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Abstract. In this paper, we study tubular hypersurfaces according to one of the extended Darboux frame
field in Euclidean 4-space. We obtain the Gaussian and mean curvatures of tubular hypersurfaces according
to extended Darboux frame field of first kind and give some results for them. Also, we prove a theorem
about linear Weingarten tubular hypersurface and construct an example.

1. INTRODUCTION

A canal surface is formed by the envelope of the spheres whose centers lie on a curve and radii vary
depending on this curve [18]. In case of a constant radius function, the envelope is called tubular or pipe
surface [19]. Also for a canal surface, if the center curve is a straight line, then it becomes a revolution
surface. Canal surfaces (especially tubular surfaces) have been applied to many fields, such as the solid
and the surface modeling for CAD/CAM, construction of blending surfaces, shape re-construction and so
on. In this context, canal and tubular (hyper)surfaces have been studied by many geometers in Euclidean,
Minkowskian, Galilean or pseudo-Galilean spaces (see [7], [14], [20]-[24], [28]-[30], [32], [34]-[37], and etc).

On the other hand, Frenet frame has been used in lots of studies about curves and surfaces, but sometimes
scienticists have needed alternative frames because Frenet frame cannot be identified at the points where
the curvature is zero. Therefore, new alternative frames to the Frenet frame such as Bishop frame, Darboux
frame or extended Darboux frame have been defined by geometers and the theories of curves and surfaces
have been started to handle according to these alternative frames (see [2], [3], [9]-[13], [25], [27], [33], and
etc).

After recalling some basic notions about one type of extended Darboux frame field and the curvatures
of hypersurfaces in E4 in the second section of this paper, we deal with tubular hypersurfaces according
to extended Darboux frame field of first kind in E4 in the third section. We obtain the Gaussian and
mean curvatures of tubular hypersurface according to extended Darboux frame field of first kind and give
some results when the curve which constructs the tubular hypersurfaces is (unit speed) asymptotic or line
of curvature on tubular hypersurface. Finally, we prove a theorem that states the tubular hypersurface
according to extended Darboux frame field of first kind in E4 is a linear Weingarten hypersurface.
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2. PRELIMINARIES

Let {e1, e2, e3, e4} be the standart basis of Euclidean 4-space E4. If −→s = (s1, s2, s3, s4),
−→
t = (t1, t2, t3, t4) and

−→v = (v1, v2, v3, v4) are three vectors in E4, then the inner product and vector product are given by〈
−→s ,
−→
t
〉
= s1t1 + s2t2 + s3t3 + s4t4

and

−→s ×
−→
t × −→v = det


e1 e2 e3 e4
s1 s2 s3 s4
t1 t2 t3 t4
v1 v2 v3 v4

 ,
respectively. Also, the norm of the vector −→s is

∥∥∥−→s ∥∥∥ = √〈−→s ,−→s 〉. Let M ⊂ E4 denote a regular hypersurface
and α : I ⊂ R −→M be a unit speed curve. If {T,n, b1, b2} is the moving Frenet frame along α, then the Frenet
formulas are given by [15] 

T′

n′

b′1
b′2

 =


0 k1 0 0
−k1 0 k2 0

0 −k2 0 k3
0 0 −k3 0




T
n
b1
b2

 ,
where T, n, b1 and b2 denote the unit tangent, the principal normal, the first binormal and the second
binormal vector fields; k1, k2 and k3 are the curvature functions of the curve α.

Here, we will recall the extended Darboux frame field of first kind (for simplicity, we’ll call it ED1-frame
field throughout this paper) and for details about the construction of extended Darboux frame fields, we
refer to [13].

We consider an embedding Ψ : U ⊂ E3
−→ E4, where U is an open subset of E3. Now, we denote

M = Ψ(U) and identify M and U through the embeddingΨ. Let ᾱ : I −→ U be a regular curve and we have
a curve α : I −→ M ⊂ E4 defined by α(s) = Ψ(ᾱ(s)) and so, the curve α is on the hypersurface M. If M is
an orientable hypersurface oriented by the unit normal vector fieldN in E4 and α is a Frenet curve of class
Cn(n ≥ 4) with arc-length parameter s lying on M, then we denote the unit tangent vector field of the curve
by T and denote the hypersurface unit normal vector field restricted to the curve by N, i.e.

