Cüce Eliptik Galaksilerin Doğası ve Yıldız Popülasyon Çalışmaları

Şeyda Şen,¹ \star ^{\circ} Reynier F. Peletier,² ^{\circ} Cahit Yeşilyaprak³

¹Sabancı Üniversity, Faculty of Engineering and Natural Sciences, İstanbul 34956, Turkey

 $^2 {\it Kapteyn}$ Astronomical Institute, University of Groningen, P. O. Box 800, 9700 AV Groningen, Netherlands

³Dept. of Astronomy and Astrophysics, Faculty of Science, Atatürk University, 25030, Erzurum, Turkey

Accepted: February 20, 2022. Revised: February 1, 2022. Received: January 21, 2022.

Özet

Cüce Eliptik Galaksiler (dwarf elliptical galaxies, dEs) galaksi küme evrimini anlamak için anahtar rol oynarlar. Bu çalışmada SMAKCED (Stellar content, MAss and Kinematics of Cluster Early-type Dwarf galaxies) projesinin bir parçası olarak Virgo galaksi kümesinde salt parlaklığı $-19.0 < M_r < -16.0$ aralığında bulunan 37 dEs'nin yıldız pupülasyon ve element bolluğu hesaplanmıştır. Yıldız popülasyon analizi, yüksek çözünürlüklü tayfsal veriler ışığında soğurma çizgi genişlik indekslerin ölçülmesi, indeks-indeks diyagramları, temel parametre bağıntıları ve yıldız popülasyon modellerinin kullanılması ile elde edilmiştir. Bu galaksilere ait yaş, metallik ve element bolluğu $R_e/8$ açıklığı içerisinde saptanmıştır. Bolluk analizinde [Na/Fe] NaD, [Ca/Fe] Ca4227 ve [Mg/Fe] Mgb çizgi indeksileri kullanılarak hesaplanmıştır. Bu hesaplamaların ışığında α elementi olan [Mg/Fe] güneş bolluğunda iken [Na/Fe] ın daha az bollukta olduğu tespit edilmiştir. Bu durum dev eliptiklerde bulunan durumun tamamen zıttıdır, ama bu trend NGC1396 Fornax cücesinin önceki çalışmaları ile uyum içerisindedir.Bu tür bolluk düzenlerine neden olabilecek olası senaryolar tartışılmış ve dE'lerin geç tip cüceler veya küçük spirallerden oluşabileceği disk benzeri yıldız oluşum tarihçelerine (Star Formation History, SFH) sahip olabileceği öngörüsünde bulunulmuştur. Naverimliliği yıldızlardaki nötron fazlalığından dolayı metalliğe bağımlıdır. dEs önemli ölçüde kimyasal evrim geçirdikleri ve bu nedenle tek düze, yaşlı olmadıkları ancak Yerel Grup galaksilerin çoğuna benzer şekilde genişletilmiş SFH sahip olduğu sonucuna varılmıştır.

Abstract

We define abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range $-19.0 < M_{\rm r} < -16.0$. We analyze their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities and abundance ratios obtained from these dEs within an aperture size of $R_{\rm e}/8$. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227 and [Mg/Fe] from Mgb. We find that [Na/Fe] is under-abundant with respect to solar while [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns and we speculate that dEs have disk-like SFH favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

Anahtar Kelimeler: Galaxies: dwarf ellipticals – Galaxies: individual(Virgo) – Galaxies: stellar population – Galaxy Evolution – Spectral Analysis

1 Giriş

Galaksiler yıldızlar, yıldızlararası madde (gaz ve toz), yıldız kalıntıları (beyaz cüceler, nötron yıldızları ve karadelikler) ve karanlık maddeyi içeren çekimsel olarak bağlı sistemlerdir. Bu sistemler çok çeşitli yapılarda, özelliklerde ve izole halde ki galaksilerden, yoğun galaksi kümelerinde bulunma durumlarına kadar çeşitli ortamlarda ortaya çıkan, evrenin oluşumunu anlamak için önemli nesnelerdir.

Galaksilerin ilk ayrıştırıcı özelliği morfolojileridir. Morfolojilerine bağlı optik banttaki ilk sınıflandırma Hubble (1929) tarafından yapılan "diyapazon (çatal)" şema çalışmasıdır.

© 2022 Turkish Astronomical Society (TAD)

Orjinal sınıflama şemasında galaksiler "Spiraller" ve "Eliptikler" olarak ikiye ayrılır. Eliptik galaksiler erken tür galaksiler (ETG) olarak adlandırılmışlardır. Yıllar içinde gözlemsel kapasitelerin artmasıyla Hubble'ın bu sınıflaması revize edilmiş, alt sınıflar, ek ışıtma sınıfları, cüce galaksi sınıflandırılmasının eklenmesi gibi değişiklikler yapılmıştır.

Galaksi evrimini incelemek için gereken önemli bir araç yıldız popülasyon çalışmalarıdır. Yıldız popülasyon analizi, galaksinin oluşumunun fosil kayıtlarını araştırır. Oluşumu ve gelişimi sırasında bir galakside meydana gelen nüfus birikimine (popülasyon dağılımına) dair ipuçları sağlar. Yerel Gruptaki çoğu galaksiden farklı olarak, daha uzak galaksilerin yıldız popülasyonları tek tek yıldızları çözümleyebilecek şekilde

> Astrofizikte Güncel Lisansüstü Çalışmalar Çalıştayı 22 Ekim, 26 Kasım 2021, İzmir, Ege Üniversitesi

^{*} seyda.aydemir@sabanciuniv.edu

görülmez. Bu durumda, tayfsal analizler, bir popülasyondaki bütün yıldızların katkısıyla toplam tayf kullanılarak yapılmalıdır.

1.1 Cüce Eliptik Galaksiler

Cüce Eliptik Galaksiler (dEs), düşük ışıtmalı eliptik galaksiler olup, düzgün yüzey-parlaklık profileri nedeniyle geç tip galaksilerden (spiraller ve düzensizler) ayırt edilirler. Diğer galaksi türlerine göre evrende en fazla sayıda bulunan galaksi türleridir. Binggeli et al. (1988) herhangi bir spesifik Hubble türü galaksilerin olasılık dağılım fonksiyonu olan, dEs'nin optik parlaklık fonksiyonunu (LF) inceleyerek dEs'nin küme ortamında sayıca daha baskın olarak bulunduğunu göstermiştir.

dEs'nin yüzey parlaklık profilleri, eliptik galaksilerdeki gibi Vancouleurs profilleri (Sérsic ~ 4) yerine neredeyse üstel yasaları takip ederler (Sérsic ~ 1). Ayrıca bunlar yaşlı ve metalce zengin yıldız popülasyonundan olmayıp geniş bir yaş aralığında bulunan metalce fakir yıldızları da barındırır (Michielsen et al. 2008; Paudel et al. 2010; Koleva et al. 2009, 2011; Ryś et al. 2015).

Gözlemsel kanıtlar dEs'nin basit sistemler olmadığını, özelliklerinin geniş bir yelpazede olduğunu göstermiştir, bazıları E/S0 popülasyonu içinde yaygın değildir. Virgo kümesinde yapılan bazı fotometrik çalışmalarda bu galaksilerde disk, spiral kollar, çubuklar, lensler ve düzensiz özellikler gibi alt sınıflamaları bulunmuştur (Lisker et al. 2006a,b; Janz et al. 2012). Bunun yanı sıra dEs ayrıca karmaşık bir iç kinematik ve dinamik çeşitliliği de gösterirler. Benzer fotometrik özelliklere sahip dEs, farklı yıldız popülasyona ve farklı dönme hızlarına sahip sahip olabilirler (Jerjen et al. 2000; Barazza et al. 2002; Geha et al. 2003; Graham & Guzmán 2003; De Rijcke et al. 2003; Lisker et al. 2006a; Ferrarese et al. 2006; Janz et al. 2012, 2014)

Kormendy (1985), bu galaksilerin bir kümeye düşen geri tür galaksilerden dönüşümü sırasında muhtemelen görünüşünü oldukça düzleşmiş ve yıldız oluşturmayan küresel yapılara dönüştürdüğünü ileri sürmüştür, morfoloji-yoğunluk ilişkisi büyük ölçüde çevreye bağlı olduğu için bu dönüşümün çevre tarafından tetiklendiği düşünülmektedir (Boselli & Gavazzi 2014).

