda vd. (2005) tarafından gerçekleştirilmiştir. Artan lülelevha arası açıklık ve dönmeli geometri açısıyla birlikte, çarpma levhası boyunca Nusselt dağılımının üniform olduğunu belirtmişlerdir. Ianiro ve Cardone (2012), çarpan dönmeli jet akışında, ince folyo şeklindeki çarpma levhası üzerinde akış yapısı ve ısı transferi karakteristiklerini PIV ve termal kamera kullanarak incelemiştir. Lüle içerisine eklenen dönmeli geometri ile oluşturdukları dönmeli jetin, carpma levhası boyunca sıcaklık dağılımını üniform hale getirdiğini belirtmiştir. Wongcharee vd. (2017) jet akışkanı olarak TiO₂-su nano karışımını çarpan dairesel ve dönmeli jetlerde kullanarak gerçekleştirdikleri çalışmalarında, sıvı kristal tekniği ile ısı transferi karakteristiklerini incelenmişlerdir. Çarpan dönmeli jetin, dairesel jete göre daha yüksek ısı transfer kapasitesine sahip olduğunu açıklamışlardır. Singh ve Chander (2019), lüle-levha arası açıklık, jetler arası mesafe ve Reynolds sayısı parametrelerinin çarpan çoklu dönmeli jet akışlarındaki ısı transferi üzerine etkisini termal kamera ile incelemişlerdir. Düşük lüle-levha arası açıklıklarda ve dönmeli geometri açılarında ısı transferinin iyileştiğini ifade etmişlerdir. Mohamed Illyas vd. (2019), çarpan dönmeli jet akışında çarpma levhası üzerindeki sıcaklık dağılımlarını sıvı kristal tekniği ile elde ettikleri çalışmalarında, çok küçük lüle-levha arası açıklıklarda dönmeli geometrinin ısı transferi üzerinde belirgin bir etkisinin olmadığını ifade etmişlerdir.

Wannassi ve Monnoyer (2015) tarafından düz bir yüzeye çarpan dairesel jet ve dönmeli jet akışlarında, akış alanı ve ısı transferi karakteristikleri deneysel ve sayısal olarak incelenmiştir. Sayısal çalışmada kullanıldıkları SST k-ω türbülans modeli sonuçlarının deneysel veriler ile oldukça uyumlu olduğunu vurgulamışlardır. Zerrout vd. (2017), kılavuz kanat ilavesi ile oluşturdukları tekli ve çoklu çarpan dönmeli jet akışlarında ısı transferi karakteristiklerini deneysel ve sayısal olarak incelemişlerdir. k-ε türbülans modeli ile çoklu çarpan dönmeli jetler için elde edilen sayısal sonuçlarını deneysel veriler ile daha uyumlu olduğunu vurgulamışlardır. Amini vd. (2015), burulmuş şerit eklenerek oluşturulan çarpan dönmeli jet akışında farklı burulma oranları, lüle-levha arası açıklık ve Reynolds sayıları için gerçekleştirdikleri sayısal çalışmada, çarpma levhası üzerinde ısı transferi karakteristiklerini incelemişlerdir. Düşük lüle-levha arası açıklıklarda ısı transferi performansının arttığını ve artan Reynolds sayısı ile momentum transferinin hızlandığını belirtilmişlerdir.

Bu çalışmada, düz bir yüzeye çarpan sınırlandırılmamış ve sınırlandırılmış türbülanslı dönmeli hava jetlerinde çarpma yüzeylerindeki ısı transferi karakteristikleri deneysel olarak incelenmiştir. Çalışmada, termal kamera kullanılarak elde edilen sıcaklık dağılımlarından, Reynolds sayısının, lülelevha arası açıklığın ve sınırlayıcı levha durumunun çarpma levhası üzerindeki Nusselt dağılımlarına etkisinin araştırılması amaçlanmıştır. Bu çalışmada, hem sınırlandırılmamış hem de sınırlandırılmış çarpan dönmeli jet akışlarında, boyutsuz dönme sayısı etkisi, Reynolds sayısı etkisi ve lüle-levha arası açıklık etkisi ayrıntılı olarak incelenmiştir. Çalışmada, dönmeli akış elde etmek amacıyla lüle içerisine yerleştirilen özel kıvrımlı geometrik eklentiler ile çalışmada özgünlük sağlanmaktadır.

Materyal ve Yöntem

Çarpan dönmeli jet akış alanlarında çarpma levhası üzerindeki ısı transferi etkilerini incelemek amacıyla yatay eksenli çarpan jet akış düzeneği imal edilmiştir. Şekil 1a'da şematik, Şekil1b'de fotoğraf görüntüsü verilen deney düzeneğinde, fan yardımıyla emilen ortam havası yatay şekilde konumlanmış bağlantı borusundan geçerek genleşme odasına ulaşmaktadır. Lüleden çıkan yatay hava jeti elektriksel olarak ısıtılmış dairesel çarpma levhasına çarpmaktadır. Düşey olarak konumlanmış olan ısıtılmış çarpma levhası, kayıt-kızak mekanizmasıyla yatay doğrultuda hareket ettirilerek lülelevha arası açıklık değiştirilmektedir. Fan girişine yerleştirilmiş kapağın açıklığı değiştirilerek farklı debiler elde edilmektedir. Sıcaklık ölçümleri, epoksi levhanın arka yüzeyi üzerinde yüzeye dik doğrultuda konumlanmış termal kamera ile gerçekleştirilmektedir.