T(s) = α′(s) and N(s) = N(α(s)).

The differential equations of ED-frame fields of first kind {T,E,D,N} of the curve α on M in E4 by matrix
notation can be given as 

T′

E′

D′

N′

 =


0 κ1
1 0 κn

−κ1
1 0 κ2

1 τ1
1

0 −κ2
1 0 τ2

1

−κn −τ1
1 −τ2

1 0




T
E
D
N

 , (1)

where ⟨E′,N⟩ = τ1
1, ⟨D′,N⟩ = τ2

1, ⟨T′,E⟩ = κ1
1, ⟨E′,D⟩ = κ2

1 and τi
1 and κi

1 are called the geodesic torsions and
geodesic curvatures of order i, respectively. Also, ⟨T′,N⟩ = κn is the normal curvature of the hypersurface
in the direction of the tangent vector T [13].

Now, the relation matrix may be expressed as [13]
T
n
b1
b2

 =


1 0 0 0
0 cosϕ1 cosϕ2 cosϕ3
0 cosψ1 cosψ2 cosψ3
0 cosθ1 cosθ2 cosθ3




T
E
D
N

 (2)
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and 
T
E
D
N

 =


1 0 0 0
0 cosϕ1 cosψ1 cosθ1
0 cosϕ2 cosψ2 cosθ2
0 cosϕ3 cosψ3 cosθ3




T
n
b1
b2

 . (3)

Also, we have

κ1
1 = ⟨T′,E⟩ = k1 cosϕ1, κn = ⟨T′,N⟩ = k1 cosϕ3,
τ1
1 = −ϕ

′

1 sinϕ1 cosϕ3 − ψ′1 sinψ1 cosψ3 − θ′1 sinθ1 cosθ3

+ k2(cosϕ1 cosψ3 − cosψ1 cosϕ3) + k3(cosψ1 cosθ3 − cosθ1 cosψ3),
τ2
1 = −ϕ

′

2 sinϕ2 cosϕ3 − ψ′2 sinψ2 cosψ3 − θ′2 sinθ2 cosθ3

+ k2(cosϕ2 cosψ3 − cosψ2 cosϕ3) + k3(cosψ2 cosθ3 − cosθ2 cosψ3),
κ2
1 = −ϕ

′

1 sinϕ1 cosϕ2 − ψ′1 sinψ1 cosψ2 − θ′1 sinθ1 cosθ2

+ k2(cosϕ1 cosψ2 − cosψ1 cosϕ2) + k3(cosψ1 cosθ2 − cosθ1 cosψ2).


(4)

Furthermore, the differential geometry of different types of (hyper)surfaces in 4-dimensional spaces has
been a popular topic for geometers, recently ([1], [4], [5], [6], [8], [16], [17], [26], and etc). If

Ψ : U ⊂ E3
−→ E4 (5)

(s, t, v) −→ Ψ(s, t, v) = (Ψ1(s, t, v),Ψ2(s, t, v),Ψ3(s, t, v),Ψ4(s, t, v))

is a hypersurface in E4, then the unit normal vector field, the matrix forms of the first and second fundamental
forms are

NΨ =
Ψs ×Ψt ×Ψv

∥Ψs ×Ψt ×Ψv∥
, (6)

[1i j] =

 111 112 113
121 122 123
131 132 133

 (7)

and

[hi j] =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 , (8)

respectively. Here 1i j =
〈
Ψυi ,Ψυ j

〉
, hi j =

〈
Ψυiυ j ,NΨ

〉
,Ψυi =

∂Ψ(υ1,υ2,υ3)
∂υi

,Ψυiυ j =
∂2Ψ(υ1,υ2,υ3)

