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ABSTRACT

Modeling with inconsistent fuzzy information is not possible for some problem types. For such 
cases, pythagorean fuzzy sets (PFSs) cannot be used in problem formulations and a conversion 
to another fuzzy set extension is needed. As a new conversion between PFSs and intuitionistic 
fuzzy sets (IFSs), the projective relation was proposed in the literature and its results were 
compared with the normalization that is the conversion method used by all. However, 
projective relation conversion is not valid. This conversion is based on the approach of 
subtraction of the part causing the inconsistency from the membership, non-membership and 
indeterminacy grades equally. This is not a proper approach because a negative grade is 
obtained when one of the membership and non-membership grades of PFS is smalller than the 
equally substracted part. In this study, the error in the proof of the projective relation has been 
discussed by presenting a counterexample. A new conversion namely “square-scaled 
normalization” (SSNORM) which converts PFSs to IFSs by rescaling the grades depending on 
the relative greatness of their squares has been offered and its score and accuracy functions 
have been formulated. SSNORM method has been examined on a numerical example from the 
manufacturing industry and the obtained results have been compared with the normalization. 
Although both methods obtained results close to each other, SSNORM yielded more cautious 
results. It reached a bigger score function value but a smaller accuracy function value compared 
to the normalization. SSNORM method can be preferrable alternative of the normalization if 
the approximation errors caused by the linear rescaling is high.      
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INTRODUCTION 

The uncertainty is modeled with the term “membership 
function” and the sum of membership and non-member-
ship grades of each set element is equal to 1 for standard 

fuzzy sets (FSs) [2]. However, it may not always be equal to 
1. Intuitionistic fuzzy sets (IFSs) were offered by Atanassov
[3] as a generalization of FSs. The sum of membership and
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non-membership grades of the set elements is less than 
or equal to 1 for IFSs. The difference, w hich c auses t he 
inequality, is called the indeterminacy grade. Pythagorean 
fuzzy sets (PFSs) offered by Yager [4] [5] are a class of non-
standard fuzzy sets (FSs) which are more general than 
intuitionistic fuzzy sets (IFSs) because of giving ability to 
model with inconsistent data. PFSs are characterized by the 
condition that the sum of squares of membership and non-
membership grades is less than or equal to 1. Which means 
that the sum of membership and non-membership grades 
can exceed 1. 

Working with inconsistent data may not be acceptable 
for some problem formulations such as acceptance sam-
pling plans. In such scenarios, the only thing that can be 
done to use the available inconsistent data in formulations 
is to convert it to consistent data. There are several studies 
on the conversion methods between the FS extensions in 
the literature. The m ost c ommon c onversion a pproach t o 
convert all non-standard fuzzy sets (FSs) into standard FSs 
is the normalization. For example, it is preferred for the 
conver-sion between Neutrosophic sets and IFSs by 
Smarandache [6]. Wang et al. [7] proposed a conversion 
between vague sets (It is proven that the vague set con-
cept is identical with IFS concept [8].). Liu et al. [9] stud-
ied a conversion between soft sets and standart FSs, 
Deschrijver & Kerre [10] investigated the relationship 
and isomorphism between L-fuzzy sets, FSs, IFSs and 
interval valued ver-sions of them. Transformation 
between probabilistic and fuzzy information is also a 
widely researched in the literature [11] [12] [13] [14] 
[15]. There are also some studies about the conversion 
between PFSs and IFSs. Beliakov & James

[16] discussed the mappings from IFSs to PFSs by analyz-
ing multiple dilation spaces crossing at the point where the
membership and non-membership grades are the same.
Instead of presenting a clear conversion method, this
analysis results were used for partial and total ordering of
membership pairs belonging to different FS families in an
aggregation process. Tao et al. [1] employed the normal-

ization for the conversion between PFSs and IFSs and pro-
posed an alternative conversion method named “projective 
relation”, then used these two methods to derive the infor-
mation measures of PFSs for multi criteria decision making 
(MCDM) problems.