(a)

Yatay eksenli çarpan dönmeli jet düzeneğinde, 1.5 mm kalınlığındaki epoksi malzemeden üretilen carpma levhasının ısıtılacak dairesel bölümünde, üniform sıcaklık dağılımı elde etmek amacıyla baskı devre tekniği kullanılarak 1 mm genişliğe ve 40 µm kalınlığa sahip bakır şeritler ile 180 mm'lik çapa sahip dairesel formda elektriksel devre oluşturulmuştur. Epoksi levhanın ısı iletim katsayısı ve emisivitesi, sırasıyla 0.15 W/mK ve 0.95 dir. Dairesel çarpma levhasının termal kamera tarafındaki arka yüzeyi ise sprey boya ile mat siyah renge boyanmıştır. Çarpma levhasının dairesel bölümü üzerinde, ayarlı trafo yardımıyla uygulanan 20.3 Volt gerilim ve 2.01 Amper alternatif akımla, 1603.5 W/m2'lik sabit ısı akısı oluşturulmuştur. Çarpma levhasının ısıtılmış dairesel kısmı üzerine üç adet termoeleman yerleştirilmiş ve termoelemanlardan alınan sıcaklık değerleri termal kamera ile karşılaştırılarak emisivite değerleri ayarlanmıştır. Çarpan dönmeli jet düzeneğinde, 20 mm çapa ve 80 mm uzunluğa sahip lüle kullanılmıştır. Dairesel kesitli lüle, dönmeli akış elde etmek amacıyla lüle içerisine yerleştirilen kıvrımlı çubuk eklentileri ve sınırlayıcı düz levha, Creality Ender 3 Pro marka üç boyutlu yazıcı ile üretilmiştir. Sınırlayıcı düz levha, dönmeli jet lülesinin ucuna sıkı geçme şeklinde monte edilmiştir. Çarpan dönmeli jet akış alanları, dairesel kesitli lülenin içerisine farklı açılara sahip dönmeli geometri eklentilerinin yerleştirilmesiyle oluşturulmuştur. Bu amaçla, üç boyutlu yazıcıda, düşey uzunluğu boyunca kendi ekseni etrafındaki dönüş açıları sırasıyla 90°, 180° ve 360° olmak üzere düşey eksen ile yapmış oldukları açının β = 10.50°, 21.50° ve 37.50° değerlerinde üç farklı kıvrımlı cubuk eklentisi üretilmiştir. Bu eklentilerin yüzeyleri kabadan inceye doğru zımparalanarak çapaklarından arındırılmış ve yüzey pürüzlülüğü 50 µm seviyesine düşürülmüştür. Şekil 2'de şematik resmi görülen 80 mm uzunluğundaki kıvrımlı çubuk eklentileri, 20 mm çapındaki dairesel kesitli lülenin içerisine sıkı geçme şeklinde monte edilmiştir. Dönmeli jet derecesi, genellikle boyutsuz dönme sayısı S ile tanımlanmaktadır. Boyutsuz dönme sayısı, Gupta vd. (1984) tarafından önerildiği şekliyle, Denklem 1'de verilmiştir. Burada, d ve D sırasıyla dönmeli geometri ilavesinin iç ve dış çapını, β ise, dönmeli geometri açısını ifade etmektedir.

Şekil 2. Kıvrımlı Çubuk Eklentilerinin Şematik Görünümü

Çalışma kapsamında yatay eksenli çarpan jet akış düzeneğinde oluşturulan düz levha ile sınırlandırılmış çarpan dönmeli jet sistemine ait örnek akış alanı şematik olarak Şekil 3'te verilmiştir. Lüleden çıkan hava jeti, sınırlayıcı levhanın ucundan itibaren H mesafesi kadar uzakta olan ve lüle eksenine dik doğrultuda yerleştirilen elektriksel olarak ısıtılan düz levhalara çarpmaktadır.

Şekil 3. Çarpan Dairesel Jet Akış Düzeneğinde Sınırlandırılmış Örnek Akış Alanının Şematik Görünümü

H, lüle-levha arası/levhalar arası açıklığı, D, lüle çapını ve S, boyutsuz dönme sayısını göstermek üzere, çarpan dönmeli jet deneyleri kapsamında, sınırlandırılmamış ve düz levha levha ile sınırlandırılmış, S = 0.125, 0.26 ve 0.52 sayısına sahip üç farklı dönmeli geometrik eklenti durumu için, $0.5 \le H/D \le 6$ lüle-levha arası/levhalar arası açıklık ve $20000 \le \text{Re} \le 30000$ Reynolds sayısı aralıklarında çarpma levhası üzerinde sıcaklık ölçümleri gerçekleştirilmiştir. Dönmeli geometri eklentisine ait açının, sınırlayıcı levha durumunun, lüle-levha arası/levhalar arası açıklığın ve Reynolds sayısının Nusselt dağılımları üzerindeki etkileri incelenmiştir.