∂υiυ j
, i, j ∈ {1, 2, 3}. Also,

the shape operator of the hypersurface (5) is

S = [ai j] = [1i j].[hi j], (9)

where [1i j] is the inverse matrix of [1i j].
With the aid of (6)-(9), the Gaussian and mean curvatures of a hypersurface in E4 are given by

K = det(S) =
det[hi j]
det[1i j]

(10)

and

H =
1
3

tr(S), (11)

respectively [31]. We say that a hypersurface is flat or minimal, if it has zero Gaussian curvature or zero
mean curvature, respectively.
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3. TUBULAR HYPERSURFACES ACCORDING TO ED1-FRAME FIELD IN EUCLIDEAN 4-SPACE

In this section, we obtain the Gaussian and mean curvatures of tubular hypersurfaces according to
ED1-frame field in Euclidean 4-space E4 and give some results for these curvatures when the curve αwhich
constructs the tubular hypersurface is an asymptotic curve, a unit-speed asymptotic curve and a line of
curvature lying on M.

Let α : I −→ M be a unit speed curve lying on a regular hypersurface M and we consider the tubular
hypersurface T according to ED1-frame field of α in E4 given by

T (s, t, v) = α(s) ± ρ [(cos t cos v) E(s) + (sin t cos v) D(s) + (sin v) N(s)] , (12)

where α(s) is the center curve of tubular hypersurface T , ρ ∈ R is constant radius, s ∈ [0, l] and t, v ∈ [0, 2π).
From now on, we state α = α(s), T = T(s), E = E(s), D = D(s), N = N(s) and we will consider the ”±” as ”+”.

Firstly, from (1) and (12) the first derivatives of the tubular hypersurface (12) are obtained as

Ts =
(
1 − ρ(κ1

1 cos t cos v + κn sin v)
)

T − ρ
(
κ2
1 cos v sin t + τ1

1 sin v
)

E
+ ρ
(
κ2
1 cos t cos v − τ2

1 sin v
)

D + ρ cos v
(
τ1
1 cos t + τ2

1 sin t
)

N,

Tt = −
(
ρ sin t cos v

)
E +
(
ρ cos t cos v

)
D,

Tv = −
(
ρ cos t sin v

)
E −
(
ρ sin t sin v

)
D +
(
ρ cos v

)
N.


(13)

From (6) and (13), the unit normal vector field of T in E4 is

N = (cos t cos v) E + (sin t cos v) D + (sin v) N. (14)

Also, the coefficients of the first fundamental form are

111 =
(
ρ
(
κ2
1 cos v sin t + τ1

1 sin v
))2
+
(
ρ cos v

(
τ1
1 cos t + τ2

1 sin t
))2

+
(
ρ
(
κ2
1 cos t cos v − τ2

1 sin v
))

2 +
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
)

2,

112 = 121 = ρ2 cos v
(
κ2
1 cos v + sin v(τ1

1 sin t − τ2
1 cos t)

)
,

113 = 131 = ρ2
(
τ2
1 sin t + τ1

1 cos t
)
,

122 = ρ2 cos2 v, 123 = 132 = 0, 133 = ρ2


(15)

and it follows that

det[1i j] = ρ4(−1 + ρκ1
1 cos t cos v + ρκn sin v)2 cos2 v. (16)

Now, for obtaining the coefficients of the second fundamental form, we give the second derivatives
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Tυiυ j =
∂2
T

∂υiυ j
of the tubular hypersurface (12):

Tss = T
1

ss T + T 2
ss E + T 3

ss D + T 4
ss N,

Tst = Tts =
(
ρκ1
1 sin t cos v

)
T −
(
ρκ2
1 cos t cos v

)
E −
(
ρκ2
1 sin t cos v

)
D

−

(
ρ(τ1

1 sin t − τ2
1 cos t) cos v

)
N,

Tsv = Tvs =
(
ρ
(
κ1
1 sin v cos t − κn cos v

))
T +
(
ρ
(
κ2
1 sin v sin t − τ1

1 cos v
))