According to the projective relation, the part of the 
total grades exceeding 1 is divided by 3 and subtracted 
from membership, non-membership and indeterminacy 
grades. It is obvious that one of the grades of the PFS is 
smalller than the equally substracted part, the method may 
yield a negative grade. For this reason, this method is not 
a valid conversion between PFSs and IFSs. This problem is 
caused by an error in the proof of the projective relation. 
In this study, this error has been presented with a counter 
example and disproof, then a new conversion method has 
been offered. Th e off ered con version met hod  is a c ons id-
erable alternative of the normalization because it reduces 

the approximation errors caused by the linear rescaling. An 
important advantage of this method over the mentioned 
studies is giving ability to continue modeling with precise 
fuzzy modeling and so having application area for the other 
type of problems apart from MCDM problems.

This paper is organized as follows. In Section 2, some 
notations and definitions have been presented. The error 
about the proof has been pointed out, a counterexample 
has been presented, and disproof for the theorem has been 
submitted in Section 3. A new conversion has been offered 
in Section 4, findings have been illustrated on a numeri-
cal example in Section 5, and the concluding remarks have 
been discussed in Section 6.

 PRELIMINARIES

A variable can be both partially member and non-mem-
ber at the same time in fuzzy set theory. The s um of t he 
membership and non-membership grades of a set element 
is equal to 1 for standard FSs. 

Definition 1: Let X be a given reference universe, Ã  be a 
standard FS on X, μÃ (x)∈[0,1] be the membership function 
of x∈X into the set Ã, and ϑÃ(x) be the non-membership 
function which is complement of μÃ (x). Ã is represented 
as Ã = {X,μÃ (x) | X∈X} satisfying Eq. (1) [2]. 

µ ϑ� �A Ax x( ) + ( ) = 1 (1)

Standard FSs require overall information about the 
event. It is named as complete information case. However, 
it may not always be possible to decide the membership 
and non-membership grades of the set elements 
satisfy-ing Eq. (1). For example, some factors such as 
physi-cal obstacles or instructional inabilities can cause 
hesitation and it can hinder the complete information 
case. IFSs have been offered to model the uncertainties 
including such incomplete information cases. 

Definition 2: Let X be a given reference universe. An 
IFS Ä̃ on X is represented as in Eq. (2) and 
indeterminacy grade of an element x ∈X (πÃ(x)) is defined 
as in Eq. (3)[ 3].

�
� � � �

� � �

A x x x x X x x

x x x
A A A A

A A A

= ( ) ( ) ∈{ } ( ) + ( ) ≤
( ) + ( ) +

, , , ,µ ϑ µ ϑ
µ ϑ π

1
(( ) = 1

	 (2)

⇒ ( ) = − ( ) ( )( )π µ ϑ� � �A A Ax x x1 , (3) 

In some cases, the sum of the membership, non-mem-
bership and indeterminacy grades can exceed 1. This cir-
cumstance is named as inconsistent information. PFS is a 
type of FS allows modeling with inconsistent data.

Definition 3: Let Ã be a PFS, r(x) ∈ [0,1] be the strength 
of commitment at x, d(x) ∈ [0,1] be the direction of com-
mitment, AY(x) be the support for membership of x in Ã, 
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Disproof of Theorem 1 has been presented below. Only 
the problematic part of the theorem has been considered 
to earn from the space. According to Tao et al [1], Eq. (10) 
is satif-sied for all PFNs P̃:〈μP, ϑP, πP〉.Disproof: In order to find the lower limit of the 
statement shown in Eq. (9), membership grade should 
be minimized, and the sum of the non-membership and 
inde-terminacy grades should be maximized. Figure 1 
shows the maximum value of the sum of the non-
membership and indeterminacy grades is equal to 1.4142 
when the membership grade is equal to 0. 
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The upper limit of the statement is found by maximiz-
ing the membership grade. 
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As seen above, the statement shown in Eq. (9) can 
take negative values. This result shows, the Theorem 1 
pre-sented by Tao et all. [1] is not valid. Example 1 
supports this finding.