Çarpan jetlerde Reynolds sayısı, lüle çapına ve lüle çıkışındaki akış hızına göre belirlenmektedir. Çalışma kapsamında incelenen akış alanlarındaki Reynolds sayılarının belirlenmesi amacıyla lüle çıkışlarına yerleştirilen Pitot tüpü ile basınç farkları ölçülerek, lüle çıkışlarındaki jet hızları hesaplanmıştır. Reynolds sayısının 20000 ve 30000 değerleri için, Pitot tüpü ile ölçülen lüle çıkış hızları sırasıyla 15.10 m/s ve 22.65 m/s olarak gerçekleşmiştir.

Isitilmiş durumdaki çarpma levhasına ortam havası sıcaklığındaki jetin çarptırılmasıyla, çarpma levhasından olan ısı transferi etkisi, ısıtılmış çarpma yüzeyinin arka yüzeyi tarafında yüzeye dik doğrultuda konumlanmış termal kamera ile gerçekleştirilen sıcaklık ölçümleriyle incelenmiştir. Yüzey sıcaklık ölçümleri, -40°C'den +500 °C'ye kadar ölçüm aralığına ve 0.08 °C hassasiyetine sahip, 240x320 piksel çözünürlüklü, 50 Hz ölçüm hızına sahip FLIR Thermovision A20 model termal kamera kullanılarak gerçekleştirilmiştir. Sıcaklık değerleri, ThermaCAM Researcher Professional paket programı ile kaydedilmiştir. Termal kamera, çarpma levhasının jet tarafındaki yüzeyi üzerine yerleştirilen termoeleman ile kalibre edilmiştir.

Termal kamera ile ölçülen sıcaklık değerlerinin doğrulanması amacıyla, çarpma levhasının her iki yüzeyine toplam üç adet T tipi termoeleman yerleştirilmiştir. Çarpma yüzeyi üzerine yerleştirilen termoeleman ile ölçülen sıcaklık, aynı konumda termal kamera ile ölçülen sıcaklık değeri ile karşılaştırılmış ve çarpma yüzeyindeki 0.98 emisivite değerinde termoeleman ve termal kamera ile ölçülen sıcaklık değerleri arasındaki farkın ±1.5 K düzeyinde olduğu görülmüştür. Sıcaklık değerleri, çarpma levhasındaki yerel sıcaklıkların zamanlara değişmemesi ve akışın kısa sürede sürekli rejime ulaşması nedeniyle 5 dakika süreyle kaydedilmiştir. Çarpan jetlerle ısı transferine yönelik deneysel çalışmalarda, göz önünde bulundurulması gereken faktörlerden biri de sürükleme etkisidir. Ortam sıcaklığı ile jet akışkanının sıcaklığı arasındaki farkın yüksek olması durumunda ortaya çıkan sürükleme etkisi, Nusselt sayısı üzerinde önemli etkiye sahiptir. Çarpma levhasındaki ısı transferi analizinde sürükleme etkisinin ihmal edilebilmesi için sıcaklık farkının 3 K'den az olması gerekmektedir (Huang, 1996). Bu çalışmada, sürükleme etkisinin düzeyini belirlemek amacıyla, lüle çıkışına yerleştirilen amacıyla bir adet termoeleman ile jet akışkanının sıcaklığı arasındaki farkın 3 K'in altında olması nedeniyle, çarpma levhasındaki sıcaklık ölçümlerinde sürükleme etkisi ihmal edilmiştir.

Isı Transferi Parametreleri ve Hesaplama Prosedürü

Çalışma kapsamında, lüle çıkışındaki hava jeti hızı U_o ve lüle çapına göre tanımlanmış Reynolds sayısı sırasıyla aşağıdaki bağıntılarla hesaplanmıştır.

$$U_0 = \sqrt{2\Delta P/\rho}$$
(2)

$$Re = \frac{\rho U_0 D}{\mu}$$
(3)

Bu bağıntılarda, ΔP , basınç farkını, ρ , akışkanın yoğunluğunu, μ , dinamik viskoziteyi ve D ise lüle çapını göstermektedir.

Çarpan jet akışlarında, çarpma levhaları üzerindeki ısı transferi etkileri, aşağıda sırasıyla bağıntıları verilen ısı taşınım katsayısı (h) ve boyutsuz Nusselt sayısı (Nu) ile incelenmektedir.

$$h = q_{tasinim} / A_w (T_w - T_j)$$
(4)

$$Nu = \frac{hD}{k}$$
(5)

Burada q_{taşınım}, taşınımla ısı akısını, A_w, ısıtılmış levhanın yüzey alanını, T_w, jet tarafındaki levha sıcaklığını ve T_j, jetin çıkış sıcaklığını ifade etmektedir. Nusselt sayısı ifadesinde yer alan k, havanın ısı iletim katsayısı olarak tanımlanmaktadır. Şekil 4'te, düz bir yüzeye çarpan jet akışında, çarpma levhasından ısı transferinde etkili büyüklükler şematik bir görüntü ile verilmektedir. Burada, T, termal kamera ile ölçülen sıcaklığı, T_{çev}, çevre ortamın sıcaklığını ve T_(w), jet tarafındaki levha sıcaklığını göstermektedir.

