Turkish Computational and Theoretical Chemistry

Turkish Comp Theo Chem (TC&TC)

Volume(Issue): 8(1) - Year: 2024 - Pages: 80-100

e-ISSN: 2602-3237

https://doi.org/10.33435/tcandtc.1275208

Received: 01.04.2023 Accepted: 25.10.2023 **Research Article** A Theoretical Study of the Regioselectivity of the Reaction of Six-Membered and Five-Membered Nitrones with a Series of Substituted Alkenes

Boulanouar MESSAOUDI¹

Ecole supérieure en sciences appliquées de Tlemcen, ESSA-Tlemcen, BP 165 RP Bel Horizon, Tlemcen 13000, Algeria

Laboratory of ToxicoMed, University of Tlemcen, P.O. Box 119, Tlemcen, 13000, Algeria.

Abstract: The experimentally observed regioselectivity of a series of alkenes reactions with some nitrones conducting to isoxazoles has been thoroughly investigated theoretically using density functional theory B3LYP/6-31G(d) level of theory. Both Fukui and Parr indices have been calculated to explain and show the most reactive sites. The electrostatic surface potential has also been studied and analyzed in order to show the positive and negative regions responsible of the possible interaction between the two studied reactants. The theoretical results are in good agreement with the experimental findings.

Keywords: Nitrones, alkene, regioselectivity, Fukui and Parr functions, B3LYP.

1. Introduction

Cycloaddition reactions are of such importance and abundant because they can form cyclic compounds [1-6]. Among all cycloaddition reactions, the 1,3dipolar cycloaddition of nitrones is one of the most useful and extensively used synthetic processes for preparing isoxazoleand its derivatives. The applications of this latter in medicinal and pharmaceutical domains in treating diseases are various and multiple such as; anticancer, anti-inflammatory, antimicrobial, analgesic, antifungal, antiviral, anti-malarial activity, antioxidant activity, anti-anxiety activity, antialzheimer, etc [7-12]. In material science, isoxazole is used as a photochromic, corrosion inhibitor for some metals, and starting material for other syntheses. On the other hand, isoxazole is used in agriculture as an insecticide, acaricide against T. cinnabarinus, and herbicide [13]. Particularly, the nitrone-olefin 1,3-dipolar cycloaddition is a reaction of choice to produce different sizes of heterocyclic rings [14-19]. Nitrones are marked by the ability to undertake a [3+2] cycloaddition reaction in the presence of a dipolarophile (alkene). The reactions of nitrones with substituted alkenes

For instance, Junji et al. [24] reported a theoretical of Lewis acid catalyzed study nitrone cycloadditions to α,β -unsaturated carbonyl compounds using ab initio calculation to the model reaction between the parent nitrone and acrolein in the presence of BH₃ or BF₃ catalyst. They have found that the reaction exhibits a stepwise mechanism.

Wanapun et al. have probed the 1,3-dipolar cycloaddition reaction of cyclopropanes and nitrones to give tetrahydro-1,2-oxazine using the B3LYP/6-31+G(d,p) level of theory. They have shown that the strained σ bond of the cyclopropane plays a key role in a [3+2] dipolar cycloaddition. They have found two reaction mechanisms where one is an asymmetric concerted pathway and the second one is a stepwise zwitterionic pathway with nearly identical barriers [25].

e-mail: messaoudiboulanouar@gmail.com

give rise to the formation of isoxazolidines. The nitrone-olefin cycloaddition reaction presents a versatile route in the synthesis of natural products and medicines [20-23]. This is why this reaction, nitrone-olefin, has been widely studied both experimentally and theoretically.

¹ Corresponding Authors

Merino et al. [27] have investigated both experimentally and theoretically the asymmetric 1,3-dipolar cycloadditions between 1,2-diaza-1,3dienes and chiral non-racemic nitrones. Experimentally, they have found that the cyclic nitrones provide only one isomer, while when using the acyclic nitrones a 1:1 mixture of two isomers is obtained. They have also found a good agreement between the conceptual DFT and solvent effects with respect to the experimental data.

In addition, Joyann et al. [28] reported the first 1,3dipolar cycloadditions of 1,2-cyclohexadiene strained allene. The reactions occur regioselectively and exhibit a notable endo preference resulting in the formation of two stereogenic centers. They have done DFT calculations of the stepwise and concerted reaction pathways in order to rationalize the observed experimental selectivities. Moreover, their strategic manipulation demonstrates its utility for the assembly of compounds with multiple heterocyclic units.

Hazhazi et al. [29] have carried out a DFT study of the stereoselectivity of reaction between methyl crotonate and 2,3,4,5-tetrahydropyridine-l-oxide by means of B3LYP/6-31G(d) theory. Their study results show that the formation of the metaendocycloadduct is favoured via an asynchronous concerted mechanism. They have shown that the solvent have no effect on the gas-phase selectivities.

Moreover, Cannon et al. [30] have reported an enantioselective route to the C,D-bicycle of massadine. This initial stereoinduction has been translated into the five contiguous stereocenters of the massadine D-ring by a synthetic route that features a diastereoselective and stereospecific Ireland-Claisen rearrangement of а trianionicenolate followed by а diastereoselectivenitrone dipolar cycloaddition of a highly electron-poor oxime. Gunawardene et al. [31] have rationalized the effects of N- and Casubstituent modifications at the nitrone on inverseelectron-demand strain-promoted alkyne-nitrone cycloaddition reaction kinetics and the overall rapid reactivity of pyridinium-delocalized nitrones by exploring density functional theory (DFT) and Xray crystallography.