E
−

(
ρ
(
κ2
1 sin v cos t + τ2

1 cos v
))

D −
(
ρ
(
τ1
1 cos t + τ2

1 sin t
)

sin v
)

N,

Ttt = −
(
ρ cos t cos v

)
E −
(
ρ sin t cos v

)
D,

Ttv = Tvt =
(
ρ sin t sin v

)
E −
(
ρ cos t sin v

)
D,

Tvv = −
(
ρ cos t cos v

)
E −
(
ρ sin t cos v

)
D −
(
ρ sin v

)
N,



(17)

where

T
1

ss = ρ

 κ1
1

(
κ2
1 cos v sin t + τ1

1 sin v
)
− (κn)′ sin v

−

(
τ1
1κn cos t + τ2

1κn sin t + (κ1
1)′ cos t

)
cos v

 ,
T

2
ss = −ρ

(
(κ1
1)2 + (κ2

1)2 + (τ1
1)2
)

cos t cos v + κ1
1(1 − ρκn sin v)

− ρ((−κ2
1τ

2
1 + (τ1

1)′) sin v + (τ2
1τ

1
1 + (κ2

1)′) sin t cos v),

T
3

ss = −ρ
(
(κ2
1)2 + (τ2

1)2
)

sin t cos v + (τ2
1τ

1
1 − (κ2

1)′) cos t cos v
+ (κ2

1τ
1
1 + (τ2

1)′) sin v),

T
4

ss = −ρτ
1
1(κ2
1 sin t cos v + τ1

1 sin v) + ρτ2
1(κ2
1 cos t cos v − τ2

1 sin v)
− κn

(
−1 + ρκ1

1 cos t cos v + ρκn sin v
)
+ ρ
(
(τ1
1)′ cos t + (τ2

1)′ sin t
)

cos v.

Thus, from (8), (14) and (17), the coefficients of the second fundamental form are

h11 = −ρ
((

(κ1
1)2 + (τ1

1)2
)

cos2 t + (κ2
1)2 + 2τ1

1τ
2
1 sin t cos t + (τ2

1)2 sin2 t
)

cos2 v
− ρ
(
(τ1
1)2 + (τ2

1)2 + (κn)2
)

sin2 v − κ1
1

(
−1 + 2ρκn sin v

)
cos t cos v

− ρκ2
1

(
τ1
1 sin t − τ2

1 cos t
)

sin(2v) + κn sin v,

h12 = h21 = −ρ
(
κ2
1 cos v + sin v(τ1

1 sin t − τ2
1 cos t)

)
cos v,

h13 = h31 = −ρ
(
τ1
1 cos t + τ2

1 sin t
)
,

h22 = −ρ cos2 v, h23 = h32 = 0, h33 = −ρ



(18)

and it implies that

det[hi j] = −ρ2 cos2 v
(
κ1
1 cos t cos v + κn sin v

) (
−1 + ρκ1

1 cos t cos v + ρκn sin v
)
. (19)

So, from (10), (16) and (19), we have

Proposition 3.1. The Gaussian curvature of the tubular hypersurfaces (12) in E4 is

K = −
κ1
1 cos t cos v + κn sin v

ρ2(−1 + ρκ1
1 cos t cos v + ρκn sin v)

. (20)
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Corollary 3.2. The Gaussian curvature of the tubular hypersurfaces (12) in E4 does not depend on the geodesic
curvature of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.3. The tubular hypersurfaces (12) in E4 is flat if and only if

κ1
1 cos t cos v = −κn sin v

holds.

Corollary 3.4. If κ1
1 = κn = 0, then the tubular hypersurfaces (12) in E4 is flat.