Example 1: Let P̃  = 〈μP = 0.0866, ϑP = 0.95, πP = 0.3〉
be a PFN satisfying 0 ≤ μP

2 + ϑP
2 + πP

2 ≤1. The projection 
of P̃ is found as 〈μI

P = –0.0256, ϑI
P = 0.8378, πI

P = 0.1878〉
depending on the Eq. (9). Negative membership grade is 
unpermitted for IFNs, so the projection of P̃ is not an 

AN(x) be the support against membership of x in Ã and, θ(x) 
∈ [0, π/2] be a raidan angle. AY(x) and AN(x) are defined as 
in Eq. (4) and a Pythagorean membership grade rep-
resented with a pair of values r(x) and d(x) for each x ∈X
while r(x) and d(x) are associated with a pair of AY(x) and 
AN(x) as in Eqs. (5) and (6) [4].

A x r x x A x r x xY N( ) = ( ) × ( )( ) ( ) = ( ) × ( )( )cos , sinθ θ 	(4)

r x A x A xY N( ) = ( ) + ( )( )2 2 (5)

d x
x( ) =

− ( )π θ
π
2

(6)

Definition 4 : L et Ã b e a  P FS, rÃ (x) ∈[0,1] b e t he 
strength of commitment at x in Ã, AY(x) be the support for 
membership of x in Ã, AN(x) be the support against mem-
bership of x in Ã and, θ ∈ [0,π/2] be a raidan angle. PFS Ã 
is defined as in Eq. (7) when it is written with the same 
terminology and letter symbols with IFSs and the indeter-
minacy grade of an element x ∈X (πÃ(x)) is defined as in 
Eq. (8).

�
� �
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A x x A x x A x x X

x x
A Y A N

A A A

= ( ) = ( ) ( ) = ( ) ∈{ }
( ) + ( ) ≤

, , ,

,

µ ϑ

µ ϑ µ2 2 21 xx x xA A( ) + ( ) + ( ) =ϑ π� �
2 2 1

	(7)

π µ ϑ� � � �A A A Ax r x x x( ) = − ( ) = − ( ) + ( )( )1 12 2 2 	 (8) 

Definition 5: Let Ã be a PFS. Denotation of Ã as a pair 
of values such that α = 〈μÃ ∈[0,1], ϑÃ ∈[0,1]〉, μÃ

2 + ϑÃ
2 ≤ 1 is 

called as Pythagorean fuzzy number (PFN) [5].

ERROR IN TAO ET AL’S PROOF OF THEOREM

Tao et al. [1] presented Theorem 1 (Theorem 3.1 in 
the original paper) to propose the “projective relation”. 
Nevertheless, this method yields negative grades in some 
cases. This problem is caused by an error in the proof of 
Theorem 1. 

Theorem 1: Eq. (9) provides a conversion from a 
Pythagorean fuzzy number (PFN) 〈μP, ϑP, πP〉 to and intu-
itionistic fuzzy number (IFN) 〈μI

P, ϑI
P, πI

P〉 [1]. 

µ µ µ ϑ π
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I
P
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I
P

P
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I
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= −
+ + −
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+ + −

= −
+ + −

1
3

1
3

1
3

,

,

,

(9)

Theorem 1 assumes that Eq. (10) is verified for all PFSs. 
However, it is not satisfied if  ϑP + πP – 1 is greater   t      han  2μP. 

Figure 1. Non-membership and indeterminacy grades 
when membership is equal to 0.
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IFS. In addition, it does not ensure Eq. (10) too as shown 
below:

2 1
3

0 0256 0 06

2 1
3

2 2

µ ϑ π

µ ϑ π

P P P

P P P

− − +
= − ≥

=
− + +

. .