Recently, Bakthadoss et al. [32] have developed a regio and diastereoselective strategy for the synthesis of complex bicyclo[3.2.1]octane

scaffolds from the reaction of readily accessible vinylogous carbonates with N-substituted hydroxylamine hydrochlorides via intramolecular 1,3-dipolar nitrone cycloaddition reaction. They have synthesized a wide varieties of bicyclic isoxazolidines in high yields in the absence of any catalyst used. Add to this, Alexander et al. [33] have studied the reaction of adamantane-derived aldoand ketonitrones with maleimides. They have found that, in the case of aldonitrones, the diastereomeric mixtures are obtained and that the ratio of isomers changes during the reaction process due to the reversibility of the cycloaddition reaction. They have also investigated the cytotoxic and virusinhibiting activity against influenza virus.

Very recently, Thakur et al. [34] have given a detailed review on cycloaddition of nitrones with various substrates in order to generate a variety of heterocyclic rings.

In this paper, a theoretical investigation of two substituted nitrones with a series of substituted alkenes is given using B3LYP/6-31G(d) method and conceptual DFT with the aim to explain the regioselectivity of these reactions (Figure 1) [35].

2. Computational Method

The calculations were carried out with Gaussian09 suit of program [36]. DFT calculations were performed using the Becke3 and Lee-Yang-Parr (B3LYP) hybrid functional in conjunction with base 6-31G(d). Optimizations were performed using Berny's method [37,38]. The stationary points were verified and checked by doing the frequency calculations. In order to get Mulliken atomic spin density ASD, single point calculation under the unrestricted B3LYP/6-31G(d) method has been used to optimize the radical anion and the radical cation of each studied molecule.

According to the Koopmans' theorem, the ionization energy and electron affinity values are approximately obtained from the FMO energies using the equations [39,40]:

$$A = -E_{LUMO} \tag{1}$$

$$I = -E_{HOMO} \tag{2}$$

Hence, χ and η can be written as [41,42]:

$$\chi = -\frac{1}{2} (E_{LUMO} + E_{HOMO}) \qquad (3)$$

$$\eta = \frac{1}{2} (E_{LUMO} - E_{HOMO}) \tag{4}$$

The electrophilicity index ω is given as [43]:

$$\omega = \frac{\mu}{2\eta} \tag{5}$$

Domingo's group has defined the nucleophilicity as [44]:

Electrophilicity Fukui index (f^+) of a given atom A in a molecule is [45]:

 $N = E_{HOMO(Nu)} - E_{HOMO(TCE)}$ (6)where $E_{HOMO(TCE)}$ is the highest occupied molecular orbital energy of tetracyanoethylene (TCE) taken as reference since it presents the lowest HOMO energy.

 $f_A^+ = P_A(N+1) - P_A(N)$ (7)Nucleophilicity Fukui index (f) of a given atom A in a molecule is [45]:

Figure 1. 1,3-Dipolar cycloaddition of nitrones with substituted alkenes.

	Tablo 1. Substituents R_1 and R_2 .
R ₁	\mathbf{R}_2
-Ph	-COOCH ₃
-CH ₃	-COOCH ₃
-CH ₂ OH	-COOCH ₃
-COOCH ₃	-COOCH ₃ (trans)
-COOCH ₃	-COOCH ₃ (<i>cis</i>)

Tablo I. Substituents R ₁ and R

$f_A^- = P_A(N) - P_A(N-1)$	(8)	
where P_A stands for the population	of atom A	in a
molecule.		

Local electrophilicity ω_k and local nucleophilicity N_k are defined by the equations:

$$\omega_k = \omega f_k^+ \tag{9}$$
$$N_k = N f_k^- \tag{10}$$

where ω and N are the electrophilicity and nucleophilicity indices, respectively [45].

In order to calculate Parr indices, the following expressions were used [46]:

$$P_k^- = \rho_s^{rc}(k) \text{ for electrophilic attack}$$
(11)

 $P_k^+ = \rho_s^{ra}(k)$ for nucleophilic attack (12)where $\rho_s^{rc}(r)$ is the cation ASD, and $\rho_s^{ra}(r)$ is the anion ASD. Each ASD provides local nucleophilic

and electrophilic Parr functions of the neutral system.

Using $P^{-}(r)$ and $P^{+}(r)$, it is possible to define the local electrophilicity ω_r and the local nucleophilicity N_r indices as follow [46]:

$$\omega_k = \omega \rho_k^+ \tag{13}$$
$$N_k = N \rho_k^- \tag{14}$$

$$N_k = N\rho_k^- \tag{14}$$

3. **Results and discussion**

The molecular structures of the two nitrones and six alkenes studied molecules are given below (Figure 2).

The electronic chemical potential μ , the hardness η , electrophilicity ω , as well as nucleophilicity N are listed in Table 1.

From Table 2, it can be seen that, for the two nitrones, the five-membered and six-membered ones, the nucleophilicity value is much greater than electrophilicity one. In addition, their nucleophilicity is higher than that for the six studied alkenes. This means that nitrones act more likely as nucleophiles rather than electrophiles, while the alkenes will react as electrophiles.

Moreover, the HOMO and LUMO energies and the corresponding calculated gaps are presented in Table 3.

From the results shown in Table 3, it can be seen that the energy gap corresponding to the difference |HOMOnitrone-LUMOalkene| is smaller than the one corresponding to |HOMOalkene-LUMOnitrone| and this is for both nitrones (5-membered and 6-membered)

that are acting here as dipoles. This means that the most favourable frontier molecular orbital interaction will take place between the HOMO of nitrones and the LUMO of alkenes (dipolarophiles). The HOMO and LUMO frontier orbitals plots are demonstrated in the following Figure 3.

From the plots of HOMO/LUMO corresponding to the studied molecules, it can be seen that the carbons of the double bond of the six alkenes that are involved in the reaction with nitrones contribute widely in the LUMO molecular orbital. However, in the nitrone 7, the carbon and oxygen atoms contribute in the HOMO more than that they do in the LUMO and for the nitrone 8, these two atoms i.e. oxygen and carbon show a large contribution in the HOMO and what is remarkable that the oxygen atom doesn't contribute at all in the LUMO which really confirms the obtained results in Table 2.