Also, after finding the inverse of the matrix of the first fundamental form and using this and (18) in (9),
the shape operator of the tubular hypersurface (12) is obtained by

S =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 , (21)

where

S11 = −
κ1
1 cos t cos v + κn sin v

−1 + ρκ1
1 cos t cos v + ρκn sin v

, S12 = S13 = 0,

S21 =
sec v

(
κ2
1 + tan v

(
τ1
1 sin t − τ2

1 cos t
))

ρ
(
− sec v + ρκ1

1 cos t + ρκn tan v
) , S22 = −

1
ρ
, S23 = 0,

S31 =
τ1
1 cos t + τ2

1 sin t

ρ
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) , S32 = 0,S33 = −

1
ρ
.

Hence from (11) and (21), we get

Proposition 3.5. The mean curvature of the tubular hypersurfaces (12) in E4 is

H =
2 − 3ρ

(
κ1
1 cos t cos v + κn sin v

)
3ρ
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) . (22)

Corollary 3.6. The mean curvature of the tubular hypersurfaces (12) in E4 does not depend on the geodesic curvature
of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.7. The tubular hypersurfaces (12) in E4 is minimal if and only if

κ1
1 cos t cos v + κn sin v =

2
3ρ

(23)

holds.

Corollary 3.8. If κ1
1 = κn = 0, then the tubular hypersurface (12) in E4 has negative constant mean curvature with

−2
3ρ .

Here, from (20) and (22), we can state the following theorem which gives an important relation between
Gaussian and mean curvatures:
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Theorem 3.9. The Gaussian curvature K and the mean curvature H of tubular hypersurfaces (12) in E4 satisfy

3H = ρ2K −
2
ρ
. (24)

Also, from (21) we have

det(S − λI3) = −

(
1 + λρ

)2 (
−λ +

(
1 + λρ

)
κ1
1 cos t cos v +

(
1 + λρ

)
κn sin v

)
ρ2
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) . (25)

By solving the equation det(S − λI3) = 0 from (25), we obtain the principal curvatures of the tubular
hypersurfaces (12) in E4 as follows:

Proposition 3.10. The principal curvatures of the tubular hypersurfaces (12) in E4 are

λ1 = λ2 = −
1
ρ

and λ3 = −
κ1
1 cos t cos v + κn sin v

−1 + ρκ1
1 cos t cos v + ρκn sin v

. (26)

Furthermore, if a curve α is a unit-speed asymptotic curve parametrized by arc-length on an oriented
hypersurface M in E4, then we have

κn = 0, κ1
1 = k1, κ

2
1 = k2 cosφ, τ1

1 = −k2 sinφ, τ2
1 = k3 +

dφ
ds
, (27)

where φ denotes the angle between D and B1 [13]. Thus using (27), we have

Corollary 3.11. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E4 are

K = −
k1 cos t cos v

ρ2 (−1 + ρk1 cos t cos v
) (28)

and

H =
2 − 3ρk1 cos t cos v

3ρ
(
−1 + ρk1 cos t cos v

) , (29)

respectively.

Corollary 3.12. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E4 are independent of the angle φ.

Also in [24], the authors have studied on canal and tubular hypersurfaces according to the Frenet frame
in E4 and they have obtained the Gaussian and mean curvatures of tubular hypersurface

T (s, t, v) = α(s) + ρ [(cos t cos v) n(s) + (sin t cos v) b1(s) + (sin v) b2(s)] (30)

as (28) and (29). Therefore

Theorem 3.13. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurfaces (12) according to ED1-frame field and (30) according to Frenet frame coincide.

On the other hand, the curve α lying on M is a line of curvature if and only if τ1
1 = τ

2
1 = 0 [13]. So, we

have

Corollary 3.14. If the curve α is line of curvature lying on M, then the Gaussian and mean curvatures of tubular
hypersurface (12) in E4 are (20) and (22) respectively.
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Finally, we will give a theorem about linear Weingarten tubular hypersurface according to ED1-frame
field of unit speed curve α lying on M in E4. We know that, a hypersurface is called a linear Weingarten
hypersurface, if it satisfies

aH + bK = c, (31)

where a, b, c are not all zero constants. Thus, we have

Theorem 3.15. The tubular hypersurface (12) in E4 is a linear Weingarten hypersurface.