Özelliklerin dönüşümü için önerilen iki mekanizma vardır. Birincisi "Zorlama (harassment)" örneğin yakın komşuları arasındaki çekimsel etkileşim, İkincisi "Sıyırma (ram pressure stripping)" galaksiler arası ortam ile galaksi etkileşimleridir (Boselli & Gavazzi 2006). Dönüştürülmüş galaksilerin öngörülen sonuç özellikleri onları etkileyen mekanizmalara bağlı olarak farklıdır. Sıyırma olayında küme kendi gazını kaybeder ve hızla yıldız oluşumunu durdurur, ama bu süreç doğrudan yıldızları etkilemez ve yıldızların açısal momentumları korunur (Ryś et al. 2014). Zorlama ise çok daha şiddetli bir süreçtir, yıldızlararası kütlenin büyük kısmını atabilir, galaksilerin yapısını değiştirebilir ve yıldızların açısal momentumlarında önemli ölçüde kayıplar olabilir (Boselli & Gavazzi 2006). dEs'nin bu kinematik analizleri kümelerdeki galaksilerin çevreyle etkilenme süreçlerini incelemek için güçlü bir araçtır. Ancak bu iki mekanizmanın da tek tek veya birlikte etkileri tam olarak açıklanabilmiş değildir.

Ryś et al. (2013), bir dönüşüm mekanizmasının yalnızca açısal momentumu düşürmekle kalmayıp, aynı zamanda varsayılan atalarına kıyasla dE'lerin yıldız sayı yoğunluğunun da artırabilmesi gerektiği sonucuna varmıştır. Toloba et al. (2015), bu iki mekanizmanın kombinasyonunun bile, bazı gözlemleri açıklamak için gerekli olan açısal momentumun tamamını kolayca kaybedemeyeciğini göstermektedir. Sıyırma kısa zaman ölçeklerinde gerçekleştiğinden dolayı, geç tür yıldız oluşturan galaksileri cüce ETG'ye dönüştürmek için standart bir mekanizma olabilir. Bu galaksiler kümede kaldığı uzun süre içinde birçok kez galaksi merkezinden geçebilirler bu sırada ısınırlar, yıldızları dönüş hızını ve galaksiler disk yapılarını kaybederler.

Galaksilerin evrimini incelemek için yalnızca morfoloji veya kinematiği kullanılamaz: yaş dağılımı, metal bolluğu ve diğer elementlerin bolluk oranları çalışma için kullanılabilecek önemli bilgiler sağladığından yıldız popülasyonları incelenerek daha ayrıntılı bilgi elde edilebilir. Gazın kimyasal bolluğu oluştuklarında yıldızlara kilitlendiğinden galaksilerin evrimsel tarihi açısından önemlidir.

Galaksilerin kimyasal evrimden temel olarak nükleosentezi sağlayan üç ana ortam vardır. Birincisi Tür II süpernova; α -elementleri, r- (rapid neutron capture), ve bazı s-(slow neutron capture) süreç elementleri (kısa zaman ölçeklerinde) üretilir. İkincisi Tür la süpernova; Fe-tepe elementlerini (uzun zaman ölçeklerinde) üretir. Üçüncüsü ise Asimtotik Dev Kolu (AGB) yıldızlarında; bazı hafif elementleri (N) ve bazı s-süreç elementleri üretilir. Eğer akran yıldız popülasyonlarını kapalı bir kutu gibi düşünürsek, yıldızlararası ortamın metal bolluğu ([Fe/H]) süpernova patlamaları ile daha fazla metal püskürtüldükçe zamanla zenginleşir. Erken evrede sadece süpernova II oluşurken [α /Fe] element bolluğu yüksektir, kabaca Tür II süpernovasının zenginleştirdiği materyal tarafından belirlenen sabit değer kadardır. Küçük kütleli yıldızların element bolluğu ve gözlenen metal bollukları tarafından yıldız oluşum tarihçelerini elde etmek için, Tür la ve Türll Süpernovaların arasındaki zaman gecikmesi kullanılabilir.

Galaksilerdeki yıldızların ve gazın kimyasal kompozisyonundaki evrimi birçok nedenden dolayı önemlidir. İlk olarak, ışıtma ve yıldız popülasyonun renk indekslerinin sadece yaşa ve başlangıç kütle fonksiyonuna (IMF) değil aynı zamanda yıldızların metal bolluğuna da bağlı olmasıdır. İkinci olarak, metalce daha zengin gazın daha hızlı soğumasından dolayı gazın soğuma etkinliği onun metal içeriğine bağlıdır. Üçüncü, galaksilerdeki gaz ile karışmış olan toz olarak bilinen ağır elementlerin ufak parçacıkları, yıldız ışığını büyük ölçüde soğurur ve kızılöte dalgaboyunda yeniden yayınlanır.

Yıldızlararası ortamdaki toz miktarına bağlı olarak, bu da kabaca onların metal bolluğuyla doğrusal olarak ölçülür. Bu yıldızlararası sönükleştirme galaksilerin parlaklığını önemli ölçüde azaltır. Teoride galaksilerin metal ve element bolluğu gözlemleri onların yıldız oluşum tarihleri ve IMF'i belirlemek için kullanılabilir. Pratikte, gözlemlerin yorumu galaksilerin farklı metal bolluğundaki yeni materyallerle birleşebilmesinden dolayı karışıktır. Bu geri besleme süreci gazı dışarı püskürtür belki tercihen metalleri ve bunlar farklı sistemlerin kimyasal kompozisyonlarıyla karışabilir.

Bu çalışmada Virgo kümesinde bulunan dEs kullanılacaktır. Bu galaksilere ait temel özellikleri Çizelge 1'de verilmiştir. Virgo galaksi kümesi dE'leri incelemek için ideal bir laboratuvardır çünkü yüzlercesini içerir, ayrıntılı yapılarını çözecek kadar yakındır ve bugün hala gelişmekte olan dinamik olarak genç bir kümedir. Bu çalışmada dE'lerin bolluk oranı dağılımına odaklanacağız ve bunları diğer galaksi türleri ile karşılaştıracağız.

Çizelge 1. Bu çalışmada kullanılan SMAKCED dEs'lerin temel özellikleri (Şen et al. 2018). Sütun 1: galaksi adı. Sütun 2 ve 3: sağ açıklık ve dik açıklık değerleri (J2000). Sütun 4 ve 5: *r*-band parlaklığı (AB sisteminde) and etkin yarıçapı (Janz & Lisker 2008, 2009). Sütun 6: hız dağılımı.