3.1. Fukui indices

In the following Tables 4-11 are given the calculated Fukui indices for the six dipolarophiles (alkenes) and the two dipoles (nitrones) in order to predict the most favourable sites for the mode of cyclization.

For the alkene 1 (table 4), C1 and C10 are the most electrophilic sites and they have very similar values of ω_k^+ . The oxygen atom O9 doubly bonded to carbon atom C8 has also an important local electrophilicity value but it is still less than the one of the two carbon atoms C1 and C10, and the same thing can be said about C8.

For the alkene 1, C1 and C10 are the most electrophilic sites and they have very similar values of ω_k^+ . The oxygen atom O9 doubly bonded to carbon atom C8 has also an important local electrophilicity value but it is still less than the one of the two carbon atoms C1 and C10, and the same thing can be said about C8.

Figure 2.	Molecular	structures	of nitrones	and	different	substituted	alkenes	optimized a	at B3L	YP/6-31	G
(d).											

Molecule	μ	η	ω	N
Alkene 1	-4.07	4.64	1.78	2.98
Alkene 2	-4.11	6.24	1.35	2.14
Alkene 3	-4.23	6.09	1.47	2.10
Alkene 4	-4.92	5.42	2.23	1.74
Alkene 5	-4.58	5.61	1.87	1.98
Alkene 6	-5.67	4.96	3.24	1.22
Nitrone 7	-2.88	5.50	0.75	3.74
Nitrone 8	-3.41	4.77	1.22	3.58

Table 3. HOMO, LUMO energies and energetic gaps (eV) at B3LYP/6-31G (d) level.

			Nitro	ne 7	Nitro	one 8
Mologylo	HOMO	LUMO	Gap(eV)	Gap(eV)	Gap(eV)	Gap(eV)
woiecule	(a.u)	(a.u)	HOMO _a -LUMO _n ¹	HOMO _n -LUMO _a ²	HOMO _a -LUMO _n	HOMO _n -LUMO _a
Nitrone 7	-5.63	-0.12				
Nitrone 8	-5.79	-1.02				
Alkene 1	-6.39	-1.75	6.27	3.88	5.37	4.04
Alkene 2	-7.23	-0.99	7.11	4.64	6.21	4.80
Alkene 3	-7.27	-1.18	7.15	4.45	6.25	4.61
Alkene 4	-7.63	-2.21	7.50	3.42	6.61	3.58
Alkene 5	-7.39	-1.77	7.26	3.86	6.36	4.02
Alkene 6	-8.14	-3.19	8.02	2.44	7.12	2.60

¹Stands for |HOMO_{alkene}-LUMO_{nitrone}| ²Stands for |HOMO_{nitrone}-LUMO_{alkene}|

HOMO

LUMO

Alkene 1

Alkene 2

Alkene 3

номо

LUMO

Figure 3. Plots of the HOMO and LUMO for the alkenes and nitrones studied.

For alkene 2 (Table 5), C1 and C3 of the π double bond exhibit the most electrophilic sites for this molecule. It is worthy to note that even C14 and O15 present higher values of ω_k^+ but the O15 has a higher value of N_k with respect to ω_k^+ so it is more likely nucleophilic rather than electrophilic site and C14 is an electrophilic site but it present a steric effect.

For the alkene **3** (Table 6), the carbon atoms **C1** and **C3** are the most electrophilically activated. Here again, the atoms **O14** has too a higher value of local electrophilicity but when comparing it to the corresponding local nucleophilicity it can be easily

seen that this atom is a nucleophilic site. The carbon atom **C13** is also electrophilic and this could be basically understood since it belongs to a carbonyl group.

For alkene 4 (Table 7), the carbon atoms C1 and C3 are the electrophilic sites with the highest ω_k^+ values. Thus, the double bond carbon atoms of C1 and C3 will react with the nitrones to get the cyclic compound.

For the alkene 5, as it can be seen in Table 8, the atoms in bold C1 and C10 are the most attractive ω_k^+ values. Both of C1 and C10 have the same ω_k^+ value because of the symmetry reason. The oxygen atom O9 has almost the same ω_k^+ value but, looking to its N_k value, it can be concluded that this atom more nucleophilic as a site. The carbon atom C12 exhibits the highest local electrophilicity value for this alkene but still cannot react here for the important steric effect.

Table 4. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of alkene 1 at B3LYP/6-31G(d).

Atom k f^+ f ω_k^+ N_k C10.112070.213600.19980.58275O30.020720.021770.03690.05939C4-0.00810-0.00666-0.0144-0.01817C80.06646-0.033660.1185-0.09183O90.106940.091590.19060.24988C100.123290.025790.21980.07036C120.015720.093260.02800.25444		Fu	ıkui Functio			
C1 0.11207 0.21360 0.1998 0.58275 O3 0.02072 0.02177 0.0369 0.05939 C4 -0.00810 -0.00666 -0.0144 -0.01817 C8 0.06646 -0.03366 0.1185 -0.09183 O9 0.10694 0.09159 0.1906 0.24988 C10 0.12329 0.02579 0.2198 0.07036 C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N_k	2 4 2
O3 0.02072 0.02177 0.0369 0.05939 C4 -0.00810 -0.00666 -0.0144 -0.01817 C8 0.06646 -0.03366 0.1185 -0.09183 O9 0.10694 0.09159 0.1906 0.24988 C10 0.12329 0.02579 0.2198 0.07036 C12 0.01572 0.09326 0.0280 0.25444	C1	0.11207	0.21360	0.1998	0.58275	Q 1 4-17
C4 -0.00810 -0.00666 -0.0144 -0.01817 C8 0.06646 -0.03366 0.1185 -0.09183 O9 0.10694 0.09159 0.1906 0.24988 C10 0.12329 0.02579 0.2198 0.07036 C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	03	0.02072	0.02177	0.0369	0.05939	8-1
C8 0.06646 -0.03366 0.1185 -0.09183 O9 0.10694 0.09159 0.1906 0.24988 C10 0.12329 0.02579 0.2198 0.07036 C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	C4	-0.00810	-0.00666	-0.0144	-0.01817	7 10 12 19 -4
O9 0.10694 0.09159 0.1906 0.24988 6 C10 0.12329 0.02579 0.2198 0.07036 6 C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	C8	0.06646	-0.03366	0.1185	-0.09183	4 11 13 15
C10 0.12329 0.02579 0.2198 0.07036 C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	O9	0.10694	0.09159	0.1906	0.24988	
C12 0.01572 0.09326 0.0280 0.25444 Alkene 1 atoms labeling	C10	0.12329	0.02579	0.2198	0.07036	· 19 49
	C12	0.01572	0.09326	0.0280	0.25444	Alkene 1 atoms labeling