Şekil 4. Çarpan Jetlerde Isı Transferinde Etkili Büyüklükler

q_{taşınım}, taşınımla ısı akısı, Joule etkisi ile elde edilen ısı akısından (q_{toplam}), ısı kayıpları çıkarılarak hesaplanmaktadır. Çarpma yüzeyindeki enerji dengesinden,

$$q_{taşınım} = q_{toplam} - q_{iletim} - q_{işinim} - q_{doğaltaşınım}$$
(6)

elde edilmektedir. Burada, q_{toplam}, toplam ısı akısı miktarını, q_{iletim}, q_{işinim} ve q_{doğaltaşınım} ise sırasıyla çarpma yüzeyinden iletimle, ışınımla ve doğal taşınımla olan ısı kaybını göstermektedir. Epoksi levhaya toplam güç girişi, ayarlı trafo tarafından sağlanan gerilim ve multimetre ile ölçülen levha direnci değerleri kullanılarak hesaplanmakta ve aşağıdaki bağıntıyla ifade edilmektedir.

$$Q_{\text{toplam}} = IV = V^2/R \tag{7}$$

Isı kayıpları, levhanın jete maruz kalmayan arka yüzeyi üzerindeki ışınım, iletim ve doğal taşınım etkilerinden kaynaklanmaktadır. Çarpma levhası üzerinde radyal yönde iletimle olan ısı transferi, çarpma levhası malzemesinin düşük ısı iletim katsayısına sahip olması nedeniyle ihmal edilmiştir. Çarpma levhası ile çevre ortamın sıcaklık değerleri arasındaki fark nedeniyle oluşan ışınımla ısı transferi aşağıda verilen Stefan-Boltzmann (Bergman vd., 2011) bağıntısı kullanılarak hesaplanmaktadır.

$$q_{1\text{sinim}} = \varepsilon A_w \sigma (T_w^4 - T_{\text{cev}}^4)$$
(8)

Burada, ε , çarpma levhasının emisivite değerini göstermektedir. Stefan-Boltzmann sabiti σ =5.67x10⁻⁸ [W/(m²K⁴)] değerindedir. Çarpan dairesel jet akış düzeneğinde, düşey konumlandırılan çarpma levhasından doğal taşınımla olan ısı kaybı, Churcill ve Chu (1975) tarafından aşağıda önerilen ampirik bağıntı ile hesaplanmıştır.

$$\overline{\mathrm{Nu}}_{\mathrm{L}} = 0.68 + \frac{0.670 \cdot \mathrm{Ra}^{1/4}}{\left[1 + \left(\left(\frac{0.492}{\mathrm{Pr}}\right)^{9/16}\right)^{4/9}\right]} \qquad \mathsf{Ra} \le 10^9$$
(9)

Bu bağıntılarda, Ra ve Pr, sırasıyla Rayleigh sayısını ve Prandtl sayısını ifade etmektedir.

Yukarıda verilen bağıntılar kullanılarak, yatay çarpan jet düzeneğinde, doğal taşınım ve ışınım kayıpları sırasıyla toplam ısı miktarının %3'ü ve %4'ü olarak hesaplanmıştır. Toplam kayıplar, yatay çarpan jet düzeneğinde toplam ısı akısının %7'si değerinde olmaktadır.

Belirsizlik Analizi

Deneyler sırasında yapılan ölçümlerle ilgili belirsizlik analizi yapılmıştır. Çalışma kapsamında incelenen Reynolds sayısına ve Nusselt sayısına ait belirsizlikler sırasıyla, ± %2.61 ve ± % 2.87 mertebesindedir.

Bulgular ve Tartışma

Bu çalışmada, çarpan dönmeli jet akış alanlarında çarpma yüzeylerindeki ısı transferi etkileri deneysel olarak incelenmiştir. İncelenen akış alanlarındaki etkili parametreler için çarpma levhaları üzerinde termal kamera ile sıcaklık dağılımları elde edilmiştir. Sıcaklık dağılımları, çarpma levhasının tüm yüzeyi boyunca elde edilmiştir. Sıcaklık dağılımlarından elde edilen kontür grafiklerle, dönmeli geometriye ait açının, sınırlayıcı levha durumunun, lüle-levha arası/levhalar arası açıklığın ve Reynolds sayısının çarpma levhası üzerindeki Nusselt dağılımlarına etkisi incelenmiştir. Çarpan dönmeli jet akışında ısı transferi deneyleri, sınırlandırılmamış ve düz levha ile sınırlandırılmış akış alanlarında Reynolds sayısının Re = 20000 ve 30000 değerleri, lüle-levha arası açıklığın / sınırlayıcı levha-çarpma levhası arası açıklığın H/D = 0.5, 1, 3 ve 6 değerleri ve dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S= 0.125, 0.26 ve 0.52 değerlerinde gerçekleştirilmiştir. Çarpma levhası üzerindeki sıcaklık değerleri, ısıtılmış çarpma yüzeyinin arka yüzeyi üzerinde yüzeye dik doğrultuda yerleştirilmiş termal kamera kullanılarak ölçülmüştür. Sıcaklık ölçümlerinden, çarpma levhası üzerindeki boyutsuz Nusselt dağılımları konturlar şeklinde elde edilmiştir. Elde edilen deneysel sonuçlar sınırlandırılmamış ve düz levha ile sınırlandırı için incelenmiştir.