Galaksi	RA	DEC	$M_{\rm r}$	$R_{\rm e}$	σ_{e}
	(J2000)	(J2000)	(Kadir)	('')	(km/s)
VCC0009	12:09:22.25	13:59:32.74	-18.2	37.2	26.0±3.9
VCC0021	12:10:23.15	10:11:19.04	-17.1	15.2	28.9 ± 2.9
VCC0033	12:11:07.79	14:16:29.19	-16.9	09.8	20.8 ± 4.9
VCC0170	12:15:56.34	14:26:00.33	-17.6	31.3	26.6 ± 4.6
VCC0308	12:18:50.90	07:51:43.38	-18.0	18.6	24.1 ± 2.4
VCC0389	12:20:03.29	14:57:41.70	-18.1	18.0	$30.9 {\pm} 1.2$
VCC0397	12:20:12.18	06:37:23.51	-16.8	13.6	35.7 ± 1.9
VCC0437	12:20:48.10	17:29:16.00	-18.0	29.5	$40.9 {\pm} 4.0$
VCC0523	12:22:04.14	12:47:14.60	-18.7	26.1	42.2 ± 1.0
VCC0543	12:22:19.54	14:45:38.59	-17.8	23.6	35.1 ± 1.4
VCC0634	12:23:20.01	15:49:13.25	-18.5	37.2	31.3 ± 1.6
VCC0750	12:24:49.58	06:45:34.49	-17.0	19.5	$43.5 {\pm} 2.9$
VCC0751	12:24:48.30	18:11:47.00	-17.5	12.3	32.1 ± 2.4
VCC0781	12:25:15.17	12:42:52.59	-17.2	13.4	$38.0 {\pm} 2.8$
VCC0794	12:25:22.10	16:25:47.00	-17.3	37.0	29.0 ± 3.9
VCC0856	12:25:57.93	10:03:13.54	-17.8	16.5	31.3 ± 4.1
VCC0917	12:26:32.39	13:34:43.54	-16.6	09.9	28.4 ± 1.4
VCC0940	12:26:47.07	12:27:14.17	-17.4	19.8	$40.4 {\pm} 1.3$
VCC0990	12:27:16.94	16:01:27.92	-17.5	10.2	38.7 ±1.3
VCC1010	12:27:27.39	12:17:25.09	-18.4	22.2	$44.6 {\pm} 0.9$
VCC1087	12:28:14.90	11:47:23.58	-18.6	35.4	42.0 ± 1.5
VCC1122	12:28:41.71	12:54:57.08	-17.2	17.3	32.1 ± 1.7
VCC1183	12:29:22.51	11:26:01.73	-17.9	21.1	44.3 ± 2.4
VCC1261	12:30:10.32	10:46:46.51	-18.5	23.8	$44.8 {\pm} 1.4$
VCC1304	12:30:39.90	15:07:46.68	-16.9	16.5	$25.9 {\pm} 2.7$
VCC1355	12:31:20.21	14:06:54.93	-17.6	30.3	$20.3 {\pm} 4.7$
VCC1407	12:32:02.73	11:53:24.46	-17.0	12.1	31.9 ± 2.1
VCC1431	12:32:23.41	11:15:46.94	-17.8	09.8	52.4 ± 1.6
VCC1453	12:32:44.22	14:11:46.17	-17.9	18.9	35.6 ± 1.4
VCC1528	12:33:51.61	13:19:21.03	-17.5	09.6	47.0 ± 1.4
VCC1549	12:34:14.83	11:04:17.51	-17.3	12.1	36 .7±2.3
VCC1695	12:36:54.85	12:31:11.93	-17.7	24.0	24.4 ± 2.2
VCC1861	12:40:58.57	11:11:04.34	-17.9	19.0	31.3 ± 1.5
VCC1895	12:41:51.97	09:24:10.28	-17.0	16.3	$23.8 {\pm} 3.0$
VCC1910	12:42:08.67	11:45:15.19	-17.9	13.4	37.0 ± 1.2
VCC1912	12:42:09.07	12:35:47.93	-17.9	22.5	$36.0 {\pm} 1.5$
VCC1947	12:42:56.34	03:40:35.78	-17.6	09.3	$48.3 {\pm} 1.3$

2 Gözlemler ve Veri Analizi

Cüce eliptik galaksilerin detaylı çalışmaları için, yüksek çözünürlüklü ve yüksek Sinyal/Gürültü (S/G) oranına sahip tayfsal veriye ihtiyacımız vardır. Bu çalışmadaki veriler aynı galaksi kümesinde bulunan 39 cüce eliptik galaksiden oluşur. Gözlemler El Roque de los Muchachos Observatory (ORM, İspanya, La Palma) ve European Southern Observatory (ESO, Şili) gözlemevlerinde yürütülmüştür. Bu galaksilere ait veriler üç farklı teleskoptan elde edilmiştir. Bunlar William Herschel Teleskop (William Herschel Telescope, WHT), Isaac Newton Teleskop (Isaac Newton Telescope, INT) ve Very Large Teleskop (Very Large Telescope, VLT) dir. Poz süresi 1 ile 4 saat arasında galaksinin parlaklığına ve hava şartlarına göre değişmektedir.

WHT, ORM gözlemevinde konuşlandırılmış, üç uzun yarık tayfçeker alıcısı (ISIS, LIRIS ve ACAM) ve iki fotometrik gözlem alıcısı (ACAM, LIRIS) bulunan 4.2 metre ayna çapına sahiptir. INT, ORM gözlemevinde konuşlandırılmış, IDS uzun yarık tayfçeker alıcısı ve WFC fotometrik gözlem alıcısı bulunan 2.5 metre ayna çapına sahiptir. VLT Şili'nin Atacama Çölü'nde, 2635 metre yükseklikte Cerro Paranal dağında yerleşik bulunan ve Avrupa Güney Rasathanesi (European Southern Observatory, ESO) tarafından işletilen 8 metre ayna çaplı, 15 alıcısı bulunan bunlardan biri de Cassegrain odağa konumlandırılmış FORS2 (FOcal Reducer and Spectrograph 2) isimli alıcıya sahip dev teleskoptur.

2.1 Çizgi indeks ölçümleri

Gözlenen tayf verileri tüm tayfı fit ederek ya da seçilen çizgi indekslerine odaklanılarak çalışılabilir. Bu çalışmada seçilmiş çizgi indeksleri çalışılmıştır. Lick indekslerinin (Worthey et al. 1994) LIS-5 Å akı kalibre edilmiş sistemde (Vazdekis et al. 2010) ölçümü yapılmıştır. Yeni LIS sisteminin LICK sistemine göre birçok avantajı var. Bu sistemde üç farklı çözünürlük tanımlanmıştır. Bunlar 5.0 Å, 8.4 Å ve 14.0 Å 'dur. Küçük galaksiler ve küresel küme çalışmalarında, veriyi çözünürlüğü azaltmaksızın ve çözünürlüğü düşürmekten ötürü oluşan çizgi birleşmeleri olmaksızın analiz edebilmek için çok gereklidir. Tüm tayf fit yapılırken ortaya çıkan yaş-metal bolluğu dejenerasyonunu ortadan kaldırır. Aynı zamanda LIS sistemi akı kalibre edilmiş sistemdir bu da tekrar üretebilmeyi kolaylaştırır.

LIS sisteminde çalışabilmek için elde edilen tayflar, her galaksinin hız dağılımı ve bu galakside görülen her çizginin dalgaboyu aralığı hesaba katılarak 5 Å 'a genişletilmiştir. Bu sistem ile çalışmak, gözlemsel veriler üç ayrı tayf çekerden elde edildiği ve bu verilerin karşılaştırılabilmesi için tek bir çözünürlükte olmaları gerektiğinden dolayı ayrıca önemlidir.

Bu çalışmada toplamda 26 Lick/IDS indeksi (Faber et al. 1985; Gorgas et al. 1993; Worthey et al. 1994, Worthey & Ottaviani 1997) ölçülmüştür. Bu çalışmada H γ_F , H β , Fe4383, Fe4531, Fe5270, Fe5335, Fe5406, Fe5709, Mgb, Ca4227 ve NaD çizgilerinin sonuçları üzerine odaklanılmıştır. Bu çizgiler uzun slit tayfların indirgeme ve analizi için geliştirilen REDUCEME (Cardiel 1999) paketi kullanılarak hesaplanmıştır. Bu program aralığı verilen Lick indekslerini tayfın kapsadığı dalgaboyu aralığına göre belirler ve hesaplar. Bu programın bir diğer artısı ise hata tayflarıyla indeks hatalarının doğrudan belirlenebiliyor olmasıdır, bu da hata dağılımlarının dikkatli kontrolüne olanak sağlar. Kullanılan üç tayf çeker farklı dalgaboyu aralıklarında olduklarından her çizgi her galaksi için mevcut değildir. Çizelge 2 ve Çizelge 3, her galaksi için ölçülen indekslerin çizgi genişliği hataları ile birlikte verilmiştir.