Table 5. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of alkene 2 at B3LYP/6-31G(d).

	Fu	kui Function	s	
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N_k
C1	0.09917	0.19162	0.1342	0.36130
C3	0.24977	0.19044	0.3379	0.35907
C5	-0.04480	-0.03673	-0.0606	-0.06925
09	0.03318	0.07998	0.0449	0.15080
C10	-0.01215	-0.01464	-0.0164	-0.02760
C14	0.14811	-0.02465	0.2004	-0.04648
015	0.15833	0.27042	0.2142	0.50987

Table 6. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of alkene 6 at B3LYP/6-31G(d).

	Fu	kui Functions		
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k
01	0.03951	0.08508	0.1279	0.08295
02	0.17535	0.31901	0.5677	0.31103
03	0.17535	0.31901	0.5677	0.31103
C4	0.16478	0.05493	0.5335	0.05356
C6	0.16478	0.05493	0.5335	0.05356
C8	0.07742	0.02407	0.2507	0.02347
C9	0.78169	0.02407	2.5309	0.02347

Table 7. Fukui indices f, f^+ , local electrophilicity ω_k^+ and nucleophilicity N_k using NPA population of nitrone 7 at B3LYP/6-31G(d).

	I	<u>Fukui Functio</u>	ons	
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k

C1	-0.01696	-0.00980	-0.0127	-0.03422	13
C2	-0.00703	-0.00836	-0.0053	-0.02919	
C3	-0.04333	-0.04817	-0.0326	-0.16821	12 31
010	0.20371	0.41111	0.1531	1.43562	
N11	0.10311	-0.04423	0.0775	-0.15445	
C12	0.31725	0.32212	0.2384	1.12486	Nitrone 7 atoms labeling

Table 8. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of alkene 5 at B3LYP/6-31G(d).

	Fu	ikui Function	S		
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k	-5 18-
C1	0.15356	0.09238	0.2866	0.16010	7-4 15-16
03	0.02316	0.05420	0.0432	0.09393	
C4	-0.00841	-0.01489	-0.0157	-0.02581	
C8	0.07122	-0.00195	0.1329	-0.00338	
09	0.11991	0.24866	0.2238	0.43095	19 19
C10	0.15346	0.09245	0.2864	0.16023	
C12	1.49500	-0.00197	2.7905	-0.00341	2 11
013	-0.02181	0.24859	-0.0407	0.43083	
014	-0.22013	0.05417	-0.4109	0.09388	
C15	-0.32530	-0.01488	-0.6072	-0.02579	Alkene 5 atoms labeling
					· · · · · · · · · · · · · · · · · · ·

Table 9. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of alkene 6 at B3LYP/6-31G(d).

	Fu	kui Functions	5	
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k
01	0.03951	0.08508	0.1279	0.08295
02	0.17535	0.31901	0.5677	0.31103
03	0.17535	0.31901	0.5677	0.31103
C4	0.16478	0.05493	0.5335	0.05356
C6	0.16478	0.05493	0.5335	0.05356
C8	0.07742	0.02407	0.2507	0.02347
С9	0.78169	0.02407	2.5309	0.02347

Table 10. Fukui indices f, f^{\dagger} , local electrophilicity ω_k^{\dagger} and nucleophilicity N_k using NPA population of nitrone 7 at B3LYP/6-31G(d).

	Fu	ikui Functions	5		
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k	73
C1	-0.01696	-0.00980	-0.0127	-0.03422	12 7
C2	-0.00703	-0.00836	-0.0053	-0.02919	
C3	-0.04333	-0.04817	-0.0326	-0.16821	
O10	0.20371	0.41111	0.1531	1.43562	2 9
N11	0.10311	-0.04423	0.0775	-0.15445	5
C12	0.31725	0.32212	0.2384	1.12486	Nitrone 7 atoms labeling

Table 11. Fukui indices f, f^+ , local electrophilicity ω_k^+ and nucleophilicity N_k using NPA population of nitrone 8 at B3LYP/6-31G(d).