A NEW CONVERSIONS BETWEEN 
PYTHAGOREAN FUZZY SETS AND 
INTUITIONISTIC FUZZY SETS

Normalization is a popular approach to convert 
non-standard FSs into standard ones. For example, 
Smarandache [6] has offered to use the normalization 
to convert the Neutrosophic sets (NSs) into IFSs. Tao et 
al. [1] have suggested to use it for conversion between 
PFS and IFSs. The l ogic b ehind t he n ormalization i s 
s imple. It rescales the membership, non-membership, 
and indeterminacy grades with a ratio to satisfy the 
condition given in Eq. (2). Normalization is formulated 
as in Definition 6.

Definition 6: Let P̃ = 〈μP, ϑP, πP〉 be a PFN, Ã = 〈μI
P, ϑI

P, πI
P〉

be an IFN. Normalization of P̃ defined by Eq. (11) provides a 
conversion from P̃ to Ã [1].

µ µ
µ ϑ π

ϑ ϑ
µ ϑ π

π π
µ ϑ π

I
P P

P P P

I
P P

P P P

I
P P

P P P

x

x

=
+ +

=
( )

+ +

=
( )

+ +

,

, (11)

P̃
P̃

Normalization scale downs the grades by dividing 
them with the same ratio. For this reason, it protects 
the relative greatness of the grades between each other 
and always produces an IFS. While the main condition 
of PFSs shown in Eq. (7) is considering the squares of 
the grades, the normalization rescales the grades by 
using the sum of them. Accuracy of the normalization 
approach is negotiable because protecting the relative 
greatness of the grades. This approach may not always 
be acceptable for some situations related to PFSs. The 
definition space [which is limited by Eq. (7)] 
consumption increases exponentially while a grade is 
getting bigger. Based on this, rescaling can be done by 
considering the relative greatness of the squares of the 
grades as an alternative approach to the normalization. 
In this way, the rescaling procedure reduces large 
grades more than small grades. This approach is 
formulated as in Definition 7.

Definition 7: Let P̃ = 〈μP, ϑP, πP〉 be a PFN, Ã = 〈μI
P,

ϑI
P, πI

P〉 be an IFN. Square-scaled normalization of  
defined by Eq. (12) provides a conversion from  to Ã .
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	 (12)

Theorem 2: Eq. (12) produces an IFN for all PFNs. 
Proof: μI

P + ϑI
P + πI

P = 1 should be satisfied for all IFNs. 

Figure 2. Membership grades for standard and square-scaled normalizations when (a) π = 0 and (b) π = 0.1.



Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 188–195, March, 2022 192

The accuracy function H( Ã) of Ã is obtained as in Eq. (14 ).

H A I
P
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	 (14)

Example 2: For the PFN given in Example 1, NORM 
and SSNORM are found as follows: 
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The score and accuracy functions can be used for compar-
ison and ordering of multiple IFNs in the context of MCDM 
problems. The comparison law offered by [19] is applicable 
for the IFNs produced by the SSNORM conversion too.

Definition 10: Let Ã1, Ã2 be two IFNs, S(Ã1), S(Ã2) be the 
score functions, and H(Ã1), H(Ã2) be the accuracy functions. 
The IFNs are ordered by the following comparison rules [19]:

• If S(Ã1) < S(Ã2), then Ã1< Ã2

• If S(Ã1) > S(Ã2), then Ã1> Ã2

• If S(Ã1) = S(Ã2), then:
o If H(Ã1) < H(Ã2), then Ã1= Ã2

o If H(Ã1) > H(Ã2), then Ã1< Ã2

o If H(Ã1) = H(Ã2), then: Ã1> Ã2

A NUMERICAL EXAMPLE FROM 
MANUFACTURING INDUSTRY

The proposed conversion method has been demon-
strated on a numerical example from a pen manufacturer 
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It must be ensured that μI
P, ϑI

P, πI
P ∈[0,1] is satisfied. As 

we know that μP + ϑP + πP  ≤ 2 is satisfied for all PFNs, the 
statement μI

 + ϑI
 + πI  – 1 is between 0 and 1. We also have 

μP + ϑP + πP  ∈[0,1] from Definition 5. Depending on these 
prerequisites, the following conditions are satisfied.