3 Sonuçlar

3.1 Yaş ve Metal Bolluğunun Belirlenmesi

Galaksilere ait yaş ve metal bolluğu, LIS 5 Å (Vazdekis et al. 2010) sisteminde ölçülen Lick indekslerinin yaşa ve metal bolluğuna hassas çizgilerinden bulunur. Yaşa hassas çizgiler; H β ve H γ_F gibi balmer çizgileri olup, metalliğe hassas çizgiler ise Fe4383, Fe4531, Fe5709 gibi demir çizgileri ve Mgb çizgisidir. Yaş ve metal bolluğu ([M/H]), RMODEL isimli yazılımı kullanarak elde edilmiştir. Bu yazılım, MILES (Vazdekis et al. 2010) yıldız kütüphanesi tabanlı SSP modellerini Kroupa başlangıç kütle fonksiyonu (IMF) (Kroupa 2001) ile kullanır. İndeks-indeks grafikleri Şekil 1, 2 ve 3'de gösterilmiştir. Bu grafiklerde yaş aralığı 1 – 14 Gyıl, ve metal bolluk aralığı – 2.27'den 0.26'ya olacak şekilde belirlenmiştir, ki bu aralık bizim galaksi örneklerimizi kapsamaktadır. Vazdekis et al. (2010)

Çizelge 2. WHT ile gözlenen galaksilerin LIS-5 Å çözürlüklü Lick çizgi indeks ölçümleri (Şen et al. 2018).

Galaksi	Ca4227 (Å)	${\sf H}_{\gamma_{\sf F}}$ (Å)	Fe4383 (Å)	Fe4531 (Å)	Fe5709 (Å)	NaD (Å)
VCC0033	$1.25 {\pm} 0.38$	1.55 ± 0.39	$2.62 {\pm} 0.85$	$3.09 {\pm} 0.65$	$0.60 {\pm} 0.22$	$0.83 {\pm} 0.373$
VCC0170	$0.75 {\pm} 0.21$	$\textbf{2.43} \pm 0.22$	$1.48 {\pm} 0.51$	$1.70 {\pm} 0.40$	$0.48 {\pm} 0.09$	1.21 ± 0.173
VCC0308	$0.99 {\pm} 0.12$	1.69 ± 0.14	$2.53 {\pm} 0.32$	$3.02 {\pm} 0.24$	$0.85 {\pm} 0.09$	$1.57 {\pm} 0.125$
VCC0389	$1.17 {\pm} 0.14$	$\textbf{0.33} \pm 0.14$	$3.90 {\pm} 0.29$	$2.87 {\pm} 0.21$	$0.99 {\pm} 0.07$	$1.68 {\pm} 0.095$
VCC0397	1.11 ± 0.12	$\textbf{1.33} \pm 0.14$	$3.92 {\pm} 0.31$	$3.50 {\pm} 0.24$	$0.94 {\pm} 0.11$	$1.92 {\pm} 0.136$
VCC0437	$0.87 {\pm} 0.25$	-0.76 ± 0.27	$2.49{\pm}0.57$	2.01 ± 0.41	$0.80 {\pm} 0.10$	$2.08 {\pm} 0.165$
VCC0523	$1.13{\pm}0.07$	$\textbf{0.93} \pm 0.09$	3.25 ± 0.19	$3.14 {\pm} 0.15$	$0.91{\pm}0.10$	$1.50 {\pm} 0.177$
VCC0543	$1.41 {\pm} 0.13$	-0.17 ± 0.16	$3.96{\pm}0.32$	$3.23 {\pm} 0.23$	$0.77 {\pm} 0.06$	$1.95 {\pm} 0.093$
VCC0634	1.21 ± 0.15	$0.55 {\pm} 0.16$	$3.70 {\pm} 0.33$	$3.05 {\pm} 0.25$	$0.75 {\pm} 0.13$	
VCC0750	$1.09 {\pm} 0.20$	0.75 ± 0.21	$3.36{\pm}0.44$	$3.00 {\pm} 0.33$	$0.80{\pm}0.08$	1.61 ± 0.122
VCC0751	$1.62 {\pm} 0.25$	-0.23 ± 0.27	$4.80{\pm}0.53$	$3.93 {\pm} 0.40$	$1.16 {\pm} 0.16$	
VCC0781	$0.66 {\pm} 0.22$	2.74 ± 0.21	$1.31{\pm}0.49$	$2.19{\pm}0.37$		
VCC0794	$1.06 {\pm} 0.24$	0.43 ± 0.26	$2.84 {\pm} 0.55$	$2.18 {\pm} 0.41$	$0.62 {\pm} 0.08$	$1.45 {\pm} 0.117$
VCC0917	$0.99 {\pm} 0.10$	$\textbf{0.41} \pm 0.13$	$3.28 {\pm} 0.27$	$2.96 {\pm} 0.21$	$0.65 {\pm} 0.09$	$1.26 {\pm} 0.129$
VCC1010	$1.42 {\pm} 0.07$	-0.83 ± 0.09	$4.49 {\pm} 0.17$	$3.25 {\pm} 0.13$	$0.85 {\pm} 0.04$	$2.33 {\pm} 0.054$
VCC1087	$1.33 {\pm} 0.10$	-0.51 ± 0.12	4.79 ± 0.23	$2.98 {\pm} 0.18$	$0.79 {\pm} 0.08$	
VCC1122	$1.11 {\pm} 0.10$	0.86 ± 0.12	$3.20 {\pm} 0.26$	$2.52 {\pm} 0.21$	$0.71 {\pm} 0.20$	
VCC1304	$0.81 {\pm} 0.13$	1.72 ± 0.15	2.31 ± 0.34	$2.60 {\pm} 0.26$	$0.52 {\pm} 0.07$	$1.95 {\pm} 0.097$
VCC1355	$1.39 {\pm} 0.33$	0.59 ± 0.35	2.77 ± 0.74	$3.06 {\pm} 0.55$	$0.78 {\pm} 0.10$	$1.32 {\pm} 0.188$
VCC1407	$0.83 {\pm} 0.18$	0.12 ± 0.20	$3.35 {\pm} 0.40$	2.81 ± 0.30	$0.53 {\pm} 0.08$	$1.55 {\pm} 0.129$
VCC1453	$1.52 {\pm} 0.13$	-0.43 ± 0.14	$4.38 {\pm} 0.29$	$3.40 {\pm} 0.21$	$0.99 {\pm} 0.06$	$2.08 {\pm} 0.065$
VCC1528	$1.27 {\pm} 0.18$	-0.40 ± 0.19	$4.49 {\pm} 0.38$	$3.28 {\pm} 0.28$	$0.96 {\pm} 0.07$	$2.33 {\pm} 0.093$
VCC1695	$1.03 {\pm} 0.09$	1.47 ± 0.10	2.82 ± 0.23	$2.75 {\pm} 0.18$	$0.80 {\pm} 0.08$	1.63 ± 0.123
VCC1861	1.43 ± 0.11	-0.66 ± 0.14	$3.71{\pm}0.29$	$2.87 {\pm} 0.22$	$0.70 {\pm} 0.10$	
VCC1895	$1.09 {\pm} 0.20$	0.83 ± 0.23	$2.73 {\pm} 0.49$	$2.75 {\pm} 0.37$	$0.70 {\pm} 0.10$	1.26 ± 0.155

Çizelge 3. INT ve VLT ile gözlenen galaksilerin LIS-5 Å çözürlüklü Lick çizgi indeks ölçümleri (Şen et al. 2018).