Sınırlandırılmamış Çarpan Dönmeli Jet

Sınırlandırılmamış dönmeli jet akışında, Reynolds sayısının 20000 ve 30000 değerlerinde ve lüle-levha arası açıklığın 0.5, 1, 3 ve 6 değerlerinde çarpma levhası üzerinde merkezinde çarpma bölgesinin olduğu 140 mm x 140 mm boyutlarındaki dörtgen alanda ölçülmüş sıcaklık değerlerinden elde edilen Nusselt dağılımları, dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S= 0.125, 0.26 ve 0.52 değerleri için sırasıyla Şekil 5-7'de verilmiştir.

S=0.125 boyutsuz dönme sayısına sahip dönmeli geometri ilavesiyle oluşturulan sınırlandırılmamış çarpan dönmeli jet akışında, iki farklı Reynolds sayısı ve dört farklı lüle-levha arası açıklık için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 5'de verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lüle-levha arası açıklıkla ise Nusselt değerlerinin azaldığı görülmektedir. Her iki Reynolds sayısında da lüle-levha arası açıklık arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmaktadır. Bu durum, artan lüle-levha arası açıklıkla birlikte çarpma levhası üzerindeki Nusselt dağılımlarının daha üniform hale geldiğini göstermektedir.

Şekil 5. Sınırlandırılmamış Jet Durumunda, S=0.125'te, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

Dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.26 olduğu durumdaki sınırlandırılmamış çarpan dönmeli jet akışında, dört farklı lüle-levha arası açıklık ve iki farklı Reynolds sayısı için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 6'da verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, Şekil 5'teki duruma benzer şekilde, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lüle-levha arası

açıklıkla ise Nusselt değerlerinin azaldığı görülmektedir. Her iki Reynolds sayısında da lüle-levha arası arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmakta ve Nusselt dağılımları daha üniform hale gelmektedir.

S=0.52 boyutsuz dönme sayısına sahip dönmeli geometri ilavesiyle oluşturulan sınırlandırılmamış çarpan dönmeli jet akışında, iki farklı Reynolds sayısı ve dört farklı lüle-levha arası açıklık için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 7'de verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, Şekil 6'daki duruma benzer şekilde, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lüle-levha arası açıklıkla ise Nusselt değerlerinin azaldığı görülmektedir. Reynolds sayısının her iki değerinde de lüle-levha arası arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmakta ve Nusselt dağılımları daha üniform hale gelmektedir.

Şekil 6. Sınırlandırılmamış Jet Durumunda, S=0.26'da, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

Şekil 7. Sınırlandırılmamış Jet Durumunda, S=0.52'de, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

Sınırlandırılmış Çarpan Dönmeli Jet

Düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, Reynolds sayısının 20000 ve 30000 değerlerinde ve lüle-levha arası açıklığın 0.5, 1, 3 ve 6 değerlerinde çarpma levhası üzerinde ölçülmüş sıcaklık değerlerinden elde edilen Nusselt dağılımları, dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının 0.125, 0.26 ve 0.52 değerleri için sırasıyla Şekil 8-10'da verilmiştir.

S=0.125 boyutsuz dönme sayısına sahip dönmeli geometri ilavesiyle oluşturulan düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, iki farklı Reynolds sayısı ve dört farklı lüle-levha arası açıklık için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 8'de verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lüle-levha arası açıklıkla ise Nusselt değerlerinin H/D=1 açıklıktaki küçük bir artış sonrasında azaldığı görülmektedir. Her iki Reynolds sayısında da lüle-levha arası arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmaktadır. Bu durum, artan lüle-levha arası açıklıkla birlikte çarpma levhası üzerindeki Nusselt dağılımlarının daha üniform hale geldiğini göstermektedir.

Dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının 0.26 olduğu durumdaki düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, dört farklı lüle-levha arası açıklık ve iki farklı Reynolds sayısı için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 9'da verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, Şekil 8'deki duruma benzer şekilde, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lülelevha arası açıklıkla ise Nusselt değerlerinin H/D=1 açıklıktaki küçük bir artış sonrasında azaldığı görülmektedir. Her iki Reynolds sayısında da lüle-levha arası arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmakta ve Nusselt dağılımları daha üniform hale gelmektedir.

Şekil 8. Düz Levha ile Sınırlandırılmış Jet Durumunda, S=0.125'te, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

Şekil 9. Düz Levha ile Sınırlandırılmış Jet Durumunda, S=0.26'da, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

S=0.52 boyutsuz dönme sayısına sahip dönmeli geometri ilavesiyle oluşturulan düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, iki farklı Reynolds sayısı ve dört farklı lüle-levha arası açıklık için çarpma yüzeyi üzerindeki Nusselt dağılımları Şekil 10'da verilmiştir. Çarpma levhasının arka yüzeyi üzerinde ölçülmüş sıcaklık konturlarından elde edilen Nusselt dağılımlarından, Şekil 9'daki duruma benzer şekilde, artan Reynolds sayısı ile Nusselt değerlerinin arttığı, artan lüle-levha arası açıklıkla ise Nusselt değerlerinin H/D=1 açıklıktaki küçük bir artış sonrasında azaldığı görülmektedir.

Reynolds sayısının her iki değerinde de lüle-levha arası arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmakta ve Nusselt dağılımları daha üniform hale gelmektedir.