	Fu	kui Functions		
Atom k	$f^{\scriptscriptstyle +}$	f	ω_k^+	N _k
C1	0.03712	0.00715	0.0451	0.02379
C2	0.20271	0.18678	0.2465	0.62155
C3	0.03708	0.00716	0.0451	0.02383

0.08665	0.11092	0.1054	0.36911	ی چ
0.17900	0.39707	0.2176	1.32133	3-4
				9-2 19-6
0.09630	-0.05345	0 1171	-0 17787	5 12
0.07050	-0.055+5	0.11/1	-0.17707	
0.08662	0.11093	0.1053	0.36914	Nitrone 8 atoms labeling
	0.08665 0.17900 0.09630 0.08662	0.08665 0.11092 0.17900 0.39707 0.09630 -0.05345 0.08662 0.11093	0.08665 0.11092 0.1054 0.17900 0.39707 0.2176 0.09630 -0.05345 0.1171 0.08662 0.11093 0.1053	0.08665 0.11092 0.1054 0.36911 0.17900 0.39707 0.2176 1.32133 0.09630 -0.05345 0.1171 -0.17787 0.08662 0.11093 0.1053 0.36914

At first glance, for alkene 6 it can be seen that ω_k^+ are much greater than N_k values. The atoms O2, O3, C4 and C6 have the highest and nearly the same local electrophilicity values. The couple of oxygen atoms and the one for carbon atoms present the same values since this alkene is symmetrical. However, looking at N_k values, the oxygen atoms O2 and O3 have remarkable values too with respect to local electrophilicity, but for carbon atoms C4 and C6 the N_k values are very small and cannot be compared to the local electrophilicity ones. So, the couple of carbon atoms (C4, C6) is the most electrophilic and hence these atoms will react with the nitrone dipole.

For the nitrone 7 compound, the most important nucleophilicity index values are located on the oxygen atom **O10** and carbon atom **C12** atoms which are responsible of the cyclisation with the alkenes. However, the most important electrophilicity index values are located on the oxygen atom **O10** and carbon atom **C12** atoms too but they are still less than then the N_k values.

For the nitrone **8** compound, the most important nucleophilicity index values are presented by **O9**, **C4** and **C11** atoms. The **C4** and **C11** are symmetrical and that is why they have the same value so the cyclisation could happen with **O9** and either **C4** or **C11**. It is worthy to note that even the **C2** atom presents a value greater than the one of **C4** and **C11** atoms but it cannot lead to the cycle formation because of the hindrance.

As a summary for the obtained results above, the most reactive sites for both nitrones and alkenes are given in Scheme 1 for nitrone 7 and scheme 2 for nitrone 8.

3.2. Parr functions

In the following Tables 12-19, are given the Parr functions calculated for the six alkenes and the two nitrones.

Table 12. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 1 at B3LYP/6-31G(d).

	P	arr Function	S		
Atom k	P_k^+	P_k^-	ω_k^+	N _k	
C1	0.42002	0.18657	0.74871	0.55557	2 19 20
03	0.01679	0.01205	0.02993	0.03587	e j <u>j</u> Q
C4	0.00100	-0.00222	0.00178	-0.00662	
C8	-0.05953	0.09509	-0.10611	0.28315	1 1 1 1
O9	0.08029	0.10990	0.14312	0.32725	o 16 20
C10	-0.02400	0.23191	-0.04279	0.69058	
C12	0.20873	0.04790	0.37207	0.14264	
C13	0.07877	0.09331	0.14040	0.27786	
C14	0.09977	0.15765	0.17784	0.46944	
C15	-0.03554	-0.04040	-0.06335	-0.12030	
C17	-0.05480	-0.07797	-0.09768	-0.23217	
C19	0.30127	0.23250	0.53704	0.69233	Alkene 1 atoms labeling

Scheme 1. Schematic representation of the reaction between nitrone 7 and the six substituted alkenes based on Fukui indices.

Scheme 2. Schematic representation of the reaction between nitrone 8 and the six substituted alkenes based on Fukui indices.

From Table 12, the carbon atom C1 of the alkene 1 has the highest value of ω_k^+ . This carbon belongs to the double bond of this dipolarophile. However, the carbon atom C10 which belongs to the reacting bond presents a negative value of local

nucleophilicity and this doesn't make sense. The carbon C19 also exhibits a remarkable value of ω_k^+ but it is very far from C1 to get the experimentally observed cycle.

Carbon atoms **C1** and **C3** of alkene **2** are the most reactive electrophilic sites and this corresponds to the double bond involved in the reaction of cyclisation.

For Table 13, the carbons **C1** and **C3** the highest local electrophilicity index with respect to the rest of carbon atoms of this alkene **3**. Here too, this corresponds to the carbon double bond that will react with the nitrones.

Among all the carbon of this alkene 4 (table 15), only C1 and C3 have higher values of ω_k^+ . The

other carbons either have smaller values of local electrophilicity or negative values which basically means that they less reactive. Since the molecule is symmetrical, we observe the same numerical value of electrophilicity for both of **C1** and **C3**.

Comparing the carbon atoms local electrophilicity of alkene 5 (table 16), it can be seen that C1 and C10 present the highest value at all. Here again, C1 and C10 have the same value since the molecule is already symmetrical. The other carbons are just poorly activated and then less reactive.

Table 13. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 2 at B3LYP/6-31G(d).

	P	arr Function	s	
Atom k	P_k^+	P_k^-	ω_k^+	N _k
C1	0.36525	0.07261	0.49418	0.15502
C3	0.20553	0.53216	0.27808	1.13617
C5	0.00912	-0.04607	0.01234	-0.09836
O9	0.07403	0.01638	0.10016	0.03498
C10	0.00491	-0.00336	0.00665	-0.00717
C14	-0.08611	0.23469	-0.11650	0.50106
015	0.38844	0.16924	0.52555	0.36132

Table 14. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 3 at B3LYP/6-31G(d).

	P	arr Function	s		
Atom k	P_k^+	P_k^-	ω_k^+	N _k	
C1	0.22515	0.10870	0.33018	0.22773	2
C3	0.09652	0.47139	0.14155	0.98758	🔩 🔏 🧿
C5	0.00363	-0.01046	0.00532	-0.02192	13 1 56
08	0.05579	0.01619	0.08181	0.03392	13 3 0 18
С9	0.00372	-0.00319	0.00546	-0.00667	
C13	-0.06251	0.20331	-0.09167	0.42593	T C
014	0.35453	0.15797	0.51991	0.33096	
015	0.23339	-0.00188	0.34226	-0.00393	Alkene 3 atoms labeling

Table 15. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 4 at B3LYP/6-31G(d).