Galaksi	Fe4531 (Å)	Ηβ (Å)	Mgb (Å)	Fe5270 (Å)	Fe5335 (Å)	Fe5406 (Å)	Fe5709 (Å)
VCC0021	$1.23 {\pm} 0.40$	$3.98 {\pm} 0.19$	$0.96 {\pm} 0.23$	$1.25 {\pm} 0.25$	$1.52 {\pm} 0.29$	$0.51 {\pm} 0.23$	$0.11 {\pm} 0.20$
VCC0856	$3.35{\pm}0.62$	$2.30{\pm}0.29$	$2.44 {\pm} 0.33$	$2.38{\pm}0.36$	$1.87 {\pm} 0.41$	$0.67 {\pm} 0.32$	$1.39{\pm}0.27$
VCC0940	$2.33 {\pm} 0.17$	2.22 ± 0.09	$2.64 {\pm} 0.08$	$2.45 {\pm} 0.09$	$1.78 {\pm} 0.10$	$1.30 {\pm} 0.07$	
VCC0990	3.20 ± 0.30	$2.81 {\pm} 0.15$	$2.49 {\pm} 0.17$	$2.62 {\pm} 0.19$	2.29 ± 0.21	$1.58 {\pm} 0.16$	$0.83 {\pm} 0.15$
VCC1183	$3.49 {\pm} 0.35$	2.61 ± 0.16	$2.95 {\pm} 0.18$	$2.82 {\pm} 0.20$	2.23 ± 0.23	$1.59 {\pm} 0.17$	$0.95 {\pm} 0.15$
VCC1261	$2.33 {\pm} 0.21$	$2.47 {\pm} 0.11$	$2.19 {\pm} 0.12$	$2.52 {\pm} 0.13$	2.13 ± 0.15	$1.47 {\pm} 0.12$	$0.94 {\pm} 0.11$
VCC1431	$3.53 {\pm} 0.33$	$1.95 {\pm} 0.16$	$3.17 {\pm} 0.18$	$2.46 {\pm} 0.19$	$1.93 {\pm} 0.22$	$1.41 {\pm} 0.17$	$0.46 {\pm} 0.15$
VCC1549	2.72 ± 0.46	$1.73 {\pm} 0.22$	3.02 ± 0.25	$2.85 {\pm} 0.26$	$2.48 {\pm} 0.30$	$1.74 {\pm} 0.22$	$0.99 {\pm} 0.20$
VCC1910	$3.24 {\pm} 0.33$	$1.75 {\pm} 0.15$	$2.82{\pm}0.16$	$2.50 {\pm} 0.18$	$2.84{\pm}0.19$	$2.06 {\pm} 0.15$	$0.30 {\pm} 0.13$
VCC1912	$2.31{\pm}0.24$	$3.66 {\pm} 0.11$	$1.32 {\pm} 0.13$	2.21 ± 0.14	$2.30 {\pm} 0.16$	1.15 ± 0.13	$0.16 {\pm} 0.11$
VCC1947	3.26 ± 0.32	$1.82{\pm}0.15$	$3.18{\pm}0.17$	$\textbf{2.99}{\pm}0.18$	$2.69{\pm}0.20$	$1.85 {\pm} 0.16$	$0.94{\pm}0.14$

tarafından yayınlanan model gridlerinden güneş-ölçekli teorik eş-yaş eğrileri Şekil 1'de kullanılmıştır. En iyi yaş ve metal bolluğu, her indeks-indeks kombinasyonu için ölçülen değer ile model gridi arasındaki farkın hesaplanmasıyla elde edilir. Belirsizlikler her indeksin gözlemsel hatasını kullanan Monte Carlo simülasyonuyla hesaplanmıştır.

Indeks-indeks diyagramları incelendiğinde sodyum ve kalsiyum çizgilerinde modellerde beklenenden farklı davranış tespit edilmiştir. dEs örneklerimizde, ölçülen NaD değerleri güneş bolluğu modelleri için model tahminlerinden çok daha düşük iken (Şekil 2), Ca4227 değerleri ise modellerden beklenen değerlerden biraz daha yüksektir (Şekil 3).

3.2 Element Bolluğunun Belirlenmesi

Na ve Ca element bolluğunu hesaplamak için öncelikle bir önceki bölümde belirtildiği gibi galaksilerin yaş ve metal bolluğu hesaplanmıştır. Element bolluğu ve çizgi indeksleri arasındaki ilişkiyi bulabilmek için Na-MILES (La Barbera et al. 2017) ve Conroy van Dokkum (CvD, Conroy et al. 2014) modeli kullanılmıştır. Bu modellerin avantajı farklı element bolluklarına ilişkin ayrı ayrı modeller bulundurmasıdır. Bu modeller yardımı ile NaD, Ca4227 ve Mgb indeksinin element bolluğu ilişkisi;

$$\left[\mathrm{E_{i}/Fe}\right] = rac{\mathrm{l_{gozlenen}} - \mathrm{l_{model}}}{rac{\Delta \mathrm{i_{model}}}{\Delta \left[\mathrm{E_{i}/Fe}
ight]_{\mathrm{model}}}}$$
 (1)

formülü ile saptanmıştır. BuradaEhesaplanacak elementi, ielementin hangi çizgi indeksi olacağını, $i_{\rm gozlenen}$ gözlemelerden

Şekil 1. Yıldız popülasyonu hesaplamak için kullanılan tayfsal indeksindeks diyagramı. Bu diyagramlarda Güneş-ölçekli (IMF 1.3 ile) yıldız popülasyon eş-yaş eğrileri (Vazdekis et al. 2010) kullanılmıştır. Düz siyah çizgiler sırasıyla 1.0, 2.0, 3.5, 5.5, 10.0 ve 14 Gyıl karşılık gelmekte, kesikli çizgiler ise metal bolluğu [M/H], -2.27, -1.26, -0.65, -0.35, +0.06 ve +0.26 değerlerine karşılık gelmektedir. Diyagramların geriye kalan kombinasyonları Şen et al. (2018)'de verilmiştir.

ölçülen indeks değerini, $i_{\rm model}$ modellerden beklenen indeks değerini belirtir.

Çizelge 4'de her galaksi için elde edilen yaş, metal ve element bolluğu verilmiştir.

Şekil 2. $H\gamma_{\rm F}$ ye karşı Ca4227 indeks-indeks diyagramı. Farklı metal bolluklarındaki yaş eğrileri Şekil 1 ile aynıdır. NaD değeri modelden beklenen değerlerden oldukça düşüktür.

Şekil 3. $H\gamma_{\rm F}$ ye karşı Ca4227 indeks-indeks diyagramı. Farklı metal bolluklarındaki yaş eğrileri Şekil 1 ile aynıdır. Diyagramda da görüldüğü gibi modeller ile beklenenden biraz yüksektir.

4 Tartışma ve Öneriler

Bu çalışmanın ana sonuçlarından biri, kütleli eliptikler ve Yerel Grup cüceleriyle karşılaştırıldığında, dEs'nin Na bolluklarının olağandışı davranışlarıdır. Hız dağılımı 20–55 km s⁻¹ aralığında olan ve r bandı salt parlaklığı -19 ile -16 arasında bulunan sakin cücelerden oluşan bu örnekler için cüce eliptiklerin Na

Çizelge 4. Gözlenen dEs'nin yaş, metallik ve element bollukları sonuçları. Sütun 1: galaksi adı. Sütun 2 ve 3: WHT ile gözlenen dE'lerin [Ca/Fe] ve [Na/Fe] değerleri. Sütun 4: INT ve VLT ile gözlenen dE'lerin [Mg/Fe] değerleri. Sütun 5 ve 6: sırasıyla, hatalarıyla birlikte metal bolluğu ve yaş değerleri (Şen et al. 2018).