Şekil 10. Düz Levha ile Sınırlandırılmış Jet Durumunda, S=0.52'de, Re=20000 ve 30000 ve H/D=0.5, 1, 3 ve 6 için Nusselt Dağılımları

Çarpan dönmeli jet akışında, sınırlandırılmamış ve düz levha ile sınırlandırılmış akış alanlarında Reynolds sayısının Re = 20000 ve 30000 değerleri, lüle-levha arası açıklığın / sınırlayıcı levha-çarpma

levhası arası açıklığın H/D = 0.5, 1, 3 ve 6 değerleri ve dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S= 0.125, 0.26 ve 0.52 değerlerinde çarpma levhası üzerinden elde edilen Nusselt dağılımları bir arada değerlendirildiğinde, sınırlandırılmamış jet durumdaki maksimum Nusselt sayısı değerlerinin sınırlandırılmış jet durumundaki maksimum değerlerden daha büyük olduğu görülmüştür. Lüle levha arası açıklık ve dönmeli geometri ilavesinin dönme sayısı arttıkça, çarpma levhası üzerindeki Nusselt dağılımları daha üniform hale gelmektedir.

Sınırlayıcı Levha Etkisi

Reynolds sayısının 30000 değeri ve dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S = 0.125 değeri için çarpma levhasında elde edilen Nusselt dağılımları üzerinde sınırlayıcı levha durumunun etkisi, lüle-levha açıklığının H/D=0.5, 1, 3 ve 6 değerleri için sırasıyla Şekil 11-14'te verilmiştir. Lüle-levha arası açıklığın H/D=0.5 değerinde, sınırlandırılmamış jet durumunda çarpma levhası üzerindeki Nusselt değerleri, sınırlandırılmış jet durumundaki değerlerden daha büyük olmaktadır. Sınırlayıcı levhanın varlığı çarpma bölgesinde daha üniform bir Nusselt dağılımı oluşturmaktadır (Şekil 11). H/D=1 açıklıkta, H/D=0.5'teki duruma benzer şekilde sınırlayıcı levhanın varlığıyla çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri azalmaktadır (Şekil 12). Lüle-levha arası açıklığın H/D=3 değerinde, sınırlandırılmış jet durumunda çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri azalmaktadır (Şekil 13). H/D=6 açıklıkta, sınırlandırılmış i tarasındaki fark daha küçük olmaktadır (Şekil 13). H/D=6 açıklıkta, sınırlayıcı levhanın varlığının, çarpma levhası üzerindeki Nusselt değerlerine etkisi azalmaktadır (Şekil 14).

Şekil 12. Re=30000, S=0.125 ve H/D=1 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 14. Re=30000, S=0.125 ve H/D=6 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.125 değerinde, sınırlayıcı levhanın dört farklı lüle-levha arası açıklıktaki etkisi bir arada değerlendirildiğinde, sınırlayıcı levhanın varlığının çarpma levhası üzerindeki Nusselt değerlerini azalttığı görülmektedir. Hem sınırlandırılmamış jet hem de sınırlandırılmış jet durumunda, lüle-levha arası açıklık arttıkça çarpma levhası üzerindeki Nusselt değerleri azalmaktadır. Artan lüle-levha arası açıklık, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki farkı azaltıp daha üniform dağılımların oluşmasını sağlamaktadır.

Reynolds sayısının 30000 değeri ve dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.26 değeri için çarpma levhasında elde edilen Nusselt dağılımları üzerinde sınırlayıcı levha durumunun etkisi, lüle-levha açıklığının H/D=0.5, 1, 3 ve 6 değerleri için sırasıyla Şekil 15-18'de verilmiştir. H/D=0.5 açıklıkta, sınırlandırılmamış jet durumunda çarpma levhası üzerindeki maksimum Nusselt değeri, sınırlandırılmış jet durumundaki değerden daha büyük olmaktadır. (Şekil 15). Lüle-levha arası açıklığın H/D=1 değerinde, H/D=0.5'teki duruma benzer şekilde sınırlayıcı levhanın varlığıyla çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri azalmaktadır (Şekil 16). H/D=3 ve H/D=6 açıklıklarda ise, sınırlandırılmış jet durumunda çarpma levhası üzerindeki Nusselt değerleri, sınırlandırılmamış jet durumundaki değerlerden daha büyük olmaktadır. (Şekil 17) eşekil 18).

Şekil 16. Re=30000, S=0.26 ve H/D=1 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 17. Re=30000, S=0.26 ve H/D=3 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 18. Re=30000, S=0.26 ve H/D=6 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.26 değerinde, sınırlayıcı levhanın dört farklı lüle-levha arası açıklıktaki etkisi bir arada değerlendirildiğinde, hem sınırlandırılmamış jet hem de sınırlandırılmış jet durumunda, lüle-levha arası açıklık arttıkça çarpma levhası üzerindeki Nusselt değerlerinin azaldığı görülmektedir. Küçük lüle-levha açıklıklarında (H/D≤1), çarpma levhası üzerinde sınırlayıcı levhanın varlığıyla azalan Nusselt değerleri, büyük lüle-levha açıklıklarında (H/D≤1), şınırlayıcı levhanın varlığıyla artmaktadır.