	Pa	arr Functions			
Atom k	P_k^+	P_k^-	ω_k^+	N _k	(1)
C1	0.03423	0.25453	0.07644	0.44272	
C3	0.03422	0.25453	0.07644	0.44272	
05	0.05928	0.02391	0.13241	0.04160	a 💆 🎽 🐌
C6	0.00034	-0.00395	0.00077	-0.00688	_
C10	-0.05197	0.12258	-0.11608	0.21321	
011	0.45906	0.11286	1.02534	0.19630	
012	0.05928	0.02391	0.13241	0.04159	
C13	0.00034	-0.00395	0.00077	-0.00688	
C17	-0.05197	0.12258	-0.11608	0.21321	
O18	0.45905	0.11286	1.02534	0.19630	Alkene 4 atoms labeling

Table 16. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 5 at B3LYP/6-31G(d).

Parr Functions

Atom k	P_k^+	P_k^-	ω_k^+	N _k	
C1	0.13995	0.26513	0.26123	0.52566	-5 18-
03	0.03576	0.01610	0.06675	0.03193	7 4 15 16
C4	-0.00051	-0.00227	-0.00094	-0.00450	
C8	-0.05829	0.11856	-0.10880	0.23506	
O9	0.38199	0.10294	0.71301	0.20410	9-8 12-13
C10	0.14003	0.26479	0.26138	0.52498	
C12	-0.05828	0.11869	-0.10879	0.23532	1 - 18
013	0.38184	0.10307	0.71273	0.20434	2 11
014	0.03576	0.01612	0.06674	0.03196	
C15	-0.00050	-0.00228	-0.00093	-0.00452	Alkene 5 atoms labeling

Table 17. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of alkene 6 at B3LYP/6-31G(d).

	P	Parr Functions	5	
Atom k	P_k^+	P_k^-	ω_k^+	N _k
01	0.11327	-0.03381	0.36674	-0.04140
02	0.46167	0.16353	1.49473	0.20025
03	0.46167	0.16353	1.49473	0.20025
C4	0.03732	0.25827	0.12083	0.31626
C6	0.03732	0.25827	0.12083	0.31626
C8	-0.06551	0.11145	-0.21208	0.13647
С9	-0.06551	0.11145	-0.21208	0.13647

Table 18. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of nitrone 7 at B3LYP/6-31G(d).

	P	Parr Functions	5		
Atom k	P_k^+	P_k^-	ω_k^+	N _k	13
C1	0.00211	-0.00029	0.00159	-0.00109	
C2	-0.00637	-0.03967	-0.00479	-0.14844	3
C3	-0.02323	-0.03968	-0.01746	-0.14846	
O10	0.65885	0.15123	0.49517	0.56583	2 1 9
N11	-0.06545	0.36357	-0.04919	1.36033	5
C12	0.38075	0.48193	0.28616	1.80318	Nitrone 7 atoms labeling

Table 19. Parr functions P_k^+ , P_k^- , local electrophilicity ω_k^+ and nucleophilicity N_k using Mulliken ASD of nitrone 8 at B3LYP/6-31G(d).

	P	arr Function	8	
Atom k	P_k^+	P_k^-	ω_k^+	N _k
C1	-0.06336	0.01481	-0.07703	0.05298
C2	0.22119	0.37171	0.26893	1.32970
C3	-0.06336	0.01473	-0.07703	0.05268
C4	0.10433	0.04059	0.12685	0.14521
09	0.70953	0.20092	0.86267	0.71873
110	0.00000	0.05415	0.00405	1.0((00)
N10	0.00333	0.35415	0.00405	1.26689
C11	0.10434	0.04050	0.12685	0.14488

Scheme 3. Schematic representation of the reaction between nitrone 7 and the six substituted alkenes based on Parr functions.

Scheme 4. Schematic representation of the reaction between nitrone 8 and the six substituted alkenes based on Parr functions.

Alkene 5

Nitrone 8

Figure 4. ESP representation for the alkenes and nitrones studied.

Another symmetrical molecule of this series is alkene 6. Thus, it is obvious that the couples of atoms (O2, O3) and (C4, C6) have the same index values. However, neither (O2, O3) nor O1 can form a possible cycle with the alkenes because of the hindrance. In this alkene, there are four possible carbon sites. Only two, C4 and C6, are reactive with higher electrophilicity. C8 and C9 show negative values and so they have to be neglected.

For nitrone 7, we are interested in two atoms; oxygen and carbon as it is observed experimentally to react with alkenes. In this nitrone, the C12 shows the highest value of nucleophilicity followed by O10 and these atoms are responsible of the formation of five membered cycle. It is worthy to

note that even nitrogen atom N11 present a nucleophilicity value higher that oxygen atom O10 but it leads to, taking into accounts C12, four membered cycles that are less stable.

The molecule nitrone is symmetrical too. So, as discussed previously, the couple of atoms (C4, C11) shows the same index value.

Even that (C2, N10) present greater values, they cannot cyclised because of the hindrance.

A schematic representation of the most reactive sites using Parr function is given in schemes **3** and **4** for both reactions of the substituted alkenes with nitrones **7** and **8**.

XXXXXXXXXXXXXXXX

3.3. Electrostatic potential ESP

The electrostatic potential is another important parameter to be investigated. In Figure 4 are presented the electrostatic surface potentials. This latter helps in predicting the most negative and the most positive areas of the molecule that are then responsible of the reaction with other molecules with different or opposite signs areas. It provides a visual method to understand the relative polarity of the molecule [47-49].

Analyzing the electrostatic surface potential, it is clearly seen that the bluish part is located on the carbon double bond of alkenes and especially it is very well presented in the alkene 6 ESP where it is strongly blue. This basically means that this region of the molecule is positive and then can just act as electrophile. The oxygen atoms are reddish because they are electronegative parts.