Galaksi	[Ca/Fe] (dex)	[Na/Fe] (dex)	[Mg/Fe] (dex)	[Fe/H] (dex)	log (age) (Gyıl)
VCC0009	0.05	-0.52		-1.06 ±0.15	0.94 ±0.03
VCC0021			0.03	-1.17 ± 0.18	0.20 ± 0.07
VCC0033	0.32	-0.57		-1.00 ± 0.01	$\textbf{0.83} \pm 0.17$
VCC0170	0.17	-0.32		-1.05 ± 0.08	0.47 ± 0.09
VCC0308	0.14	-0.24		-0.40 ± 0.24	$\textbf{0.34} \pm 0.04$
VCC0389	0.15	-0.23		-0.37 ± 0.16	0.70 ± 0.04
VCC0397	0.05	-0.20		0.06 ± 0.35	$\textbf{0.23} \pm 0.04$
VCC0437	0.12	-0.06		-0.71 ± 0.01	$\textbf{0.98} \pm 0.07$
VCC0523	0.17	-0.33		-0.19 ± 0.29	$\textbf{0.41} \pm 0.03$
VCC0543	0.21	-0.17		-0.44 ± 0.07	$\textbf{0.83} \pm 0.05$
VCC0634	0.30			-0.93 ± 0.35	0.84 ± 0.30
VCC0750	0.13	-0.24		-0.47 ± 0.10	0.62 ± 0.06
VCC0751	0.45			-0.93 ± 0.36	0.85 ± 0.29
VCC0781	0.11			-0.90 ± 0.24	0.84 ± 0.30
VCC0794	0.25	-0.31		-0.81 ± 0.03	$\textbf{0.90} \pm 0.08$
VCC0856			0.05	-0.64 ± 0.31	0.92 ± 0.16
VCC0917	0.08	-0.43		-0.47 ± 0.12	0.69 ± 0.05
VCC0940			0.40	-0.97 ± 0.35	0.84 ± 0.29
VCC0990			0.07	-0.23 ± 0.12	$\textbf{0.43} \pm 0.08$
VCC1010	0.18	-0.07		-0.31 ± 0.10	0.94 ± 0.03
VCC1087	0.35			-0.94 ± 0.25	0.84 ± 0.30
VCC1122	0.27			-0.93 ± 0.30	0.85 ± 0.29
VCC1183			0.15	-0.26 ± 0.02	0.67 ± 0.11
VCC1261			0.04	-0.33 ± 0.13	0.52 ± 0.06
VCC1304	0.15	0.06		-0.68 ± 0.10	0.55 ± 0.07
VCC1355	0.34	-0.32		-0.64 ± 0.01	0.75 ± 0.12
VCC1407	0.11	-0.27		-0.73 ± 0.07	0.95 ± 0.05
VCC1431			0.11	-0.49 ± 0.02	1.07 ± 0.06
VCC1453	0.23	-0.15		-0.27 ± 0.13	0.76 ± 0.05
VCC1528	0.14	-0.05		-0.25 ± 0.05	0.79 ± 0.06
VCC1549			0.08	-0.41 ± 0.09	1.04 ± 0.09
VCC1695	0.15	-0.21		-0.40 ± 0.22	0.39 ± 0.05
VCC1861	0.38			-0.90 ± 0.57	0.85 ± 0.29
VCC1895	0.22	-0.37		-0.77 ± 0.15	0.82 ± 0.11
VCC1910			0.05	-0.37 ± 0.40	0.93 ± 0.11
VCC1912			-0.07	-0.07 ± 0.28	0.14 ± 0.01
VCC1947			-0.09	-0.93 ± 0.47	0.88 ± 0.11

bolluklarının güneş bolluğuna kıyasla oldukça az olduğunu görürüz (bkz. Şekil 4). Aynı zamanda Mg bolluğu güneş bolluğu civarındadır. Cüce eliptikler için, bu türden bir analiz daha önce yapılmamıştır, ancak birkaç makale dev eliptiklerde bolluk oranlarını elde etmeye çalışmıştır (ör. Worthey 1998; Thomas et al. 2010; Worthey et al. 2011; Conroy et al. 2014; Spiniello et al. 2014; Smith et al. 2015; Yamada et al. 2006).

Bu çalışmada hafif elementleri analiz ediyoruz. En çok çalışılan ortamlarda düşük [Fe/H] element X'in Fe'e göre bolluğu [X/Fe]'nin, ilk evrelerde sadece aktif olan nükleosentez kanallarından işlenen materyal kaynaklarının bolluğunu temsil ettiğini şu anki bilgi birikimimiz ile biliyoruz. Örneğin, büyük yıldızların çekirdek çöküşünden gelen SNII'nin yıldız oluşumunun en erken dönemlerinin karakteristik özellikleri olması gibi (Cohen & Huang 2009). Bu erken zamanlardan sonra [X/Fe], SNIa, SNII, AGB yıldızları, novalar, vb. gibi diğer kaynaklar tarafından ve aynı zamanda ilk baştaki materyalin birikmesi ve galaktik rüzgarlar ile değişmeye başlar. Bu, [X/Fe] ve [Fe H] arasındaki ilişkide, eğimin pozisyonunun çekirdek çöküşü SNII ve diğer süreçler arasındaki gecikme süresi tarafından belirlendiği kırık doğru görünümlü bir ilişki verir. Bu gecikme, çeşitli parametrelere (IMF, yıldız oluşumu verimliliği, yıldızlarda kütle kaybı oranı ve çoğunlukla H'den oluşan ilkel gazın yığılma oranı) ve aynı zamanda element üretim verimlerine bağlıdır (Greggio et al. 2008). Bu süreç Samanyolunda karakteristik bir kırık doğru görünümüne ulaştırır, burada fakir metal bolluğundaki halo yıldızları için [Mg/Fe] değeri yaklaşık 0.4, güneş kütlesindeki disk yıldızları için [Mg/Fe] değeri güneş bolluğundadır. Samanyolunun diskindeki bu güneş bolluk oranlarından, yıldız oluşumunun, haloyla karşılaştırıldığında uzun zaman ölçeklerinde gerçekleştiği sonucuna varılabilir.

Na'nın büyük yıldızların iç kısımlarında üretildiği ve nötron fazlalığına bağlı olduğu bilinmektedir, bu da yıldızdaki ağır element bolluğunun başlangıç değerine bağlıdır. Na'nın hem birincil hem de ikincil bir nükleosentez kanalı vardır (Arnett 1971; Clayton 2003). Ni'nin baskın olarak SNe la'dan kaynaklandığı varsayılmaktadır. Bununla birlikte, Ni üretimi de SNe II'de Na üretimi ile bağlantılı olabilir (Thielemann et al. 1990; Timmes et al. 1995). Üretilen Na miktarı, nötron fazlalığı ile kontrol edilir, burada ²³Na, C ve O yanma aşaması sırasında önemli miktarda üretilen tek kararlı nötron acısından zengin izotoptur. Ni üretimi, nötron fazlalığına bağlıdır ve nötron fazlası, daha önce üretilen ²³Na miktarına bağlı olacaktır. Dolayısıyla, kimyasal zenginleştirmenin SNe II tarafından baskın olduğu bir Na-Ni korelasyonu beklenir. SNe la patlamalarının olușu, Ni'nin standart olmayan SN la modelinde üretildiği gibi (lwamoto et al. 1999) bu ilişkiyi kırabilir (veya dümdüz edebilir).

Nötron fazlalığı güçlü bir şekilde metal bolluğuna bağlı olduğundan, Fornax cüce için bulunan düşük [Na/Fe] değeriyle açıklanabilir (Letarte et al. 2010). Aynı zamanda dev eliptiklerde yüksek [Na/Fe] değeriyle açıklanabilir.

Burada bulunan bolluk oranlarının diğer yıldız sistemlerindeki, en büyük kütleli Galaktik küresel kümelerdeki ve dev eliptik galaksilerden cok farklı olduğunu belirtmek önemlidir. Kütleli küresel kümelerdeki kırmızı dev kolu (RGB) yıldızlarında güçlü bir Na-O anti-korelasyonu gözlenir (Kraft 1994, ve bkz. Carretta 2016; Gratton et al. 2001). Bu yıldızlar için oksijen tükenmiş ve Na fazlalaşmıştır, tıpkı N gibi. Bu etki, șu anda gözlemlenen küresel kümelerdeki düşük kütleli yıldızların içinde görülmediğinden, bunun NeNa döngüsü boyunca C-yanması sırasında Na-bolluğunu arttıran büyük yıldızlardan ikinci nesil bir zenginleştirme etkisi olduğu düşünülmektedir (Langer et al. 1993). İkinci nesil (SG) yıldızların, Na ve O gibi bir çok anti-korelasyon yaratarak, farklı miktarlarda işlenmemiş gazla seyreltilmiş, en kütleli birinci nesil (FG) yıldızlarda işlenen nükleer püskürtme tarafından oluşturulduğu düşünülmektedir. Bu süreç, bildiğimiz kadarıyla Samanyolu'nun halosunda ve Yerel Grup galaksilerin alan yıldızlarında gerçekleşmez. Bu çalışmada, bunun yakın galaksi kümelerindeki cüce eliptiklerinin yıldızlarında da böyle olmadığını görüyoruz.

NaD değerinin beklenenden daha fazla olduğu bulunmuştur. Daha sonraki çalışmalarda eliptik galaksilerde ve Galaktik şişkin bölgede açık bi şekilde sodyumun (Na) olması gerekenden fazla değerde olduğu bulunmuştur. Belirleyici çalışmalardan olan Spiniello et al. (2015) tarafından NaD indeksinin yaşa, metal bolluğuna ve IMF'ye hassas olmasının yanında [Na/Fe] oranına da hassas olduğunu bulunmuştur.