Proof. We know that, the relation between the mean and Gaussian curvatures of the tubular hypersurface
(12) in E4 is given by (24). So, if we take a = 3, b = −ρ2 and c = −2

ρ in (31), the proof completes.

Example 3.16. We take the unit speed curve

α(s) =
(
sin
(3s

5

)
, cos
(3s

5

)
, sin
(4s

5

)
, cos
(4s

5

))
(32)

on the hypersphere M...x2 + y2 + z2 + t2 = 2 in E4. The Frenet apparatus of this curve is

T = 1
5

(
3 cos

(
3s
5

)
,−3 sin

(
3s
5

)
, 4 cos

(
4s
5

)
,−4 sin

(
4s
5

))
,

n = − 1
√

337

(
9 sin

(
3s
5

)
, 9 cos

(
3s
5

)
, 16 sin

(
4s
5

)
, 16 cos

(
4s
5

))
,

b1 =
1
5

(
4 cos

(
3s
5

)
,−4 sin

(
3s
5

)
,−3 cos

(
4s
5

)
, 3 sin

(
4s
5

))
,

b2 = −
1
√

337

(
16 sin

(
3s
5

)
, 16 cos

(
3s
5

)
,−9 sin

(
4s
5

)
,−9 cos

(
4s
5

))


(33)

and

k1 =

√
337
25

, k2 =
84

25
√

337
, k3 =

12
√

337
. (34)

Also, we have the ED1-frame fields of unit speed curve α as

T = 1
5

(
3 cos

(
3s
5

)
,−3 sin

(
3s
5

)
, 4 cos

(
4s
5

)
,−4 sin

(
4s
5

))
,

E = 1
√

2

(
sin
(

3s
5

)
, cos
(

3s
5

)
,− sin

(
4s
5

)
,− cos

(
4s
5

))
,

D = 1
5

(
−4 cos

(
3s
5

)
, 4 sin

(
3s
5

)
, 3 cos( 4s

5 ),−3 sin( 4s
5 )
)
,

N = 1
√

2

(
sin
(

3s
5

)
, cos
(

3s
5

)
, sin
(

4s
5

)
, cos
(

4s
5

))


(35)

and the normal curvature, geodesic curvatures and geodesic torsions of order 1 and 2 are obtained as

κn = −
1
√

2
, κ1
1 =

7

25
√

2
, κ2
1 = −

12
√

2
25

, τ1
1 = 0, τ2

1 = 0, (36)

respectively. Hence using (35) in (12), we get the tubular hypersurface according to ED1-frame field in E4 as

T (s, t, v) =



−
4
5ρ cos( 3s

5 ) cos v sin t + 1
2 sin( 3s

5 )
(
2 +
√

2ρ (cos v sin t + sin v)
)
,

4
5ρ sin( 3s

5 ) cos v sin t + 1
2 cos( 3s

5 )
(
2 +
√

2ρ (cos v sin t + sin v)
)
,

3
5ρ cos( 4s

5 ) cos v sin t + 1
2 sin( 4s

5 )
(
2 +
√

2ρ (− cos v sin t + sin v)
)
,

−
3
5ρ sin( 4s

5 ) cos v sin t + 1
2 cos( 4s

5 )
(
2 +
√

2ρ (− cos v sin t + sin v)
)


(37)
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and from (20), (22) and (36), we obtain the Gaussian and mean curvatures of the tubular hypersurface (37) as

K = −
7 cos t cos v − 25 sin v

ρ2
(
7ρ cos t cos v − 25

(√
2 + ρ sin v

)) and H =
100 − 3

√
2ρ (7 cos t cos v − 25 sin v)

3ρ
(
−50 +

√
2ρ (7 cos t cos v − 25 sin v)

) , (38)

respectively. In the following figures, one can see the projections of the tubular hypersurface (37) for v = π
3 and ρ = 3

into x1x2x3 (A), x1x2x4 (B), x1x3x4 (C) and x2x3x4-spaces (D).

Figure 1
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