Reynolds sayısının 30000 değeri ve dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.52 değeri için çarpma levhasında elde edilen Nusselt dağılımları üzerinde sınırlayıcı levha durumunun etkisi, lüle-levha açıklığının H/D=0.5, 1, 3 ve 6 değerleri için sırasıyla Şekil 19-22'de verilmiştir. Lüle-levha arası açıklığın H/D=0.5 değerinde, sınırlandırılmamış jet durumunda çarpma levhası üzerindeki Nusselt değerleri, sınırlandırılmış jet durumundaki değerlerden daha büyük olmaktadır. Sınırlayıcı levhanın varlığı çarpma bölgesinde daha üniform bir Nusselt dağılımı oluşturmaktadır (Şekil 19). H/D=1 açıklıkta, sınırlayıcı levhanın varlığıyla çarpma levhası üzerindeki Nusselt değerleri artmaktadır (Şekil 20). Lüle-levha arası açıklığın H/D=3 değerinde, H/D=1'deki duruma benzer şekilde sınırlandırılmış jet durumunda çarpma levhası üzerindeki Nusselt değerleri daha büyük olmaktadır (Şekil 21). H/D=6 açıklıkta, sınırlayıcı levhanın varlığının, çarpma levhası üzerindeki Nusselt değerleri etkisi kaybolmaktadır (Şekil 22).

Şekil 19. Re=30000, S=0.52 ve H/D=0.5 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 21. Re=30000, S=0.52 ve H/D=3 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 22. Re=30000, S=0.52 ve H/D=6 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.52 değerinde, sınırlayıcı levhanın dört farklı lüle-levha arası açıklıktaki etkisi bir arada değerlendirildiğinde, hem sınırlandırılmamış jet hem de sınırlandırılmış jet durumunda, lüle-levha arası açıklık arttıkça çarpma levhası üzerindeki Nusselt değerlerinin azaldığı görülmektedir. H/D=0.5 açıklıkta, çarpma levhası üzerinde sınırlayıcı levhanın varlığıyla azalan Nusselt değerleri, lüle-levha arası açıklığın H/D=1 ve H/D=3 değerlerinde sınırlayıcı levhanın varlığıyla artmakta, H/D=6 açıklıkta ise sınırlayıcı levhanın Nusselt değerleri üzerindeki etkisi kaybolmaktadır.

Boyutsuz Dönme Sayısı Etkisi

Reynolds sayısının 30000 değeri için dönmeli geometri ilavesi için tanımlanmış boyutsuz dönme sayısının S=0.125, 0.26 ve 0.52 değerlerinde çarpma levhasında elde edilen Nusselt dağılımları üzerinde boyutsuz dönme sayısı etkisi, sınırlandırılmamış jet ve sınırlandırılmış jet durumlarına göre

lüle-levha arası/levhalar arası açıklığın H/D=0.5 ve 1 değerleri için sırasıyla Şekil 23 ve Şekil 24'te verilmiştir. Levhalar arası açıklığın H/D=0.5 değerinde, hem sınırlandırılmamış jet hem de sınırlandırılmış jet durumunda artan boyutsuz dönme sayısı ile çarpma levhası üzerindeki Nusselt değerleri azalmaktadır (Şekil 23). H/D=1 açıklıkta, boyutsuz dönme sayısı arttıkça, çarpma levhası üzerindeki maksimum Nusselt sayısı değerleri azalmaktadır (Şekil 24). Benzer bulgular, Senda vd. (2005) tarafından da ifade edilmiştir.

Şekil 23. Re=30000 ve H/D=0.5 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Şekil 24. Re=30000 ve H/D=1 için Çarpma Levhası Üzerinde Nusselt Dağılımları

Sonuçlar ve Öneriler

Bu çalışmada, çarpan dönmeli jet akış alanlarında çarpma yüzeylerindeki ısı transferi etkileri deneysel olarak incelenmiştir. Deneysel çalışma kapsamında termal kamera ile sıcaklık dağılımları elde edilmiştir. Elde edilen sıcaklık dağılımlarından, Reynolds sayısının, lüle-levha arası açıklığın, boyutsuz dönme sayısının ve sınırlayıcı levha durumunun çarpma levhası üzerindeki Nusselt dağılımlarına etkisi araştırılmıştır.

Çalışmadan aşağıdaki sonuçlara ulaşılmıştır:

- 1. Hem sınırlandırılmamış hem de düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, çarpma levhası üzerindeki Nusselt değerleri artan Reynolds sayısı ile artmakta, artan lülelevha/levhalar arası açıklıkla azalmaktadır. Lüle-levha/levhalar arası açıklık arttıkça, çarpma levhası üzerindeki maksimum ve minimum Nusselt değerleri arasındaki fark azalmaktadır.
- 2. Sınırlandırılmamış çarpan dönmeli jet durumdaki maksimum Nusselt sayısı değerleri sınırlandırılmış çarpan dönmeli jet durumundaki maksimum değerlerden daha büyük

olmaktadır. Küçük lüle-levha açıklıklarında (H/D≤1), çarpma levhası üzerinde sınırlayıcı levhanın varlığıyla azalan Nusselt değerleri, büyük lüle-levha açıklıklarında (H/D≥3), sınırlayıcı levhanın varlığıyla artmaktadır.