Şekil 4. Metal bolluğunun bir fonksiyonu olarak Mg ve Na element bolluğu. Mavi artılar, Venn et al. (2004), kırmızı çarpılar Letarte et al. (2010) ve Shetrone et al. (2003)'den Fornax yerel cücesinden gelmektedir. Yeşil yıldızlar Pompéia et al. (2008), mor üçgenler Conroy et al. (2014), turuncu noktalar Mentz et al. (2016) Fornax Kümesinde NGC1396'nın çeşitli radyal uzaklıktaki ölçümleridir. Siyah noktalar ise bu çalışmada analiz edilen Virgo kümesindeki dEs'dir (Şen et al. 2018).

Şekil 4 – devamı. Ca element bolluğunun [Fe/H] ilişkisi.

Bununla birlikte, cüce eliptikler için, IMF-eğiminin bizim Galaksimizden farklı olduğuna dair hiçbir işaret yoktur (Mentz et al. 2016). Burada, [Na/Fe]'nin dev eliptiklerde davranışların tersine Güneş'ten fakir bollukta olduğu bulunmuştur.

Dikkat çekici bir önemli sonuç da Mentz et al. (2016) tarafından daha önce bahsedilen cüce eliptikler ve dev eliptikler için [Na/Fe] ve [Fe/H] arasındaki güçlü eğilimdir. Fornax cüceleri için [Fe/H]'in -0.8'lik değerleri için çok düşük [Na/Fe] \sim [-0.6, -0.8] olarak elde edilmiştir. Bu dev eliptiklerde bulunan yüksek, pozitif [Na/Fe] değerleriyle tezat oluşturur. Böyle bir güçlü korelasyon, Na-bolluğun nötron fazlalığına veya eşdeğerde metalliğe güçlü bir şekilde bağlı olması durumunda bekleyebiliriz.

dEs örnekleri için, ölçülen Ca4227 değerleri, Güneş bolluğu modelleri için model tahminlerinden biraz daha yüksektir. Ca'nın dEs'de fazla olduğunu gösterir. 13 Gyıl ve Güneş metal bolluğunda CvD modelleri kullanılarak, Ca4227 çizgi indeksinden [Ca/Fe] elde edilmiştir. Bu kalibrasyonu kullanarak, [Ca/Fe]'nin Samanyolu diskinden biraz daha büyük olduğunu, ancak kalın disk ve halodan daha düşük olduğunu gösterir (bkz. Şekil 3). Bu yüksek değerlerin yorumlanması, SN Ia'nın Ca zenginleştirilmesinden kısmen sorumlu olmasıdır (bkz. Travaglio et al. 2004).

4.1 Na, Mg ve Ca Element Bolluğu Değerlendirmesi

Bu çalışmada Virgo kümesinde bulunan 37 dE galaksi için (a) $[Mg/Fe]\sim 0$ ve (b) [Na/Fe]<0 ve (c) [Ca/Fe]>0 sonuçları elde edilmiştir.

- Sonuç (a) yani Mg bolluğunun yaklaşık 0 olması, Samanyolu diskinde olduğu gibi yıldız oluşumunun yavaş olduğu anlamına gelir.
- Sonuç (b), Na bolluğunun 0'dan küçük olması, sonuç (a)'daki aynı oluşum mekanizmasıyla tutarlıdır. Tıpkı Fornax cüce galaksisinin ortasındaki yıldızlar gibi (Letarte et al. 2010), dEs'nin yıldızları da önemli miktarda zenginleşme geçirmiş ve yıldız oluşum tarihlerinin uzamasına neden olmuştur. [Na/Fe]'nin nötron fazlalığına olan bağımlılığı [Na/Fe]'nin sıfırın altında olmasına neden olur çünkü Virgo cüceleri için [Fe/H] (~ -0.5) Güneş bolluğundan daha düşüktür.
- Sonuç (c), uzamış yıldız oluşum geçmişi, daha fazla bozulmaya neden olan Fornax cücelerine kıyasla metal bakımından zengin küme ortamından malzeme topladıkları için dEs'nin daha büyük [Ca/Fe] değerlerine yol açmasına neden olan önemli Ca-bolluk zenginleşmesine neden olabilir. Yerel Grup'ta daha fazla bozulmamış gaz birikir ve bu da, daha düşük [Ca/Fe] oranlarına neden olur.
- Önemli ve güçlü bir ipucu, Fornax ve Büyük Macellan Bulutsusu (LMC) gibi Yerel Grup cüce galaksiler, Samanyolu diski, dev eliptik galaksilerin merkezleri ve cüce eliptik galaksileri karşılaştırıldığında [Na/Fe] ve [Fe/H] arasındaki

güçlü korelasyon görülmektedir, tabi ki bu korelasyonun çalışılması için daha fazla cüce eliptik galaksi gözlemlerine ihtiyac vardır.

- Bütün bunlar Na-verimlerinin güçlü bir şekilde metal bolluğuna bağlı olması olabilir. Na bolluğu, elektron basıncını etkiler, böylece diğer birçok özelliğin gücü etkilenir. Örneğin, Conroy & van Dokkum (2012) gösterdi ki, büyük kütleli galaksiler için Na bolluğundaki bir artışın, Call'nin bolluğunda bir azalmaya neden olduğunu ve bu, CaT'nin eşdeğer genişliğinde bir azalmaya neden olduğunu göstermektedir. Na bolluğunun arttırılması, daha düşük ağırlıklı bir IMF'nin etkilerini taklit edebilir.
- Bu çalışmadaki dEs için Ca ve Na karşılaştırıldığında farklı bir davranış görüyoruz, ancak IMF'nin burada sorumlu olduğuna dair bir kanıt bulunmamaktadır. Ayrıca LMC için hem [Na/Fe] hem de [Ca/Fe] aynı belirtiye sahiptir. Bu muhtemelen SFH'nin LMC ve dEs arasındaki farklılıktan sorumlu başka bir parametrenin olması gerektiği anlamına gelir. Bununla birlikte, LMC ve dEs arasındaki [Ca/Fe] arasındaki fark (~ 0.2) ile küme ortamında özellikle etkili olan SN la tarafından zenginleştirilmedikçe, LMC gibi nesnelerin dEs'nin ataları olması gerektiği sadece bir öngörüdür.
- Burada net bir şekilde görülen dEs'nin element bolluk oranları, yüksek [Na/Fe] bolluğu ve Na-O ters korelasyonu gösteren kütleli Galaktik Küresel Kümelerdeki yıldızlardan çok farklı olmasıdır. Elbette, yıldızların bir kısmının bu etkileri göstermesi hala mümkündür, ancak bu kısım o kadar küçüktür ki, toplam ışıkta tespit edilemeyebilir. Bu fark muhtemelen cüce eliptiklerdeki yıldız oluşum zaman ölçeğinin, Gyıl ölçeğine göre uzun olduğunu, çünkü bu küresel kümelerin çok kısa zaman ölçeklerinde oluşması ve yaşlarının çok büyük olması gerektiğini gösterir.
- Bu sonuçlar bize dEs'nin disk benzeri SFH gösterdiği sonucunu verir. Bu da dEs'nin kökeninin yıldız oluşturan cüceler olma teorisini ortaya çıkarır.

4.2 Gelecek Çalışmalar ve Ön Bulgular

Bu çalışma gösterdi ki dEs element bollukları üzerine çalışmalar daha fazla sayıda ve ayrıntılı olarak yapılmalıdır. dEs, genelde yüksek S/N tayfların olmaması ve yüksek çözünürlüklü tayflar olsa da onları analiz etmek için yöntemlerin olmaması nedeniyle çeşitli elementlerin bolluk oranları hakkında çok az bilgi mevcuttur.