4. Conclusions

In this paper, a theoretical study at B3LYP level and the 6-31G(d) basis set on the cycloaddition reaction of two nitrones (five-membered and six-membered) with a series of substituted alkenes has been driven using Gaussian 09 suit of program. The calculated global electrophilicity and nucleophilicity as well as the gaps of both reactants show that nitrones act as nucleophiles while the alkenes act as electrophiles.

The gap calculations show that the cyclisation will more likely happen between the HOMO of the nitrone and the LUMO of the alkene.

The most reactive sites are well reproduced and a good commitment with the experimental results has been found and this with both Fukui indices and Parr functions.

Both Fukui and Parr functions show a good concordance with respect to the experimental evidences except for carbon atom **C10** of alkene **1** which is involved in the cycloaddition reaction where the predicted Parr function value was negative and that is invaluable. Thus, for this alkene **1** the Fukui index is more reliable than the Parr one. This discrepancy between Fukui and Parr indices is mainly related to the different formalism of the two theoretical approaches as it has been already cited in literature [50].

The ASD analysis at the radical anion and radical cation of the reagents as well as Fukui indices provide a useful characterization of the most electrophilic and nucleophilic centers. The electrostatic surface potential ESP analysis provides a clear image and a good localization of most positive regions present in the series of the studied alkenes. The positive regions, in blue color, are on the double bond of alkenes which is in good agreement with the theoretically explanations and ascertainments found with the previously discussed approaches in this study.

Acknowledgments

The author would like to thank Ministry of Higher Education and Scientific Research for its support.

References

- [1] P. Albert, H. P. William, Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products, John Wiley & Sons, (2003).
- [2] F.R. Thomas, Advances in synthetic organic chemistry and methods reported in US patents, Elsevier, (2006).
- [3] B. Messaoudi, S. M. Mekelleche Elucidation of the chemo- and regioselectivity of polar Diels-Alder reactions involving thiophene-1,1dioxides using DFT-based reactivity indexes. Letters in Organic Chemistry 8 (2011) 95-103.
- [4] N. Nishiwaki, Methods and applications of cycloaddition reactions in organic syntheses, Wiley, (2014).
- [5] P. Quadrelli, Modern applications of cycloaddition chemistry, Elsevier Science, (2019).
- [6] D. Margetic, Cycloaddition reactions: advances in research and applications, Nova Science Publishers, Incorporated, (2019).
- [7] J. Zhu, J. Mo, H. Z. Lin, et al., The recent progress of isoxazole in medicinal chemistry. Bioorganic & Medicinal Chemistry 26 (2018) 3065-3075.
- [8] A. Thakur, M. Verma, R. Bharti, et al., Oxazole and isoxazole: from one-pot synthesis to medical applications. Tetrahedron 119 (2022) 1-30.

XXXXXXXXXXXXXXXX

- [9] A. Sysak, B. Obmińska-Mrukowicz, Isoxazole ring as a useful scaffold in a search for new therapeutic agents. European Journal of Medicinal Chemistry 137 (2017) 292-309.
- [10] X. Wang, Q. Hu, H. Tang, et al., Isoxazole/isoxazoline skeleton in the structural modification of natural products: a review. Pharmaceuticals 16 (2023) 1-35.
- [11] C. P. Pandhurnekar, H. C. Pandhurnekar, A. J. Mungole, et al., A review of recent synthetic strategies and biological activities of isoxazole. Journal of Heterocyclic Chemistry 60 (2023) 537-565.
- [12] V. Basavanna, S. Doddamani, M. Chandramouli, et al., Green approaches for the synthesis of pharmacologically enviable isoxazole analogues: a comprehensive review. Journal of Iran Chemical Society 19 (2022) 3249-3283.
- [13] Y. Walunj, P. Mhaske, P. Kulkarni, Application, reactivity and synthesis of isoxazole derivatives. Mini-Reviews in Organic Chemistry 18 (2021) 55-77.
- [14] R. Huisgen, Kinetics and mechanism of 1,3-dipolar cycloadditions. Angewandte Chemie International Edition 2 (1963) 633-645.
- P. N. Confalone, E. M. Huie, The [3 +
 2] nitrone–olefin cycloaddition reaction. Organic Reactions 36 (1988) 1-173.
- [16] K. V. Gothelf, K. A. Jorgensen, Asymmetric 1,3-dipolar cycloaddition reactions. Chemical Reviews 98 (1998) 863-910.
- [17] H. Pellissier, Asymmetric 1,3-dipolar cycloadditions. Tetrahedron 63 (2007) 3235-3285.
- [18] S. Akai, K. Tanimoto, Y. Kanao, et al., Lipase-catalyzed domino kinetic resolution of αhydroxynitrones/intramolecular 1,3dipolar cycloaddition: a concise asymmetric total synthesis of (-)rosmarinecine. Chemical Communications 18 (2005) 2369-2371.

- [19] J. Shimokawa, K. Shirai, A. Tanatani, et al., Enantioselective total synthesis of batzelladine A. Angewandte Chemie International Edition 43 (2004) 1559-1562.
- [20] Y. C. Moon, Inter- and intramolecular [4+2] cycloaddition reactions and tandem inter- and intramolecular [4+2]/intramolecular [3+2] cycloaddition reactions of nitroalkenes. University of Illinois at Urbana-Champaign, (1991).
- [21] J. J. Tufariello, Nitrones in 1,3-dipolar cycloaddition chemistry. Padwa, A., Ed., New York, Wiley, (1984).
- [22] S. J. Wendy, J. M. W. John, W. C. M. David, New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society 122 (2000) 9874-9875.
- [23] Y. Ito, Y. Kimura, S. Terashima, Nitrone cycloaddition route to the 1βmethylcarbapenem key intermediate. Bulletin of the Chemical Society of Japan 60 (1987) 3337-3340.
- [24] T. Junji, K. Shuji, Ab initio study of Lewis acid catalyzed nitrone cycloaddition to electron deficient alkenes. Does a Lewis acid catalyst change the reaction mechanism? Tetrahedron 57 (2001) 899-905.
- [25] D. Wanapun, K. A. Van Gorp, N. J. Mosey, et al., The mechanism of 1,3dipolar cycloaddition reactions of cyclopropanes and nitrones. A theoretical study. Canadian Journal of Chemistry 83 (2005) 1752-1767.
- [26] A. J. Hodges, J. P. Adams, A. D. Bond, et al., Intramolecular nitrone dipolar cycloadditions: control of regioselectivity and synthesis of naturally-occurring spirocyclic alkaloids. Organic and Biomolecular Chemistry 10 (2012) 8963-8974.
- [27] P. Merino, R. Majer, O. Konechnaya, et al., ChemInform abstract: highly diastereoselective 1,3-dipolar cycloadditions of chiral non-racemic nitrones to 1,2-diaza-1,3-dienes: an experimental and computational