- 3. Hem sınırlandırılmamış hem de düz levha ile sınırlandırılmış çarpan dönmeli jet akışında, boyutsuz dönme sayısının artmasıyla çarpma levhası üzerindeki Nusselt değerleri azalmaktadır.
- 4. Lüle-levha/levhalar arası açıklık ve boyutsuz dönme sayısı arttıkça, çarpma levhası üzerindeki Nusselt dağılımları daha üniform hale gelmektedir.
- 5. Lüle-levha arası açıklığın H/D=3 değerinde ve boyutsuz dönme sayısının S=0.52 değerinde çarpma levhası üzerindeki Nusselt dağılımları üniform dağılıma en yakın görüntüyü oluşturmaktadır.

Yazar Katkısı

Haluk Keleş, bu çalışmada deneylerin gerçekleştirilmesi, verilerin toplanması ve makale taslağının oluşturulmasında, *Yücel Özmen*, çalışma bulgularının yorumlanması, irdelenmesi, sonucunun oluşturulmasında ve makale taslağının revize edilmesinde katkı sağlamıştır.

Etik

Bu makalenin yayınlanmasıyla ilgili herhangi bir etik sorun bulunmamaktadır.

Çıkar Çatışması

Yazarlar herhangi bir çıkar çatışması olmadığını belirtmektedir.

ORCID

Haluk Keleş D <u>https://orcid.org/0000-0002-6562-8902</u>

Yücel Özmen D https://orcid.org/0000-0003-1127-1060

Kaynaklar

Gupta, A. K., Lilley, D. G. ve Syred, N. (1984). Swirl flows. Abacus Press.

- Amini, Y., Mokhtari, M., Haghshenasfard, M. ve Barzegar Gerdroodbary, M. (2015). Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique. *Case Studies in Thermal Engineering, 6*, 104-115. https://doi.org/10.1016/j.csite.2015.08.001
- Bergman, T. L., Lavine, A. S., Incropera, F. P. ve Dewitt, D. P. (2011). *Introduction to heat transfer* (Sixth Edition). Wiley.
- Bilen, K., Bakirci, K., Yapici, S. ve Yavuz, T. (2002). Heat transfer from a plate impinging swirl jet. *International Journal of Energy Research*, 26(4), 305-320. <u>https://doi.org/https://doi.org/10.1002/er.785</u>
- Churchill, S. W. ve Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. *International journal of heat and mass transfer, 18*(11), 1323-1329. <u>https://doi.org/10.1016/0017-9310(75)90243-4</u>
- Huang, L. (1996). *Heat transfer and flow visualization of conventional and swirling impinging jets* [Doktora tezi]. The University of New Mexico.
- Huang, L. ve El-Genk, M. S. (1998). Heat transfer and flow visualization experiments of swirling, multichannel, and conventional impinging jets. *International Journal of Heat and Mass Transfer*, 41(3), 583400. <u>https://doi.org/10.1016/S0017-9310(97)00123-3</u>

- Ianiro, A. ve Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impingingjets.AppliedThermalEngineering,49,89-98.https://doi.org/10.1016/j.applthermaleng.2011.10.018
- Lee, D. H., Won, S. Y., Kim, Y.-T. ve Chung, Y. S. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. *International Journal of Heat and Mass Transfer, 45,* 223-227. https://doi.org/10.1016/S0017-9310(01)00135-1
- Mohamed Illyas, S., Ramesh Bapu, B. R. ve Venkata Subba Rao, V. (2019). Experimental analysis of heat transfer and multi objective optimization of swirling jet impingement on a flat surface. *Journal of Applied Fluid Mechanics*, *12*(3), 803-817. <u>https://doi.org/10.29252/jafm.12.03.29172</u>
- Senda, M., Inaoka, K., Toyoda, D. ve Sato, S. (2005). Heat transfer and fluid flow characteristics in a swirling impinging jet. *Heat Transfer—Asian Research*, 34(5), 324-335. <u>https://doi.org/10.1002/htj.20068</u>
- Singh, P. ve Chander, S. (2019). Study of flow field and heat transfer characteristics for an interacting pair of counter-rotating dual-swirling impinging flames. *International Journal of Thermal Sciences*, 144, 191-211. <u>https://doi.org/10.1016/j.ijthermalsci.2019.06.005</u>
- Wannassi, M. ve Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. *Applied Thermal Engineering*, *78*, 62-73. <u>https://doi.org/10.1016/j.applthermaleng.2014.12.043</u>
- Wen, M.-Y. ve Jang, K.-J. (2003). An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. *International Journal of Heat and Mass Transfer*, *46*(24), 4657-4667. https://doi.org/10.1016/S0017-9310(03)00302-8
- Wongcharee, K., Chuwattanakul, V. ve Eiamsa-ard, S. (2017). Heat transfer of swirling impinging jets with TiO2-water nanofluids. *Chemical Engineering and Processing Process Intensification*, *114*, 16-23. <u>https://doi.org/10.1016/j.cep.2017.01.004</u>
- Zerrout, A., Khelil, A. ve Loukarfi, L. (2017). Experimental and numerical investigation of impinging multi-jet system. *Mechanics*, 23(2), 228-235. <u>https://doi.org/10.5755/J01.MECH.23.2.13900</u>