µ µ µ ϑ π µ µ µ

ϑ ϑ µ ϑ π ϑ ϑ
I
P

P P P P P P P

I
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ϑ
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2
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The square-scaled normalization (SSNORM) pro-
duces IFSs close to the ones obtained by the normalization 
(NORM). Figure 2 shows the comparison between mem-
bership grades of the IFSs against the non-membership 
grade change procured by these two methods for the cases 
in which the indeterminacy grade is equal to 0 and 0.1.

As seen in Figure 2 the difference between NORM 
and SSNORM increases depending on the increase of the 
indeterminacy grade. The membership grade obtained by 
SSNORM is observed smaller than the one obtained by 
NORM for big PFN membership grades. SSNORM reduces 
the small grades less and big grades more. The results of the 
two conversion methods are same when the PFN member-
ship and non-membership grades are equal. 

Based on the IFSs, some metrics have been discussed 
in the literature. Score function, one of these metrics, is a 
measure of the degree of the suitability of the fuzzy infor-
mation for decision maker’s requirement. Score function 
is formulated as the difference between membership and 
non-membership grades [17]. Another metric is the accu-
racy function which measures the degree of certainty of the 
fuzzy information. Accuracy function is formulated as the 
sum of membership and non-membership degrees [18]. 

Definition 8: Let P̃ = 〈μP, ϑP, πP〉 be a PFN, Ã = 〈μI
P, ϑI

P,
πI

P〉 be an IFN obtained by the SSNORM conversion of P̃.
The score function S( Ã) of Ã is obtained as in Eq. (13).

S A I
P

I
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P P P P P

P P P P P

�( ) = − = − + + −( )( )
− − + + −( )( )

µ ϑ µ µ µ ϑ π
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1 1

1 1
	 (13)

Definition 9: Let P̃ = 〈μP, ϑP, πP〉 be a PFN, and Ã = 〈μI
P, 

ϑI
P, πI

P〉 be an IFN obtained by the SSNORM conversion of P̃. 
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company in this section. The company produces pens; and 
the body of plastic pens are purchased from a supplier. 
Acceptance sampling procedure has been applied to the 
pen bodies. Pen bodies might have different types of defects 
having different significances. For example, while the screw 
area defects are considered totally defective, major color 
defects and minor form defects are considered acceptable. 
The defectiveness levels also vary inside the defect classes 
thus deciding the defectiveness class of the pen bodies may 
not be possible because of indetermination. 

The parameters of the traditional ASPs are decided by 
using a single numerical acceptable quality level (AQL) 
[20]. For this reason, they do not give the ability to model 
this variability of item defectiveness. Multiple defect types 
and relevant AQL levels are defined, and multiple separate 
ASP procedure are conducted in practice as an alternative 
solution to overcome this limitation [21]. However, there is 
no need to organize multiple ASPs because the ASP formu-
lation based on IFS proposed by Işık & Kaya [22] fits well 
with this scenario. 

Definition 11: Let p̃ be the fuzzy defective item propor-
tion and, q̃ be the fuzzy non-defective item proportion in a 
lot, n be the sample size, c be the maximum allowed defec-
tive item count, and τ be the maximum allowed indetermi-
nate item count. An intuitionistic fuzzy ASP is a set of rules, 
in which the defectiveness of the items is an IFS such that 
Ä̃ = {x, μÃ (x) = P̃, ϑÃ (x) = q̃ |x∈X} satisfying p̃ + q̃ ≤ 1 with
the hesitancy/non-determinacy degree π̃  = 1 – p̃ – q̃ [22]. 