Daha fazla çizgiyi analiz etmek için yüksek çözünürlüklü yeni bir çizgi indeksi sistemi oluşturulmuştur. Yüksek çözünürlüklü ELODIE.3 yıldız kütüphanesine davalı PEGASE.HR (Prugniel & Soubiran 2001) popülasyon modellerini kullanarak 4700–5400 Å dalgaboyu aralığında küçük yıldız sistemleri için Lick sistemine benzer yeni bir yüksek çözünürlüklü tayfsal indeks seti tanımlanmıştır. Bu set 66 yeni soğurma çizgisi ve süreklilik bölgelerinden oluşmaktadır. Her çizgi için, önceden tanımlanmış üç dalgaboyu bandı ve merkezi özelliğin hem mavi hem de kırmızı taraflarında iki geçici süreklilik belirlendi. Tanımı iyileştirmek için indeks değerlerinin çok boyutlu maksimizasyonunu gerçekleştiren otomatik bir program geliştirilerek, her indeksin ilk belirlenen ön tanımını geliştirdi. Çizgi indekslerinin alfa element bolluğu ilişkisi, PEGASE.HR modelleri kullanarak yaş, metal bolluğu ve tayfsal çözünürlüğün fonksiyonu olarak davranışları ve ELODIE kütüphanesi 1503 yıldıza ait tayflar kullanılarak bunların etkin sıcaklık, metal bolluğu ve yüzey çekim ivmesinin fonksiyonu olarak değişimi incelenmiştir.

Cüce Eliptik Galaksilerin Doğası 41

Yüksek çözünürlüklü çizgi indeks sistemini kullanarak Fornax kümesindeki dE'lerin yıldız popülasyon çalışmasını elde edilmiştir. Gözlemsel veriler, Sidney–Avustralya Astronomik Gözlemevinde (AAO) bulunan 3.9 m Anglo-Avustralya Teleskobu'nun (AAT) ana odağına monte edilen Çok Nesneli İntegral-Alan tayfçekerinden (SAMI; Croom et al. 2012) elde edilmiştir. Bu şekilde, galaksi kütlesinin ve kümedeki konumunun bir fonksiyonu olarak, Yerel Grup dışındaki cüce eliptik galaksiler için daha önce hiç çalışılmamış bir dizi elementin bolluk oranlarını elde edebilmiştir (Şen et al. 2022, hazırlanıyor).

Teşekkür

Bu çalışma 1929B012100279 numaralı TÜBİTAK projesi tarafından desteklenmiştir.

Kaynaklar

- Arnett W. D., 1971, ApJ, 166, 153
- Barazza F. D., Binggeli B., Jerjen H., 2002, A&A, 391, 823
- Binggeli B., Sandage A., Tammann G. A., 1988, ARA&A, 26, 509
- Boselli A., Gavazzi G., 2006, PASP, 118, 517
- Boselli A., Gavazzi G., 2014, A&ARv, 22, 74
- Cardiel N., 1999, PhD thesis, , Universidad Complutense de Madrid, Spain, (1999)
- Carretta E., 2016, ArXiv e-prints, , ADS (arXiv:1611.04728)
- Clayton D. D., 2003, Ap&SS, 285, 353
- Cohen J. G., Huang W., 2009, ApJ, 701, 1053
- Conroy C., van Dokkum P., 2012, ApJ, 747, 69
- Conroy C., Graves G. J., van Dokkum P. G., 2014, ApJ, 780, 33
- Croom S. M., et al., 2012, MNRAS, 421, 872
- De Rijcke S., Dejonghe H., Zeilinger W. W., Hau G. K. T., 2003, A&A, 400, 119
- Faber S. M., Friel E. D., Burstein D., Gaskell C. M., 1985, ApJS, 57, 711
- Ferrarese L., et al., 2006, ApJS, 164, 334
- Geha M., Guhathakurta P., van der Marel R. P., 2003, AJ, 126, 1794
- Gorgas J., Faber S. M., Burstein D., Gonzalez J. J., Courteau S., Prosser C., 1993, ApJS, 86, 153
- Graham A. W., Guzmán R., 2003, AJ, 125, 2936
- Gratton R. G., et al., 2001, A&A, 369, 87
- Greggio L., Renzini A., Daddi E., 2008, MNRAS, 388, 829
- Hubble E. P., 1929, ApJ, 69, 103
- Iwamoto K., Brachwitz F., Nomoto K., Kishimoto N., Umeda H., Hix W. R., Thielemann F.-K., 1999, ApJS, 125, 439
- Janz J., Lisker T., 2008, ApJ, 689, L25
- Janz J., Lisker T., 2009, ApJ, 696, L102
- Janz J., et al., 2012, ApJ, 745, L24
- Janz J., et al., 2014, ApJ, 786, 105
- Jerjen H., Kalnajs A., Binggeli B., 2000, A&A, 358, 845
- Koleva M., de Rijcke S., Prugniel P., Zeilinger W. W., Michielsen D., 2009, MNRAS, 396, 2133
- Koleva M., Prugniel P., de Rijcke S., Zeilinger W. W., 2011, MNRAS, 417, 1643
- Kormendy J., 1985, ApJ, 295, 73
- Kraft R. P., 1994, PASP, 106, 553
- Kroupa P., 2001, MNRAS, 322, 231
- La Barbera F., Vazdekis A., Ferreras I., Pasquali A., Allende Prieto C., Röck B., Aguado D. S., Peletier R. F., 2017, MNRAS, 464, 3597
- Langer G. E., Hoffman R., Sneden C., 1993, PASP, 105, 301
- Letarte B., et al., 2010, A&A, 523, A17
- Lisker T., Grebel E. K., Binggeli B., 2006a, AJ, 132, 497
- Lisker T., Glatt K., Westera P., Grebel E. K., 2006b, AJ, 132, 2432
- Mentz J. J., et al., 2016, MNRAS, 463, 2819
- Michielsen D., et al., 2008, MNRAS, 385, 1374

- Paudel S., Lisker T., Kuntschner H., Grebel E. K., Glatt K., 2010, MNRAS, 405, 800
- Pompéia L., et al., 2008, A&A, 480, 379
- Prugniel P., Soubiran C., 2001, A&A, 369, 1048
- Ryś A., Falcón-Barroso J., van de Ven G., 2013, MNRAS, 428, 2980
- Ryś A., van de Ven G., Falcón-Barroso J., 2014, MNRAS, 439, 284 Ryś A., Koleva M., Falcón-Barroso J., Vazdekis A., Lisker T., Peletier
- R., van de Ven G., 2015, MNRAS, 452, 1888 Shetrone M., Venn K. A., Tolstoy E., Primas F., Hill V., Kaufer A.,
- 2003, AJ, 125, 684 Smith R. J., Alton P., Lucey J. R., Conroy C., Carter D., 2015,
- MNRAS, 454, L71
- Spiniello C., Trager S., Koopmans L. V. E., Conroy C., 2014, MNRAS, 438, 1483
- Spiniello C., Trager S. C., Koopmans L. V. E., 2015, ApJ, 803, 87
- Thielemann F.-K., Hashimoto M.-A., Nomoto K., 1990, ApJ, 349, 222
- Thomas D., Maraston C., Schawinski K., Sarzi M., Silk J., 2010, MNRAS, 404, 1775

Timmes F. X., Woosley S. E., Weaver T. A., 1995, ApJS, 98, 617

- Toloba E., et al., 2015, ApJ, 799, 172
- Travaglio C., Hillebrandt W., Reinecke M., Thielemann F.-K., 2004, A&A, 425, 1029
- Vazdekis A., Sánchez-Blázquez P., Falcón-Barroso J., Cenarro A. J., Beasley M. A., Cardiel N., Gorgas J., Peletier R. F., 2010, MNRAS, 404, 1639
- Venn K. A., Irwin M., Shetrone M. D., Tout C. A., Hill V., Tolstoy E., 2004, AJ, 128, 1177
- Worthey G., 1998, PASP, 110, 888
- Worthey G., Ottaviani D. L., 1997, ApJS, 111, 377
- Worthey G., Faber S. M., Gonzalez J. J., Burstein D., 1994, ApJS, 94, 687
- Worthey G., Ingermann B. A., Serven J., 2011, ApJ, 729, 148
- Yamada Y., Arimoto N., Vazdekis A., Peletier R. F., 2006, ApJ, 637, 200
- Şen Ş., et al., 2018, MNRAS, 475, 3453

Access:

M22-0313: Turkish J.A&A — Vol.3, Issue 3.