XXXXXXXXXXXXXXXX

investigation. Organic and Biomolecular Chemistry 12 (2014) 8888-8901.

- [28] S. B. Joyann, D. S. Evan, V. P. Hung, et al., Nitrone cycloadditions of 1,2cyclohexadiene. Journal of the American Chemical Society 138 (2016) 2512-2515.
- [29] H. Hazhazi, Y. Boumedjane, B. Messaoudi, Theoretical study of the regio- and stereoselectivity of the 1,3-DC reaction of 2,3,4,5tetrahydropyridine-l-oxide with methyl crotonate. Moroccan Journal of Chemistry 4 (2016) 1106-1116.
- [30] J. S. Cannon, A Nitrone dipolar cycloaddition strategy toward an enantioselective synthesis of massadine. Organic Letters 20 (2018) 3883-3887.
- [31] P. N. Gunawardene, W. Luo, A. M. Polgar, et al., Highly electrondeficient pyridinium-nitrones for rapid and tunable inverse-electron-demand strain-promoted alkyne-nitrone cycloaddition. Organic Letters 21 (2019) 5547-5551.
- [32] M. Bakthadoss, M. Mushaf, Intramolecular [3 + 2] nitrone cycloaddition reaction: highly regio and diastereoselective synthesis of bicyclo[3.2.1]octane scaffolds. Organic and Biomolecular Chemistry 18 (2020) 9653-9659.
- [33] P. M. Alexander, M. L. Valentina, M.E. Mariia, et al., The 1,3-dipolar cycloaddition of adamantine-derived nitrones with maleimides. Synthetic Communications 50 (2020) 1367-1374.
- [34] S. Thakur, A. Das, T. Das, 1,3-Dipolar cycloaddition of nitrones: synthesis of multisubstituted, diverse range of heterocyclic compounds. New Journal of Chemistry 45 (2021) 11420-11456.
- [35] S. A. Ali, J. H. Khan, M.I. Wazeer, et al., The 1, 3-dipolar cycloaddition of cyclic nitrones with 1, 2-disubstituted alkenes. Tetrahedron 45 (1989) 5979-5986.

- [36] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Inc., Wallingford CT, (2009).
- [37] X. Li, M. J. J. Frisch, Energyrepresented DIIS within a hybrid geometry optimization method. Journal of Chemical Theory and Computation 2 (2006) 835-839.
- [38] C. Peng, P. Y. Ayala, H. B. Schlegel, et al., Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry 17 (1996) 49-56.
- [39] J. Luo, Z. Q. Xue, W. M. Liu, et al., Koopmans' theorem for large molecular systems within density functional theory. The Journal of Physical Chemistry A 110 (2006) 12005-12009.
- [40] D. A. McQuarrie, J. D. Simon, Physical chemistry: a molecular approach (Vol. 1), Sausalito, CA: University science books, (1997).
- [41] J. M. Jacob, M. P. Kurup, K. Nisha, et al., Mixed ligand copper (II) chelates derived from an O, N, S-donor tridentate thiosemicarbazone: Synthesis, spectral aspects, FMO, and NBO analysis. Polyhedron 189 (2020) 114736.
- [42] H. A. Hussein, G. F. Fadhil, Theoretical investigation of para amino-dichloro chalcone isomers. Part II: a DFT structure–stability study of the FMO and NLO Properties. American Chemical Society omega 8 (2023) 4937-4953.
- [43] R. G. Parr, L. V. Szentpály, S. Liu, Electrophilicity index. Journal of the American Chemical Society 121 (1999) 1922-1924.
- [44] L. R. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry 9 (2011) 7168-7175.
- [45] F. A. Bulat, E. Chamorro, P. Fuentealba, et al. Condensation of frontier molecular orbital Fukui functions. The Journal of Physical Chemistry A 108 (2004) 342-349.

XXXXXXXXXXXXXXX

- [46] M. S. M. Ahmed, A. E. Mekky, S. M. Sanad, Regioselective [3+ 2] cycloaddition synthesis and theoretical calculations of new chromenepyrazole hybrids: A DFT-based Parr Function, Fukui Function, local reactivity indexes, and MEP analysis. Journal of Molecular Structure 1267 (2022) 133583.
- [47] T. G. B. Suelen, B. Fernanda, O. Ednilson, et al., Photodynamic efficiency of xanthene dyes and their phototoxicity against a carcinoma cell line: a computational and experimental study. Journal of Chemistry 2017 (2017) 1-9.
- [48] D. Sarkar, K. Ray, M. Sengupta, Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. Biomed Research International 2014 (2014) 1-10.
- [49] A. Bendjeddou, T. K. Abbaz, A. Gouasmia, et al., Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. International Research Journal of Pure and Applied Chemistry 12 (2016) 1-9.
- [50] L. R. Domingo, P. Pérez, J. A. Sáez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances 3 (2013) 1486-1494.