Definition 12: L ot a cceptance p robability ( P̃) a nd l ot 
rejection probability (P̃r) for intuitionistic fuzzy ASPs are 
calculated as shown in Eqs. (15) and (16) [22].
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The symbols ⊕, Θ and ⊗ have been used for addition, 
subtraction, and multiplication operations, respectively 
related to FSs.

Definition 13: Average outgoing quality (AO�Q) and 
average total inspection (AT�I ) are calculated for the lots
having N items as in Eqs. (17) and (18) [22]. 

AOQ P Pa
� � �= ⊗ (17)

ATI n P N na
� �

0 1( ) = ⊕ ( )⊗ ( )Θ Θ (18)

In some cases that require working with multiple 
experts such as purchasing the pen bodies from an alterna-
tive supplier in case of urgency, the assessments for the item 
defectiveness may contain inconsistency. In such cases, the 
ASP formulation offered by Işık & Kaya [22] cannot be used 
and conversion to the IFSs is required. 

Assume that the company wants to perform ASP having 
parameters n = 50, c = 5 and τ = 4 for the lots having 500 
items. The experts assessed the defective item proportion as 
0.15, non-defective item proportion as 0.98 and indetermi-
nate item proportion as 0.13. For this assessment, the 
main condition of the PFSs presented in Eq. (7) is 
satisfied. Membership, non-membership, and 
indeterminacy grades are found as in Table 1 for NORM 
and SSNORM. 

As seen in Table 1, the defective item proportion 
have been obtained close to each other for two conversion 
meth-ods. However, the difference of defectiveness and 
non-defec-tiveness grades have been obtained bigger for 
NORM in comparison with SSNORM. The ASP results 
for the conver-sion methods have been presented in Table 
2. SSNORM has

Table 1. Membership, non-membership and indeterminacy grades for the conversion methods

Conversion Method Defectiveness Non-defectiveness Indeterminacy
Normalization 0.1190 0.7778 0.1032
Square-scaled Normalization 0.1441 0.7303 0.1256

Table 2. ASP results for the conversion methods

Conversion Method Acceptance Probability Rejection Probability Average Outgoing 
Quality

Average Total 
Inspection

Normalization 0.1598 0.5561 0.2842 0.0190
Square-scaled Normalization 0.0453 0.7453 0.2093 0.0065
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given more precautionary results for ASPs because a 
bigger defective item proportion has been reached by 
SSNORM than NORM. Acceptance probability has 
been obtained smaller by using SSNORM conversion. 
Depending on this, smaller AOQ and ATI values have 
been found.

CONCLUSION

PFSs are the generalized version of IFSs allow to 
model the uncertainty with inconsistent data. However, 
working with inconsistent data may not be applicable for 
some real-life problems such as ASPs. For these cases, it 
is required to convert the PFS statements into IFSs. The 
most popu-lar conversion method named normalization 
depends on scaling down the membership, non-
membership, and indeterminacy grades by linear 
proportioning. Thence, it protects the relative greatness 
of the grades between each other. There is another 
conversion named “projective rela-tion” offered in the 
literature as an alternative of the nor-malization. 
However, this conversion method is not valid because it 
can cause negative membership grades. In this study, 
the error about the proof of the projective 
relation between PFNs and IFNs offered by Tao et al. [1] 
has been pointed out, a disproof and a counter example 
have been presented. As an alternative conversion, a 
modified ver-sion of the normalization named 
“square-scaled normaliza-tion” has been offered. A 
numerical ASP example has also been presented and the 
results for the suggested conversion method have been 
compared with the normalization. The proposed 
conversion method has provided more cautious results 
for ASPs. 

As future directions, the suggested conversion 
method can be combined with the linguistic fuzzy 
approach and used in MCDM problems, fuzzy distance 
measures can be formulated for the IFSs produced by the 
suggested conver-sion, and new conversions can be 
examined and compared with the suggested one.
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